Supplementary Material

StagesCode.zip contains the information necessary to obtain the results in “Hidden Stages
of Cognition Revealed in Patterns of Brain Activation”. It also contains a readme file that
describes how to calculate the figures in the paper using 20 principal component scores for
the 20,619 scans that constitute the correct trials. These principal component scores are
derived from a very much larger data set, which is the activity for all scans for the 8755
regions for all problems for all subjects, as described in the main paper. Below we
describe the steps in processing to derive the data in zpcas in the Matlab file associated
with the paper.

1. Estimating the Bold Response. We calculate the BOLD response as the percent
change from a linear baseline defined from first scan (beginning of fixation before
problem onset) to last scan (beginning of fixation before next problem). In our data
this results in a matrix of 143,506 rows (scans) by 8755 (regions).

2. Extracting the Signal. We assume BOLD response is produced by the convolution
of an underlying activity signal with a hemodynamic response. The hemodynamic
function we assumed is the SPM difference of gammas (Friston et al., 1998 — g =
gamma(6,1)-gamma(16,1)/6). A Wiener filter (Glover, 1999) with a noise parameter
of .1 was used to deconvolve the BOLD response into an inferred activity signal
(Matlab: deconvwnr(bold,g,.1)). To an approximation, this results in shifting the
BOLD signal backward by 2 scans (4 seconds) to compensate for its lag relative to
neural activity. We have used this simple scan shift in earlier studies (e.g., Anderson
et al., 2010, 2012) where there was not a constant baseline activity interspersed at
regular intervals. The result is another matrix of the same size as the BOLD response
matrix. For further analysis we only keep the scans during which the problem is
presented. This results in a 38,627x8755 matrix representing 7003 trials across the 80
subjects (37 of the 7040 potential trials were lost due to scanner error, 3 subjects did
not finish last scanner block)

3. Principal Component Analysis. The inferred signals from the first step are
organized into a matrix whose rows are all the scans for all the subjects and whose
columns are the 8755 regions. Each region in this matrix is z-scored to focus on its
sequential structure and not its mean activation and to guarantee that each region
contributes equal variance. The resulting z-scored matrix is subject to a spatial
principal component analysis that produced a same size matrix of orthogonal
principal components. The factors are ordered by the amount of the variance they
account for in decreasing order.

4. 20 Normalized Components. The first 20 principal component dimensions account
for 53.5% of the variance. Our analysis focuses on these components and only the
values for problem-solving scans involving correct problems (from stimulus
presentation to response completion). To assure that all dimensions are equally
weighted and all subjects equally represented in the HSMM-MVPA analysis we take
the zscores of each dimension for the correct solving scans for each subject. This
constitutes the zpcas data file (20,619 x 20 matrix representing 4146 trials) that is the
principal input to the HSMM-MVPA analysis.

The principal component values are selected to be orthogonal dimensions that capture



dimensions of greatest variation. Thus, the pattern in a scan, or more generally, in a problem-
solving stage, can be represented as a linear combination of these principal components.
However, there is no reason to suppose that individual principal component dimensions would be
cognitively meaningful. Nonetheless, to give a sense of what the principal component
dimensions are and how they vary across scans we looked at the two dimensions that showed the
greatest variance across the 4 stages we identified (account for 1/3 of the variance among the
brain signatures). These are the third and twelfth dimensions. Parts (a) and (b) of the following
Figure S1 show those two dimensions (the end of this document gives them for all 20
dimensions). Part (c) shows their values for the 7 scans in each of the problems of Figure 1. It
can be seen that Factor 3 weights heavily the left motor area and it tend to rise at the end of trial
when the response is being prepared and executed. It can be seen that Factor 12 tends to
prefrontal (particularly left) regions and the right motor area that would be active if participants
were finger counting to keep track of the number of items to add. It tends to rise during the
middle scans when the problem is being solved.
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Figure S1. (a) & (b) Weighting of brain regions (dark blue =-.04; dark red = +.4) in defining two PCA
factors (note radiological convention: left is on right). (c) The values of these two factors for the 7
scans of the four problems.




The remainder of this document provides some further detail about the results reported in the
paper.

Split-Half Reproducibility.

To determine the reliability of the parameter estimates that underlie our conclusions, we
performed a split-half analysis where we separately fit the data of the odd and even trials.
The matrix below displays the correlations between the 20 principal component means
that define each stage for odd and even trials:

Correlation between PCA Scores
Even Trials
Encode Plan Solve Respond
Encode 0.993 0.154 -0.406 -0.382
0dd Trials Plan 0.080 0.952 -0.269 -0.479
Solve -0.421 -0.247 0.973 -0.454
Respond -0.384 -0.516 -0.416 0.998

There are high values down the main diagonal supporting the consistency of results. Itis
worth noting that the off diagonal cells are near zero or negative, indicating that each state
has a very different PCA representation.

