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a b s t r a c t

In this fMRI study, students learned to solve algebra-like problems in one of the four instructional
conditions during behavioral session and solved transfer problems during imaging session. During
learning, subjects were given explanatory or non-explanatory verbal instruction, and examples that
illustrated the problem structure or the solution procedure. During transfer, participants solved problems
that required complex graphical parsing and problems that required algebraic transformations.
Explanatory instruction helped in the initial phase of learning, but this benefit disappeared in transfer.
The example type had little effect on learning, but interacted with problem type in the transfer. Only for
algebraic problems, the structural example led to better transfer than the procedural example. The
imaging data revealed no effect of verbal instruction, but found that participants who had studied
structural examples showed higher engagement in the prefrontal cortex and angular gyrus. Activity of
the right rostrolateral prefrontal cortex in the initial transfer block predicted future mastery.

& 2014 Elsevier GmbH. All rights reserved.

1. Introduction

Mathematical problem solving is a complex task that requires
numerous cognitive functions including fact retrieval, calculation,
and reasoning. Research on optimal instructional methods has
focused on how students should learn (e.g., is it better to give
students direct instruction or let them discover for themselves?
[37,41,43,44,69]) and what students should learn (e.g., what should
be emphasized and taught during instruction [51,59]). Considerable
research has also examined the neural basis of mathematical knowl-
edge to better understand the learning mechanisms that underlie
mathematical problem solving (e.g., [4,15,29,35,49,50,52,53,61,72]).
In the current research we want to examine the effects of various
instructional methods on learning and transfer in mathematical
problem solving and identify how these different instructional
methods affect the activity of relevant brain regions.

1.1. Cortical areas involved in mathematical problem solving

Dehaene [24,25] proposed that number representations are
distributed over several areas that code for a different aspect
of numbers (known as “triple-code theory”). Expanding on this

theory, Dehaene and his colleagues [26] further identified three
parietal regions that are critical for number processing. The
horizontal intraparietal sulcus (HIPS) supports numerical quanti-
ties or magnitude; the posterior superior parietal lobule (PSPL)
supports the spatial and attentional aspects of number processing;
and the left angular gyrus (AG) in connection with other left
perisylvian language networks supports a verbal form of number
processing. The left AG is also known to be reliably activated in a
wide range of semantic tasks (e.g., [6,27,56,62]).

The models of equation solving [1,57] and mental multiplication
[61] developed from the ACT-R theory [2,3] emphasize the role of the
posterior parietal cortex (PPC) and lateral inferior prefrontal cortex
(LIPFC) in mathematical problem solving. According to the ACT-R
theory, the PPC is the imaginal module and its activity reflects
maintenance and transformation of internal representations (e.g.,
operations on a mental representation of equations), whereas the
LIPFC is the retrieval module and its activity reflects retrieval of
declarative knowledge (e.g., arithmetic facts, task instructions).
Various experiments support this view by showing that brain activity
in the PPC correlates with problem complexity while LIPFC activity
correlates with proficiency (for a review, see [2]).

Anderson et al. [4] and Wintermute et al. [72] examined
cognitive and metacognitive functions of the five regions men-
tioned above when students extend their mathematical compe-
tence. Students learned to solve novel mathematical problems
called pyramid problems. Participants solved problems that had a
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practiced algorithm (regular problems) and problems for which they
had to invent solutions (exception problems). By observing profiles of
brain activity patterns across different problem types and different
periods of problem solving, two distinct networks – cognitive and
metacognitive – were identified. Cognitive networks were more
engaged during the solution than during the feedback period and
showed little difference between regular and exception problems. In
contrast, metacognitive networks were more engaged during the
feedback than during the solution period and showed more activity
for exception problems than for regular problems. In both Anderson
et al. and Wintermute et al., the AG showed a strong metacognitive
pattern while the PPC and PSPL showed cognitive patterns. The HIPS
and LIPFC showed a mix of cognitive and metacognitive patterns.

Besides the five regions (HIPS, PSPL, AG, PPC, and LIPFC), a
potentially interesting brain region for complex problem solving is
the rostrolateral prefrontal cortex (RLPFC) [18,31]. Anderson et al.
[4] and Wintermute et al. [72] found that this was another region
that showed a metacognitive pattern of being more engaged for
exception problems. A number of studies provide converging
evidence that this region is indeed critical for metacognitive
processes (for a review, see [55]). For instance, Christoff and
Gabrieli [18] suggested that the RLPFC is involved in introspective
evaluation of one's own thoughts and feeling. Numerous other
studies implicate its metacognitive role in relational integration
[9,10,19,71], cognitive branching [39,40], monitoring of memory
retrieval [8], prospective memory [5,11], metacognitive awareness
in perceptual decision-making [30], and shifting between external
and internal processes [12].

1.2. Designing instructional conditions: how students should learn
and what students should learn

One of the widely discussed issues in mathematics education is
how students should learn for optimal learning – is it better for
students to learn from direct instruction or is it better for them to be
left to discover things on their own? Both positive and negative
evidence exists for providing direct instruction (for a review, see
[44]). For instance, several studies have shown that students who
invented their own procedure developed better conceptual knowl-
edge than those who were directly given instruction on solution
procedures (e.g., [13,34,36]). In contrast, numerous studies have
shown the superiority of giving direct instruction in various domains
including science [16,65], mathematics [14,20,67], and procedure
learning [60]. Lee et al. [46] proposed that the critical variable is not
whether there is an instructional explanation, rather whether
students appreciate the underlying structure of a problem. Such a
problem structure is not often obvious to students learning problem
solutions. Lee et al. found that, when hidden problem structure was
revealed by non-verbal scaffolding devices (e.g., color-coding), stu-
dents were successfully able to master a problem-solving skill even
when there was no instructional explanation.

