

ARL

A Computational Explanation for Using Episodic Memories for Associative Learning and Memory Consolidation in a Robot

Troy Dale Kelley, U.S. Army Research Laboratory (ARL)

The Nation's Premier Laboratory for Land Forces

UNCLASSIFIED

SS-RICS

ARL

- U.S Army Human Research and Engineering Directorate (HRED) Symbolic and Sub-symbolic Robotics Intelligence Control System (SS-RICS)
 - Combines abstract symbolic representation with distributed sub-symbolic representations in a hybrid format

UNCLASSIFIED

Exciting Events

U.S. ARMY RDECOM®

Kelley, T. D., & McGhee, S. (2013, May). Combining metric episodes with semantic event concepts within the Symbolic and Sub-Symbolic Robotics Intelligence Control System (SS-RICS). In *SPIE Defense, Security, and Sensing* (pp. 87560L-87560L).


```
\begin{array}{cccc} \gamma & \longleftarrow & 0 \\ \text{for } i = 0 & \longrightarrow & \beta - 1 \\ & & \text{for } j = 0 & \longrightarrow & \beta - 1 \\ & & & \text{if } i == j \text{ continue} \\ & & \mu_{i,j} & \longleftarrow & \text{correlation}(\alpha_i, \alpha_j) \\ & & & \text{if } \mu_{i,j} > T \text{ then } \gamma & \longleftarrow \gamma + 1 \\ & & \text{end} \\ & & \text{end} \end{array}
```

or, where $x = correlation(\alpha_i, \alpha_i)$:

$$\gamma = \sum_{\substack{i,j=0\\i\neq j}}^{\beta-1} f(\mathbf{x}) > \mathsf{T}$$

Let $\tau = \%$ of correlations that exceed the threshold

$$\tau = \gamma / ((\beta^2 - \beta)/2)$$

if τ > B then RobotStatus ← Nothing has changed else RobotStatus ← Novel event occurred end

Episodic Indexing (Sleep)

Sleep is unproductive?

- Appears to be a dangerous activity
- Why would an organism deliberately put itself in an unconscious state?

Sleep is a powerful learning mechanism

U.S. ARMY RDECOM®

- Sleep must be extremely beneficial
- Associative learning mechanism

Theories

- Early theories were that sleep is an "unlearning process" where "random events" are activated
- (Activation Synthesis Model of Sleep)

Computational Benefits?

What are the computational benefits of sleep? What is the benefit of "replaying the days events"

U.S. ARMY RDECOM®

Replaying episodic events and defining cues for memory retrieval was more beneficial than other strategies for memory retrieval

What To Remember?

 We know that people tend to remember emotional or exciting events

U.S. ARMY RDECOM®

- Don't remember boring information
- If you get attacked by a tiger at the watering hole try to remember the event so that it can be avoided in the future

Three Strategies

<u>Strategy</u> 1

- Complete Memory Search
- Remember everything
 - Not very practical but serves as a benchmark

<u>Strategy</u> 2

- Recent Memory Search
- Remember only exciting events
 - Seemed to be very practical

<u>Strategy</u> 3

- Episodic Indexing
- Remember everything and process post hoc
- Add cues to exciting events
 - Prune out the boring events

Kelley, T. D. (2014). Robotic Dreams: A Computational Justification for the Post-Hoc Processing of Episodic Memories. International Journal of Machine Consciousness, 6(02), 109-123.

U.S. ARMY RDECOM®

Strategy 2 Results: Remember Exciting

Events

Problem: Speed of events. Things can happen too fast for processing Problem: After the first retrieval the stimulus has changed Problem: Retrievals are costly in terms of resources and take away from attention to the event Problem: Some retrievals are fast, but some can take too long if there is not a good match

The Nation's Premier Laboratory for Land Forces

U.S.ARM

What's Wrong?

- We know that people tend to remember emotional or exciting events
 - But we can't ONLY remember exciting events – why?