The stage durations are characterized by gamma distributions. The matrix below gives the
parameters of the gamma distribution when estimated for all the data and when estimated
for each half:
Parameters of the Gamma Distributions
All Trails Odd Trails Even Trails
Shape Scale Mean | Shape Scale Mean | Shape Scale Mean
Encode 5.2 0.39 2.04 4.0 0.54 2.9 5.2 0.4 2.07
Plan 1.4 1.73 2.40 11 2.05 2.34 1.4 1.7 2.40
Solve 0.5 5.51 2.75 0.5 5.35 2.67 0.5 5.7 2.85
Respond | 4.7 0.55 2.58 5.0 0.53 2.64 4.6 0.6 2.55

Shape and Scale are the parameters that define the gamma. Mean reflects the mean time of
the gamma distributions, computed as the product of scale and shape. The correlations
between odd and even trials are 0.960 for the shapes and 0.996 for the scales.



Four and Five Stage Models.

The following table displays the relationship between the 4-stage model that was the focus
of the paper and the 5-stage model that appeared to improve on the HSMM-MVPA
performance of the 4- stage model.

5 Stage Model Variance
1 2 3 4 5 of Factor
Correlations Among Factor Scores Scores
1 1.000 0.162 -0.355 -0.564 -0.230 0.067
4 Stage 2 0.141 0.999 -0.235 -0.430 -0.540 0.061
Model 3 -0.412 -0.275 0.996 -0.303 -0.491 0.060
4 -0.378 -0.536 -0.517 0.941 0.968 0.104
Variance of
Factor Scores 0.068 0.067 0.065 0.053 0.218

The first three stages of the 4- and 5-stage models have factor score weights that are highly
correlated and show similar variation. The mean durations of these stages are also very
similar (see table below). Stages 4 and 5 of the 5-stage model both show strong
correlations with stage 4 of the 4-stage model. They also have summed duration that is
close to the duration of the last stage in the 4-stage model. Stages 4 and 5 in the 5-stage
model are also fairly strongly correlated (r = .828), but the 5t stage shows much greater
variability among the scores (see variability of factor scores in the table above). The reason
there is an advantage to estimating a 5t stage is that its more extreme values capture the
activity at the very end of the trial.

An examination of the correlation of trial-by-trial estimates of stage durations suggests a
similar conclusion with the duration of the last stage in the 5-stage model correlating
strongly with the last stage in the 4-stage model:

5 Stage Model Mean
1 2 3 4 5 Stage
Duration
Correlations Among Stage Durations (sec.)
1 0.986 0.297 0.125 0.138 0.189 2.09
4 Stage 2 0.324 0.992 0.205 0.188 0.241 2.26
Model 3 0.154 0.250 0.997 0.127 0.171 3.06
4 0.205 0.254 0.185 0.426 0.895 2.53
Mean Stage
Duration (sec.) 2.04 2.09 2.88 1.96 0.98

It is also the case the duration of the response stage correlates quite strongly on a trial-by-
trial basis with the actual time keying the answer. The last stage of the 4-stage model
correlates .53 with the actual response duration (next largest correlation with a stage is .17
with Stage 2). The last stage of the 5-stage model correlates .50 with the actual response
duration (next largest .20 for stage 4).



Comparison with Anderson & Fincham.
Figure S2 shows the correspondence between the activation patterns for the stages
in this study and Anderson & Fincham (2014). Since each study had independent PCAs, we
looked at the activation in the regions common between the two studies. The tables below
provide the correlation between the stages and the mean deviation in activation values:

Correlations Current Study Mean Deviations Current Study
Encode Plan Solve  Respond Encode Plan Solve  Respond
Encode | 0.945 0.847 0.752 0.768 Encode | 0.07% 0.20% 0.24% 0.19%
AF Plan 0.887 0.942 0.922 0.778 AF Plan 0.14% 0.14% 0.20% 0.19%
(2014)  Solve 0.760 0.813 0.855 0.810 (2014)  Solve 0.21% 0.19% 0.15% 0.21%
Respond] 0.681 0.725 0.716 0.958 Respond] 0.21% 0.22% 0.22% 0.12%
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Figure S2. The brain signatures of the 4 stages. Dark red reflects activity 1% above baseline
while dark blue reflects activity 1% below baseline. The z coordinate displayed for a brain
slice is at x=y=0 in Talairach space. Note brain images are displayed in radiological
convention with left on right. Compared are the results from Anderson and Fincham (A&F,
2014) and the current study.