Several studies report that principle-based instruction was
more effective than procedure-based instruction in mathematics
education (e.g., [51,59]). When the underlying principles are not
emphasized during instruction, students often fail to acquire
conceptual understanding and simply focus on memorizing pro-
cedures. Solution steps will be learned and practiced without
conceptual understanding, but learning without understanding
can lead to poor transfer performance [33,63]. Therefore, good
instruction should effectively convey underlying principles so that
learners develop a good mental model of a domain. When
instruction fails to emphasize hidden principles, students may
look like successful learners in the directly taught domain, but not
in a related but different domain. Students often rely too much on
syntactic rules and do not know how to transform their learned
procedures when problems are slightly changed [17,58].

2. Current experiment

The current study focused on the effects of different kinds of
instructional guidance when students transfer to solving novel
problems. We examined both transfer success and the engage-
ment of different brain regions implicated in mathematical pro-
blem solving. Although participants were given different types of
instructional guidance during the behavioral learning session,
imaging data were collected while they solved transfer problems
under the identical imaging transfer session. We developed a
computer-based instructional system for teaching data-flow alge-
bra problems like the one used by Lee et al. [45,46], which was
originally adapted from Brunstein et al. [7].1 By changing the
representation of algebraic expressions to a visual representation
of a data-flow diagram, we were able to test algebra learning anew
in a college population. In data-flow representations (Fig. 1) a
number flows from a top box through a set of arithmetic opera-
tions to a bottom box. If that number is unknown, the data-flow
structure is equivalent to an algebraic equation with a variable.
Fig. 1(a) and (b) shows an example problem and completed state
of that problem, respectively. Fig. 1(a) is the data-flow equivalent
of (6þx)*4¼8. The task is to determine what values to fill into the
empty tiles in the boxes. For a linear structure like Fig. 1, the values
can be determined by simply “propagating” the number up from
the bottom, performing the arithmetic operations – for the
problem of Fig. 1(a), this involves placing 2 in the empty tile
above the bottom box (rewriting this as 2*4¼8), then placing �4
in the tile above it (rewriting this as 6þ�4¼2), and finally placing
�4 in the top unknown box. In our previous studies [45], we
observed that most students found propagating numbers easy and
intuitive, and thus they did not need much assistance when
learning to solve these “propagate problems”. Such propagate
problems were used to help familiarize students with the compu-
terized instructional system used in this study.

However, when problems cannot be solved by this simple
propagation strategy, most students have difficulty inducing a
correct procedure for determining the values to fill into the empty
tiles of the diagram. Fig. 2(a) shows an example of such a problem

Fig. 1. An example of a propagate problem used in the learning session. (a) Original
diagram of a propagate problem: Equivalent of (6 þ x) * 4 ¼ 8, (b) Completed problem.

1 The entire experimental materials and examples of transfer problems are
available at https://www.dropbox.com/sh/utw5fuubt4cgxz1/qCDc4Dn4gw.
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used in this study. In this example, the diagram is equivalent to the
algebraic expression, (8–x)þ(5nx)¼36, where an unknown num-
ber in the top box flows down into the boxes below and the
resultant value becomes 36. Different from propagation problems
(e.g., Fig. 1), in cases like 2(a), two paths converge in a single
result; thus a simple propagation procedure is not possible. The
way to solve this problem within the rules of the system is to
transform the diagram in Fig. 2(a) into the form in Fig. 2(b), where
the data-flow diagram has a linear structure of aþbx, and to
determine two numbers to fill into the two empty tiles as shown
in Fig. 2(c). Because such a linear structure is not obvious to
subjects who are not familiar with data-flow diagrams, this
transformation step causes a major conceptual hurdle in this
study. We call this transformation step linearization and will focus
on this most difficult part of problem solving.

To correctly transform the diagram, students have to select the
appropriate set of rectangular boxes to “linearize”. In Fig. 2(a),
students have to select the three rectangular boxes that are indicated
by the arrows. After selecting these three boxes, clicking a linearize
button transforms the data-flow diagram into the intermediate state
in Fig. 2(b). The transformed diagram has a structure of aþbx. This
linear structure is equivalent to the simplified expression of the
original diagram when performing collection of like terms. Thus
students need to find the coefficient that multiplies the top unknown
value and the constant that adds to the first product. In this example,
the selected boxes for linearization are simplified into the equivalent
of (8�x)þ(5nx)¼8þ4x; thus a is 8 and b is 4. The coefficient 4 goes
into the box next to the “n” operator and the constant 8 goes into the
box next to the “þ” operator. After filling in these two values, as
shown in Fig. 2(c), now the problem becomes a propagate problem
where students can apply the simple propagating strategy to fill in
the rest of the empty tiles as shown in Fig. 2(d).

In this study, participants learned to solve these linearize pro-
blems under one of the four instructional conditions. We manipu-
lated the type of verbal instruction (explanatory vs. non-explanatory)
students were given when they requested a hint in the learning
session. Crossed with this, we also provided two different kinds of
instructional examples on students' help request. The examples
illustrated either the structure behind the solution (structural exam-
ple) or the solution procedure for calculating the answer (procedural
example). After learning to solve problems under one of these four
conditions, all participants were transferred to an identical transfer
condition where they had to solve two types of more challenging
problems.

3. Methods

3.1. Participants

Forty-eight graduate and undergraduate students (22 male and
26 female,M¼21.92 years, SD¼2.6) from Carnegie Mellon University
participated in this study. All participants were right-handed and had
normal or corrected-to-normal vision. Each participant was ran-
domly assigned to one of the four learning conditions. Participants
received $10/h plus a performance-based bonus.

3.2. Design and materials

A 2�2 between-subjects design was employed to test the
effects of different types of verbal instruction and instructional
examples. First, the type of verbal instruction was manipulated by
providing explanatory or non-explanatory verbal instruction.
In the Explanatory condition, hint texts provided explanations
of why various actions were necessary and how intermediate
answers were computed. In the Non-explanatory condition, the
textual message just specified the actions required in the interface
such as “click a box” and “enter a number.” Thus in this condition,
subjects have to discover problem solving rules on their own. This
manipulation was applied during the entire learning session.
Example verbal instructions are shown below the diagrams in
Fig. 3 for the explanatory and non-explanatory conditions.