U.S. ARMY RDECOM®

- Because exciting events are dynamic and memory retrievals during the event are computationally expensive and inefficient
- If we get attacked by a tiger we can't only remember "getting attacked" a better strategy is to remember the events right before the attack in order to avoid future attacks
- If we only remember exciting events then the information before the event is not available for associative learning
- We must *save* everything an post process (dream) the days events

Strategy 3 : Remember everything and

Strategy 3

U.S.ARM

 Remember everything until some limit is reached (tired)

U.S. ARMY RDECOM®

- After some limit is reached, post process the data (dream)
- Some boring events are removed
- Cues are inserted in order to member exciting events by saving the preceding boring information (Associative Learning)
- Abstraction is used to characterize the entire event at a symbolic level
 - Symbolic categorization increases recall speeds over metric retrievals

- Scenario: Getting attacked by a tiger at the watering hole
- If the mind only remembered being attacked, it would not be able to anticipate the attack, in order to avoid the attack in the future

U.S. ARMY RDECOM®

- If the mind can post process the event by replaying the event as a dream, then the mind can use the events before the attack as cues, increasing reaction time, and possibly avoiding the event in the future
- The mind needs to remember the event AND the information before the event
 - Smells around the watering hole
 - The sounds of the birds before the attack
- Results can be "unlearned" through reinforcement learning
 - Go to the watering hole and we do not get attacked
 - This updates our reinforcement utilities

Dreaming: The Details

Remove some boring information

- Events between 1 and 2 are removed, but not event
 2, which serves as a cue
- Events between 5 and 6 are removed but not item
 5, which serves as reinforcement

Cueing information is inserted

 Event 2 becomes a cue to the exciting events between 3 and 4

Reinforcement can be tested

 Event 5 becomes a reinforcing state for later events

Abstraction is added for metric information

- The entire episode is characterized at the declarative level speeding future retrieval times
- The declarative level representation can be simple
 - "At some location (cue), something big and orange (Tiger) moved from left to right resulting in pain (event)"
- Converting information from metric to symbolic greatly speeds retrieval times

Implementation

ARL

A cue to the exciting event has been created The metric information associated with the boring events has been removed if it was not used as a cue Declarative information is used to characterize the event

The result of the event can be used for future reinforcement learning

U.S. ARMY RDECOM®

- The entire event can be recalled as one important episode given a small cue
- The situation could be generalized given similar cues

U.S. ARMY RDECOM®

Results

Number of milliseconds for a final *metric retrieval* following the posthoc processing of events. Each bar is the time associated with the *last metric retrieval*, using the image correlation algorithm, at the end of the event (5) to confirm an expected result.

U.S.ARM

U.S. ARMY RDECOM®

Strategy 3 was an order of magnitude faster than Strategy 2

The Nation's Premier Laboratory for Land Forces

UNCLASSIFIED

U.S.ARMY

Why post hoc?

ARL

Big Question: Why is this done as a post hoc process(sleep)?

- It *might* be computationally possible to accomplish this process immediately after an exciting event
 - Blocking incoming perceptual information is important
- There is some evidence that this type of associative learning can occur during restful periods that do not involve REM sleep
- If the mind is considered an analog system, then it would require re-winding the events of the day (much like a tape player) in order to find the right access points for the appropriate cues for associative learning

Conclusions

ARĹ

Dreams are important for associative learning

U.S. ARMY RDECOM®

The mind cannot *only* remember exciting events because the cues before the exciting events are important

- Replaying events as dreams and setting cues before exciting events allow the mind to anticipate events and possibly avoid them in the future
- The sleep/wake cycle can be seen as a *developmental* process for a cognitive system
 - The cognitive system has a *low* threshold for interesting or important events which changes with age
 - The cognitive system uses sleep to set associative cues to recall important events then *updates* the reinforcement parameters associated with each event
- As the cognitive system progresses through early life, events would become less interesting
 - This would lead to *less* learning, and the need for less post hoc processing (or sleep)
 - This is the process seen in humans