Crossed with the explanatory versus non-explanatory manip-
ulation of verbal instruction, two different types of examples
(structural vs. procedural) were constructed to illustrate different
aspects of the problem solution. These examples were available
whenever students requested a hint. Fig. 3 shows an example of
each instructional example condition. In the Structural example
condition shown in Fig. 3(a), when students requested a hint,
algebraic expressions were directly drawn onto the diagram
students were solving, to illustrate how the diagram is equivalent
to an algebraic expression. The example reveals how the compo-
nents of the diagram come together to be the equivalent of an
algebraic expression on which one can perform collection of like
terms. This type of example clearly shows that the data-flow
diagram is just an equivalent of algebraic expression; thus,
students would have a basis for understanding the values that
they are entering for coefficient and constant. However, if students
were to actually follow these steps mentally in solving a diagram
they would face large working memory demands (especially when
problems are large) because they would have to simultaneously
calculate both the coefficient and constant terms.

In the Procedural example condition illustrated in Fig. 3(b), we
illustrated the steps that proficient problem solvers in this system
reported using in our previous behavioral studies [45,46]. When
students requested a hint, the system first showed the calculation
of the coefficient terms as shown in the left part of Fig. 3(b) and
then the calculation of the constant as shown in the right part of

Fig. 2. An example of a linearize problem used in the learning session. (a) Original
diagram of a linearize problem: Equivalent of (8 � x) þ (5*x) ¼ 36, the arrows
indicate boxes to select for linearization; (b) Transformed diagram: Equivalent of
(8 � x) þ (5*x) → a þ bx, students have to fill numbers into the blue tiles;
(c) Results of linearization: Equivalent of 8 þ 4x ¼ 36, after filling in two blue tiles
correctly, students can fill the rest of the empty tiles using propagation; and
(d) Completed problem. (For interpretation of the references to color in this figure
legend, the reader is referred to the web version of this article.)
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Fig. 3(b). By focusing on just one component, working memory
load is reduced. Reducing cognitive load is known to enhance
learning [66,68]. However, a potential problem of directly teaching
how to calculate the components is that the equivalent algebraic
transformation is never illustrated.

In the transfer session, instead of solving a complete form of
data-flow diagrams (i.e., stages of Figs. 2(a) through (d)), partici-
pants were asked to perform only the linearization step. An
original data-flow diagram and transformed diagram were simul-
taneously shown and participants had to determine what values to

enter on the transformed diagrams. There were two types of
transfer problems: graphic and algebraic problems. The Graphic
problems required dealing with a novel complexity in the diagram
structure but the basic procedure for determining the answer was
unchanged. In contrast, Algebraic problems required algebraic
transformations after collecting coefficient and constant terms.
Table 1 shows examples of graphic and algebraic transfer pro-
blems. For linearize problems used in the learning session, the
transformed diagram always has a structure of aþbx; thus sub-
jects solve problems by collecting coefficient and constant terms
from the original diagram. For graphic transfer problems, transformed
diagrams also have a structure of aþbx, but original diagrams have a
more complex structure. Only some portions of the original diagram
have been transformed or the top unknown number was algebraic
expression (e.g., 8�x), rather than a single unknown number (e.g., x).
This requires parsing of graphic complexity, and subjects have to
figure out which boxes to include or exclude for computations. On the
other hand, algebraic problems require an algebraic transformation
after performing collection of like terms. Because the transformed
diagrams have a structure (e.g., a�bx) other than aþbx, subjects have
to understand the structure of the linearized diagram they have not
practiced in the learning session.

Fig. 4 shows an example of graphic(a) and algebraic(b) pro-
blems. In Fig. 4(a), only two boxes (indicated by arrows) have
been transformed whereas other boxes remain unchanged. This
requires that students attend to which boxes were included or
excluded for linearization because that in turn changes what to
include or exclude when collecting coefficient and constant terms.
This and the other graphic problems required a minimal change to
the learned procedures – as long as students identified which
boxes to include for computation they should solve the problem
correctly. Here, the original diagram is equivalent to (((8�x)þx)þ
x)þ(5nx) and the transformed diagram is equivalent to (aþbx)þ
xþ(5nx). Because (8–x)þx can be simplified into 8þ0x, the
answers are 0 and 8 to this problem. There were four subtypes
of graphic problems that involved various forms of graphical
parsing. Fig. 4(a) shows only one subtype and the other three
subtypes are shown in Table 1 (examples at website in footnote 1).

In contrast, to correctly solve the algebraic problems (Fig. 4b),
after collection of coefficient and constant terms participants have
to make an algebraic transformation based on the changed
number or operator on the linearized diagram. For instance, in
Fig. 4(b), the box with the “þ” operator appears above the box
with the “n” operator in the linearized diagram. This is different
from the linearized diagrams participants solved during the
learning session, in which the box with the “n” operator always
appeared above the box with the “þ” operator (see Fig. 2(c) for an
example). If participants simply memorized that the coefficient
goes into the top box and the constant goes into the bottom box,
this problem would not be correctly solved. A further algebraic
transformation is necessary. For instance, the original diagram
of Fig. 4(b) is equivalent to (8–x)þ(5nx) and the transfor-
med diagram is equivalent to (aþx)nb. The original expression
(8–x)þ(5nx) can be simplified to 8þ4x, but to enter something
into the transformed diagram participants have to further simplify
this into (2þx)n4. To remove the possibility that participants
might fail to correctly solve problems simply because they did
not notice the structural change in the transformed diagram, we
highlighted the changed parts using a different color. In this
example, the operators, both “þ” and “n” were highlighted. These
problems can be correctly solved only if students appreciate how
the two data-flow diagrams are equivalent. There were four
subtypes of algebraic problems that involved various forms of
algebraic transformations. Fig. 4(b) shows only one subtype and
the other three subtypes are shown in Table 1 (examples at
website in footnote 1).

Fig. 3. Example illustration for (a) structural and (b) procedural example condition. In
the (a) structural condition, both coefficient and constant terms are computed
simultaneously using equivalent algebraic expressions, whereas in the (b) procedural
condition, solution steps for the coefficient term (left) is illustrated first and then
constant term (right) second. Depending on the verbal instructional conditions,
different hint texts were provided and example texts are shown below the figures
for explanatory and non-explanatory conditions. Hint texts were identical for
structural and procedural example condition. Depending on which box is being filled
in participants in the explanatory condition see the instruction for 4 or 8. In the non-
explanatory condition they see the same verbal information for both boxes.

Table 1
Examples of learning problems and transfer problems. Each example shows the
type of required transformations. There was only one type of linearize problem
in the learning session and there were four subtypes of graphic and algebraic
problems in the transfer session.

Example problem and
required transformation

Correct
answers

Learning
session

Propagate 2–xþ12¼8
(No transformations required)

x¼6

Linearize (8–x)þ(5nx)-aþbx a¼8, b¼4
Transfer

session
Graphic problems
Type 1 (((8–x)þx)þx)þ(5nx)-

(aþbx)þxþ(5nx)
a¼8, b¼0

Type 2 (((8–x)þx)þx)þ(5nx)-
(aþbx)þ(5nx)

a¼8, b¼1

Type 3 ((8–x)þ5)þ(8–x)-aþbx0 (x0 ¼8�x) a¼5, b¼2
Type 4 ((8–x)þ5)þ(8–x)-aþbx (x0 ¼8�x) a¼21, b¼�2

Algebraic problems
Type 1 (8–x)þ(5nx)-(xþa)nb a¼2, b¼4
Type 2 (8–x)þ(5nx)-�aþbx a¼�8, b¼4
Type 3 (8–x)þ(5nx)-a–bx a¼8, b¼�4
Type 4 (8–x)þ(5nx)-4n(aþbx) a¼2, b¼1
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3.3. Procedure-behavioral training session

The study consisted of two sessions: a behavioral learning
session and an imaging transfer session. Fig. 5(a) shows the
schematic representation of the study procedure. Each session
lasted 2 h and there were 1 or 2 days between the two sessions.
The learning session consisted of two problem sections, one with
20 propagate and the other with 40 simple linearize problems.
Each problem section followed after 1 worked-example and
1 guided problem that automatically showed a hint for every step
without requests. Hints consisted of verbal instructions for each
step and instructional examples that were designed for the
corresponding instructional conditions. If a participant failed to
perform a correct step of problem solving for 1 min, a hint
automatically appeared for the corresponding step the participant
was performing. After another 1 min was reached, that step was
automatically solved by the system. This time limit feature was
intended to reduce excessive floundering. To help reflection
activity for the already solved problems, a corresponding hint
stayed there for another 1 min or until a student tried to move on
to the next step.

3.4. Procedure – fMRI session

The transfer session was identical for all instructional condi-
tions. No hints or examples were provided in any conditions.
Because the transfer task format (i.e., just filling in the two values)
was quite different from the learning task, participants solved

some practice problems to familiarize them with this new format
during structural image acquisition. These practice problems
involved the new format, but the same kinds of problem structure
as they had practiced in the learning session; the problems did not
involve the graphic or algebraic transfer problems. This was
followed by 8 blocks of transfer problems and each block consisted
of 8 problems (4 subtypes of graphic and 4 subtypes of algebraic
problems). Each subtype of transfer problem appeared once in
each block and the order of the problems was randomized for each
block. Fig. 5(b) shows an illustration of events for each trial. A trial
started with a 3-s fixation and then was followed by a problem
that stayed on the screen until the participants submitted their
answers or until 1 min was reached. Participants entered their
answers via a numerical keypad displayed on the screen by using
a mouse. Their response was followed by a feedback page, which
showed one of the messages, “correct”, “incorrect”, or “time's
up” on the top of the screen. Also, participants' own answers and
correct answers were presented simultaneously so that they
could compare them. The feedback was presented for 2 s for
correct and 10 s for incorrect responses. There was no explana-
tion provided in any conditions. After the feedback, there
was another 3 s of fixation followed by a repetition-detection
task for 12 s. In the repetition-detection task, letters appeared on
the screen at a rate of 1/1.25 s. Participants were told to click a
match button whenever the same letter appeared twice con-
secutively. This was intended to distract participants from
thinking about the problem and return activation to a constant
baseline.

Fig. 4. An example of (a) graphic and (b) algebraic problems used in the transfer session. The left diagram shows the state before linearization and the right diagram shows
the state after linearization. The correct answers are given in the arrow in this example. (a) is equivalent to transforming (((8–x)þx)þx)þ(5*x)-(aþbx)þxþ(5*x) where
a¼8, b¼0 and (b) is equivalent to transforming (8–x)þ(5*x)-(aþx)*b where a¼2, b¼4.
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Images were acquired using gradient-echo echo planar image
(EPI) acquisition on a Siemens 3T Verio Scanner using a 32 channel
RF head coil, with 2 s repetition time (TR), 30 ms echo time (TE),
791 flip angle, and 20 cm field of view (FOV). The experiment
acquired 34 axial slices on each TR using a 3.2 mm thick, 64�64
matrix. This produces voxels that are 3.2 mm high and 3.125�
3.125 mm2. The anterior commissure-posterior commissure (AC-
PC) line was on the 11th slice from the bottom scan slice. Acquired
images were pre-processed and analyzed using AFNI [21,22].
Functional images were motion-corrected using 6-parameter 3D
registration. All images were then slice-time centered at 1 s and
co-registered to a common reference structural MRI by means of a
12-parameter 3D registration and smoothed with a 6 mm full-
width-at-half-maximum 3D Gaussian filter to accommodate indi-
vidual differences in anatomy.

4. Results

Out of 48 participants, data from 9 participants were excluded
from the final analysis due to various reasons. One participant
(explanatory/structural) did not show up for the transfer session.
Seven participants (1 from explanatory/structural, 3 from non-
explanatory/structural, 3 from non-explanatory/procedural) were
excluded due to a poor learning performance (mean number of
errors per problem was greater than 2). One further participant
(explanatory/procedural) was removed due to a poor transfer
performance (0% of correct responses in algebraic transfer pro-
blems). This resulted in a total of 39 participants (10 explanatory/
structural, 9 explanatory/procedural, 10 non-explanatory/struc-
tural, and 10 non-explanatory/procedural).

4.1. Behavioral results

For the learning session, to identify initial and later perfor-
mance differences among conditions, we focused on the first 16
linearize problems (blocks 1–2) and the last 16 problems (blocks
4–5). We measured the number of problems where participants
“correctly” performed linearization steps without a single error or
hint. A 2�2 analysis of variance (ANOVA) was performed to
determine the effect of verbal instruction and instructional exam-
ple on the initial and later periods of learning. There was a
significant main effect of verbal instruction on the initial period
of learning, F(1, 35)¼4.97, MSE¼2624.45, p¼0.032; however, the
effect of verbal instruction disappeared on the later period of
learning, F(1, 35)¼0.55, MSE¼4.25, p¼0.462. In the initial phase
of learning, participants who were given explanatory verbal
instruction (M¼68.75, SD¼17.43) solved around 16% more pro-
blems correctly than those who were just told about the interface
and left to induce a rule for themselves (M¼52.19, SD¼26.30).
This implies that the benefit of provision of explanatory verbal
instruction (vs. non-explanatory instruction) existed only in the
initial period of learning. There was neither a main effect of
instructional example, Fso1, nor an interaction effect, Fso1 in
both initial and later periods of learning.

For the transfer session, problem type (graphic vs. algebraic) was
included as a within-subjects variable. A 2�2�2 mixed ANOVAwas
performed on transfer performance as measured by the number of
correctly solved problems.2 Regarding the overall transfer perfor-
mance, there were no main effects of verbal instruction, F(1, 35)¼

Fig. 5. An illustration of (a) the study procedure and (b) events for each trial during imaging transfer session.

2 Transfer problems involved only linearization steps, and not propagation; the
number of correctly solved problems was the same as the number of correctly
performed linearization steps.
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2.82, MSE¼2045.15, p¼0.102, nor instructional example, F(1, 35)¼
1.05, MSE¼758.03, p¼0.314, nor an interaction effect between these
two factors, Fo1. However, there was a significant main effect of
problem type, F(1, 35)¼39.31, MSE¼7038.99, po0.001. Fig. 6 shows
the mean percentages of correctly solved problems in the transfer
session. Participants overall performed better on graphic problems
(M¼69.68, SD¼17.60) than on algebraic problems (M¼50.96,
SD¼25.89). More interestingly, the problem type interacted with
the type of instructional example provided in the learning session, F
(1, 35)¼9.78, MSE¼1751.73, p¼0.004. For graphic problems, there
was no mean difference between the two example groups, but for
algebraic problems, the structural group (M¼58.44, SD¼24.08)
solved more problems correctly than the procedural group
(M¼43.09, SD¼25. 99). Problem type did not interact with verbal
instruction, F(1, 35)¼4.05, MSE¼724.66, p40.05. There was no
three-way interaction, F(1, 35)¼1.79, MSE¼319.79, p¼0.19.

4.2. Imaging analysis – predefined regions

Because of their importance in past research, we chose the PPC
and LIPFC from the ACT-R theory [2] and the PSPL, HIPS, and AG from
Dehaene et al. [26] plus the RLPFC [4,72]. Table 2 shows the locations
of these regions. For each region, we extracted an estimate of the
engagement during the solution period and feedback period. A
design matrix was constructed consisting of 8 regressors of interest.
These were obtained by crossing problem type (graphic vs. algebraic)
with correctness (correct vs. incorrect), and splitting each trial into
two periods.3 The trial periods consisted of the variable solution

period from stimulus onset up until response completion, and the
feedback period (2 s for correct response and 10 s for incorrect
response). These 8 regressors were created by convolving the boxcar
functions of the described variables with the standard SPM hemo-
dynamic response function [32]. A baseline model consisted of an
order-4 polynomial to remove general signal drift. This analysis
yielded 8 beta weights for each participant. We performed two
different sets of ANOVAs. In the first analysis, we will focus on the
beta weights for the solution period only and in the second analysis
we will look at the contrast between the solution and feedback
periods for incorrect trials.

For solution period we examined 2 between-subjects variables
and 3 within-subjects variables. The between-subjects variables
were verbal instruction (explanatory vs. non-explanatory) and
instructional example (structural vs. procedural). The within-
subjects variables were problem type (graphic vs. algebraic),
correctness (correct vs. incorrect), and hemisphere (left vs. right).
For each of the six predefined regions, we performed a series of
2�2�2�2�2 mixed ANOVAs. We were interested in main
effects but we did the more complex analysis to detect whether
there were any complicating interactions. Although there were
some interactions with hemisphere, in all cases these took the
form of the effect being stronger in one hemisphere than in the
other but not changing the direction of main effect. There were no
other significant interactions. Table 3 shows the main effects found
in the six predefined regions. We did not find any brain regions
that showed a reliable effect of verbal instruction. In contrast,
there were significant effects of the instructional example: the
structural group (vs. procedural) showed significantly higher
engagement in the LIPFC (structural M¼0.52%, procedural M¼
0.26%) and the AG (structural M¼0.17%, procedural M¼�0.05%)
regions. The other four regions showed non-significant effects in
the same direction. Regarding the problem type, all of the regions
but the PSPL showed significantly greater engagement for alge-
braic problems (vs. graphic). Regarding the effect of correctness,
there was greater activation for correct trials in the PPC (correct
M¼0.95%, incorrect M¼0.91%) and the PSPL (correct M¼2.16%,
incorrect M¼2.04%). The HIPS showed a marginal effect in the
same direction (p¼0.057).

In order to look at the effect of period (solution vs. feedback)
we also performed a separate 2�2�2�2�2 mixed ANOVA by
entering period as a within-subjects factor and excluding the
correctness factor. We focused on incorrect trials only because
the brief feedback period for correct trials yielded poor estimates
of effects. The main effects are shown in the rightmost column of
Table 3. The PPC, PSPL, and HIPS showed significantly greater
engagement during the solution period than during the feedback
period, whereas the LIPFC, AG and RLPFC regions showed the
reverse pattern.

In addition to the ANOVA, we also looked at the mean percent
change from baseline to examine the time courses of the six ROIs.
For this analysis, we adopted an event-aligning method [61].
The event-aligning procedure enables us to consider the entire
time course of varying lengths of trials. We used onset of the
problem and onset of the feedback as behavioral markers and
then aligned each scan from each trial interval to the mean length
of the interval. Therefore, in case of the short trial, the same
scan was copied to multiple positions, whereas in the case of the
long trials, the middle scans were deleted so that all trails had
the same length of the interval. The mean length of correct
trials was 14 scans and the mean length of incorrect trials was
16 scans.

Fig. 7 presents these time courses for the six ROIs (averaged
over left and right hemispheres). The correct responses (Fig. 7a)
consisted of 14 solving scans, 1 feedback scan, and 6 post-
feedback scans. The incorrect responses (Fig. 7b) consisted of 16

Fig. 6. Mean percentages of correctly solved problems in the transfer session. Error
bars represent 1 standard error of mean.

Table 2
Locations of predefined regions.

ROI Brodmann
area (s)

Volume Talairach coordinates
(x, y, z)

PPC 7 and 39 12.8 mm. (high) by
15.6�15.6 mm2

723, �63, 40

LIPFC 9 and 46 12.8 mm. (high) by
15.6�15.6 mm2

743, 23, 24

PSPL 7 12.8 mm. (high) by
12.5�12.5 mm2

719, �68, 55

HIPS 40 12.8 mm. (high) by
12.5�12.5 mm2

734, �49, 45

AG 39 12.8 mm. (high) by
12.5�12.5 mm2

741, �65, 37

RLPFC 10 12.8 mm. (high) by
205.078125 mm2

733, 47, 8

3 We removed the cases where participants were timed out. There were a total
of 148 timed out trials and they were less than 6 % of the total cases used for
this study.
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solving scans, 5 feedback scans, and 6 post-feedback scans.
The PPC, PSPL, and HIPS showed decreased engagement after
the feedback regardless of correctness of the trials, whereas the

LIPFC, AG and RLPFC regions showed increased engagement
after the feedback, especially in case of incorrect trials. Fig. 8
shows how time courses differ between two example conditions

Table 3
Main effects of 2�2�2�2�2 ANOVA with beta weights of the solution period (F's with dfs of 1 and 35). The rightmost column reports a main effect of period with
incorrect trials.

ROI Verbal instruction
[Exp4Non]

Instructional example
[Struc4Proc]

Problem type
[Alg4Graph]

Correctness
[Cor4 Inc]

Hemisphere
[Left4Right]

Period
[Sol4Feed]

PPC (0.95) 1.96 4.56n 6.23n 13.15nn 9.34nn

LIPFC 0.03 5.69n 22.64nnn (0.01) 0.78 (10.93)nn

PSPL (0.75) 0.72 0.3 17.56nnn 0.21 38.18nnn

HIPS 0.31 1.65 8.10nn 3.86 34.37nnn 6.43n

AG (1.24) 4.64n 12.45nn 0.92 (3.33) (49.61)nnn

RLPFC 0.14 2.65 26.77nnn �0.06 2.74 (24.24)nnn

Values in parentheses indicate an opposite direction of the stated main effect.
n Significance level: po0.05.
nn Significance level: po0.01.
nnn Significance level: po0.001.

Fig. 7. Time courses for the six ROIs (averaged over hemisphere) of (a) correct responses and (b) incorrect responses. Each marker represents a 2-s TR.
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in the LIPFC and AG regions. In both regions, the structural
group showed higher engagement than the procedure group in
both correct (Fig. 8a) and incorrect responses (Fig. 8b). It is

particularly striking how the AG only shows a positive response
during the solving phase only for the structural example
condition.

Fig. 8. Time courses for the LIPFC and AG regions (averaged over hemisphere) between structural and procedural example conditions in (a) correct responses and
(b) incorrect responses. Each marker represents a 2-s TR.

Table 4
Regions identified from exploratory analysis using the graphic versus algebraic contrast: main effects of 2�2�2 ANOVAwith beta weights of solution period (F's with dfs of
1 and 35). The rightmost column reports a main effect of period with incorrect trials.

Region Brodmann
area (s)

Coordinates
(x, y, z)

Voxel
Count

Verbal instruction
[Exp4Non]

Instructional example
[Struc4Proc]

Correctness
[Cor4 Inc]

Period
[Sol4Feed]

(a) Algebraic4Graphic
1 Medial/Superior Frontal Gyrus 8/32 �2, 21, 48 272 0.07 2.69 0.01 (50.68)nnn

2 L Middle Frontal Gyrus 6 �25, 3, 58 178 1.12 0.77 1.60 7.42n

3 L Precuneus 7 �6, �67, 45 173 1.05 1.65 6.71n (0.64)
4 R Middle Frontal Gyrus 6 37, 6, 43 62 (0.72) 2.48 0.32 (36.49)nnn

5 L Inferior/Superior Parietal Lobule 40/7/39 �39, �59, 45 545 (1.16) 3.37 2.73 (7.38)n

L Angular Gyrus
L Supramarginal Gyrus

6 L Inferior/Middle/Superior Frontal
Gyrus

10/46/45/9 �33, 35, 21 1005 0.24 2.77 (0.38) (14.65)nnn

7 R Middle/Superior Frontal Gyrus 10/46/9 33, 32, 25 166 0.03 4.66n 0.00 (4.05)
8 R Inferior Parietal Lobule 40 46, �47, 45 16 0.01 4.32n 0.69 (22.98)nnn

9 L Insula 13 �24, 15, 10 180 0.11 3.89 0.09 (8.68)nn

L Putamen
L Caudate

10 R Inferior/Middle/Superior Frontal
Gyrus

10 33, 48, 4 49 (0.01) 4.63n (0.03) (33.03)nnn

11 R Caudate 14, 11, 12 33 (0.01) 6.13n 0.11 (2.18)
12 L Thalamus �9, �10, 16 33 (0.21) 4.32n 1.19 (2.90)
13 R Insula 13 29, 22, 5 37 (0.05) 5.00n (1.31) (22.55)nnn

14 L Middle Temporal Gyrus 37 �53, �39, �1 20 (0.55) (0.15) 1.05 (39.32)nnn

15 R Inferior Occipital/Fusiform Gyrus 17/18 28, �93, �6 16 (0.30) 2.70 4.94n 3.01
16 L Fusiform/Inferior Temporal Gyrus 37/20 �41, �57, �13 54 0.11 2.60 6.79n (20.54)nnn

(b) Graphic4Algebraic
17 L Cuneus/Middle Occipital Gyrus 18 �11,�96,14 21 (0.18) 0.14 4.50n (56.11)nnn

Values in parentheses indicate an opposite direction of the stated main effect.
n Significance level: p o0.05.
nn Significance level: p o0.01.
nnn Significance level: p o0.001.

H.S. Lee et al. / Trends in Neuroscience and Education 3 (2014) 50–6258



4.3. Imaging analysis – exploratory regions

Three exploratory analyses were performed looking for sig-
nificant effects of verbal instruction (explanatory vs. non-expla-
natory), instructional examples (structural vs. procedural), and
problem type (graphic vs. algebraic) for the correct solution
period. These analyses looked for regions of at least 13 contiguous
voxels that showed a voxel-wise significance of 0.0001 for the
difference between the contrast of the described variables. Using
these values results in a brain-wise significance estimated to be
less than 0.01 by simulation [21,22]. There were no significant
effects of the two between-subjects variables of verbal instruction
or instructional examples, but 17 regions emerged for the within-
subjects variable of problem type (see Table 4).

Fig. 9 displays the regions showing a significant effect of
problem type. The red regions show greater activity while solving
algebraic problems whereas the one blue region shows greater
activity while solving graphic problems. To illustrate how the
exploratory regions overlap with our predefined regions, black
squares were used to represent the six predefined regions in the
experiment. Many of the 16 regions showing greater activity
while solving algebraic problems overlapped with our predefined
regions. This includes a posterior region (5) that overlaps with the
left predefined PPC, HIPS, and AG and anterior regions (6, 7, and
10) that overlap with the left and right LIPFC and RLPFC.

For each of the 17 regions, Table 4 gives the effects of verbal
instruction (explanatory vs. non-explanatory), and instructional
example (structural vs. procedural) and the within-subjects vari-
able was correctness (correct vs. incorrect). These factors were
orthogonal to the problem type that was used to select the regions.
Consistent with our predefined region analysis, there was no
reliable effect of verbal instruction in any of the 17 regions. In
contrast, 6 regions showed greater activity in the structural
example condition than in the procedural example condition. This
includes the region (7) that overlaps with the right predefined
LIPFC and the region (10) that overlaps with the right predefined
RLPFC. The region (5) that overlaps with our predefined AG had
only a marginally significant effect of instructional example. The
last column of Table 4 gives the effect of period. Consistent with
our predefined region analysis, the region (5) that overlaps with
the left AG and region (10) that overlaps with the right RLPFC
showed greater activity during the feedback period than during
the solution period.

4.4. Predicting future learning

Does engagement of different brain regions predict future
learning? To examine whether engagement of certain brain regions
predicted future performance, we looked at the relationship

between the activity in the regions on the first block and perfor-
mance on later blocks (blocks 2–8). The predictive variables were
the beta weights obtained from the solution period for each of
the predefined and exploratory brain regions for the first block.
Because the accuracy in the first block was low (overall M¼34%,
graphic M¼46%, algebraic M¼22%), we ignored correctness and
problem type. The criterion variables were the proportion of correct
responses for graphic problems, algebraic problems, and both
problem types on blocks 2–8. Among the predefined regions only
the right RLPFC showed a significantly positive correlation (r¼
0.375) with the future performance for both types of problems.
Fig. 10 shows the relationship between brain activity in the right
RLPFC during the first block and performance of the future blocks
(2–8). Consistently, among the exploratory regions, only region 10
showed a significant correlation (r¼0.342) and this region overlaps
with the right predefined RLPFC.

5. General discussions

This paper investigated the effect of various instructional methods
on learning and transfer by examining both behavioral and imaging
data. We varied the way students learned by manipulating the verbal
instruction (explanatory vs. non-explanatory) and what aspects of
the problems the instructional examples illustrated (structural vs.
procedural). Students were then tested with two different types of
transfer problems (graphic vs. algebraic). Both behavioral and ima-
ging data showed that verbal instruction did not have an effect on
transfer while instructional example had an effect. Students who
learned with structural examples showed better transfer to algebraic

Fig. 9. Exploratory regions showing a significant effect of the contrast between activity during graphic problem solving and algebraic problem solving. The black squares
show the six predefined regions in the experiment. The red regions show greater activity solving algebraic problems. The one blue region shows greater activity solving
graphic problems. The z coordinates for a brain slice (radiological convention: image left¼participant's right) is at x¼y¼0 in Talairach coordinates. (For interpretation of the
references to color in this figure legend, the reader is referred to the web version of this article.)

Fig. 10. Relationship between brain activity of the right RLPFC and the performance
in blocks 2–8.
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problems than those who learned with procedural examples. These
students also showed greater engagement in the LIPFC and AG
regions. The results were largely consistent when we tested an effect
of instructional conditions on the exploratory regions identified from
the contrast of graphic versus algebraic problems. The exploratory
right RLPFC was additionally identified as showing greater activity
among the structural group than the procedural group. The structural
examples used algebraic knowledge to illustrate the structure behind
solutions whereas the procedural examples illustrated the sequence
of operations for computing the answers. Greater dependency on
algebra knowledge in the structural condition perhaps increased
activity in the LIPFC and AG regions. Many studies have shown that
the LIPFC is involved in advanced tasks such as algebra, geometry, or
calculus (e.g., [42,54,57,64]). More specifically, this region appears to
support retrieval of arithmetic and semantic facts in mathematical
problem solving [23,48]. Also, the greater activity in the AG from the
structural condition perhaps reflects the verbal processing of num-
bers [26]. Structural examples were likely to cause larger working
memory loads by simultaneously illustrating the coefficient and
constant terms while procedural examples illustrated the calculation
of each term separately. Simultaneous computation of two terms
perhaps increased the working memory load and a tendency for
verbalization among the structural students.

The two kinds of instructional examples resulted in different
levels of transfer performance depending on the type of test
problems. Graphic problems did not necessarily require use of
algebra knowledge; thus the procedural students were able to
solve these problems as well as the structural students. In contrast,
to correctly solve algebraic problems, it is very helpful to under-
stand how the data-flow diagram is equivalent to an algebraic
expression. Accordingly, the structural participants were better
able to solve algebraic problems than the procedural participants.
The PPC, LIPFC, HIPS, AG, and RLPFC showed greater activity while
solving algebraic problems than graphic problems. This is perhaps
because algebraic problems require more cognitive and metacog-
nitive demands than graphic problems. Only one exploratory
region showed greater engagement while solving graphic pro-
blems than algebraic problems. This region was part of the
occipital cortex that overlaps with BA18. For graphic problems,

parsing of the complex graphic structure is critical for determining
which part of the diagram to include or exclude in the computa-
tion. This may have produced increased activity in this region.

We also looked at how our predefined and exploratory regions
are involved during the solution and feedback periods to examine
cognitive or metacognitive roles of these regions. According to the
prior studies [4,72], cognitive networks were more engaged during
the solution period than during the feedback period while meta-
cognitive networks were more engaged during the feedback
period. Overall, the results of our study were consistent with the
previous studies. In our study, the LIPFC, AG, and RLPFC regions
showed metacognitive patterns whereas the PPC, PSPL, and HIPS
regions showed cognitive patterns. In both studies by Anderson
et al. and Wintermute et al., the AG and RLPFC showed a strong
metacognitive pattern whereas the parietal regions including the
PPC and PSPL showed strong cognitive patterns. The LIPFC and
HIPS regions showed cognitive patterns in Wintermute et al., but a
mixed pattern in Anderson et al. Lastly, we looked at the relation
between the brain activity during block 1 and behavioral perfor-
mance for each problem type on blocks 2–8. The results showed
that the right RLPFC predicted overall future performance.

Across the various analyses, we have repeatedly found that the
right RLPFC was related to the transfer results; it showed an effect
of instructional example (structural4procedural), an effect of
problem type (algebraic4graphic), an effect of period (feed-
back4solution), and a positive correlation with future perfor-
mance. Fig. 11 shows time courses of the right RLPFC for the
correct responses (a) and incorrect responses (b). As in Fig. 7, we
used the event aligning procedure. Regardless of the correctness of
the trials, the algebraic problem type showed greater engagement
than the graphic problem type. Also, the post-feedback engage-
ment was greater than the pre-feedback engagement and this
pattern was especially distinctive in case of incorrect trials
(Fig. 11b) than correct trials (Fig. 11a). It appears that RLPFC is
the critical region that mediates the effect between the example
manipulation and the transfer outcome in our study. Mastery of
the transfer problems used in this study requires understanding of
multiple types of relations: between boxes and arrows (e.g.,
figuring out which parts are connected, propagating numbers
from top to bottom), between diagrams before and after lineariza-
tion, and between the data-flow diagrams and algebra knowledge.
Our example manipulation affected how well participants could
appreciate these relations. The structural example was designed to
help understand these relations by focusing on the problem
structure behind the solutions and this seemed to promote greater
activation in the RLPFC area. The RLPFC has been shown to play a
role in the integration of multiple relations (e.g., [19]; Wendelken
and Bunge, 2010). The right RLPFC seems particularly specialized
for processing visuospatial relations (e.g., [10]). The greater RLPFC
activation in turn led to better transfer, especially for algebraic
problems that required understanding of the relation between the
diagrams and algebraic expressions. Therefore, perhaps higher
engagement in this region implies better ability at relational
reasoning in this domain. Desco et al. [28] similarly reported that
math-gifted adolescents showed increased activation in the par-
ietal and frontal regions and that this was associated with
enhanced skills in visuospatial reasoning.

Putting both behavioral and fMRI results together, this study
demonstrated that what was critical was understanding of what the
examples illustrated, and not whether these examples were accom-
panied by verbal explanations. This finding is consistent with the
previous study by Klahr and Nigam [38] who found that transfer
performance depended onwhether students mastered a skill and not
whether there was direct instruction. Also this is consistent with the
study by Lee et al. [45] who showed that successful learning depends
on whether the hidden structure of a problem is revealed and not

Fig. 11. Time courses for the right RLPFC of graphic and algebraic problem type in
(a) correct responses and (b) incorrect responses. Each marker represents a 2-s TR.
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whether there is verbal instruction. All of these studies suggest that
what students learned is more important than how they learned.
Presence or absence of verbal instruction did not have an effect on
transfer success or brain activity patterns. Rather, understanding of
what the example illustrated had an effect on both transfer success
and brain activity patterns. The structural example seemed to
promote relational understanding, which was reflected in greater
activation in the RLPFC. This increased activation in turn resulted in
greater transfer performance. The structural students were better
able to appreciate hidden problem structure by making a connection
between the current domain and their algebra knowledge.
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