The correlations above are quite positive in all cases in contrast to the earlier correlations
in PCA space because mean activation is subtracted before calculating the PCAs and
because the PCAs are orthogonal and centered on 0. While there is similarity among all
stages, in each case the corresponding stage signatures between experiments are more

strongly related.



Analysis of Brain Imaging Data as a Function of Group and Stage

The brain signatures associated with the stages define complex multivariate patterns of
activation over the brain. An exploratory whole-brain analysis (correct trials only) was
conducted to determine which regions were active for each of the four stages. The imaging data
were modeled using a general linear model (GLM). The first-level design matrix for each
participant included 5 model regressors and a baseline model of an order-4 polynomial to
account for general signal drift. Four of the model variables corresponded to the 4 stage
occupancy probabilities over all trials and the fifth corresponded to the feedback period for each
trial. The design matrix regressors were constructed by convolving the stage occupancy
probabilities and the feedback boxcar function with the standard SPM hemodynamic response
function (Friston et al., 2011). Each first-level GLM yielded 5 beta weights per voxel for each
participant. Our focus was on the 4 beta weights corresponding to the 4 stages. A group-level
mixed-design analysis of variance (ANOV A) was performed. We looked for regions showing
either main effects of stage or Group (Addition vs. Equation). Regions of at least 28 spatially
contiguous voxels with voxel-wise significance of 0.001 were identified. These constraints
control familywise error at the 0.01 level, as estimated by simulation (Cox, 1996; Cox & Hyde,
1997).

The majority of the brain was selected as showing significant effects of stage, which is
not surprising or interesting, given that the scans were assigned to stage on the basis of stage
signatures. However, stage identification was not sensitive to training condition. The table
below reports the four left hemisphere regions showing significant effects of training group. The
table also gives the results of ANOVAs performed on average activity in these regions. Stage is
always highly significant, reflecting the larger whole brain pattern. Unsurprisingly, group is also
always significant, given that group difference were used to select the region. Of particular
interest are the interaction terms which need not be significant, yet three of the regions do show
significant interactions. The basic pattern shown in all four regions is the same: greater activity
for the Addition group and this difference is largest for Encode Stage and least for the Respond
Stage. The figure below on the next page shows two variations on this basic pattern for the two
regions that show the strongest interactions — the Superior Temporal Gyrus and the Angular
Gyrus.

(Regions showing Significant Anova Results
effect of Condition (Addition Brodmann | - Coordinates | Voxel Stage Condition | Interaction Interaction
Equation) Area(s) x,y,2) Count
vs- =4 F(3,234) F(1,78) F(3,234) p-value

;| L Superior Temporal 39,22 | -48-53,19 | 106 | 14.16 36.34 4.90 0.003
Gyrus

2 | L Middle/Superior 21 58224 | 53 14.57 2736 1.34 0.261
Temporal Gyrus

3 | L Angular Gyrus 39 -41,-71,31 31 23.68 18.72 3.88 0.010

4 | L Superior/Middle 22 -56,-40,6 29 20.79 20.44 2.70 0.046
Temporal Gyrus




(a) Left Superior Temporal Gyrus

(b) Left Angular Gyrus
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Effects of 2-by-2 Aggregation of Voxels

The results in the paper were based on an analysis stream that started with BOLD

measures averaged over 2x2 squares of voxels in a brain slice. This is motivated because of
uncertainty in the exact spatial correspondence of subjects. It also produces a factor of 4
speed-up in processing and reduction in storage space. To investigate whether anything
would change if we had not aggregated into 2x2 regions, we applied the analysis stream to
single voxel activity. Rather than 8755 2x2 regions we started the analysis with 34,945
voxels that composed the 8755 (some 2x2 regions only consisted of 3 voxels because they
were at the edge of the brain). The end of this analysis stream produced a new 20,619x20
matrix based on the principal dimensions of variation in the finer grain-size data. This
matrix and results with it are contained in the newzpcas.mat in the Matlab code folder.

The two questions of interest are what are the differences between these

dimensions and the old dimensions and what are the consequences of these differences for
the conclusions we drew in the paper. The figure below contains a relevant analysis for
the first question, showing how well one can account for our original 20 components used
in the modeling with the new PCAs based on a finer grid.
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The figure displays 4 values for each of the 20 original factors (x-axis — these 20 are displayed at
the end of the Supplementary Material):

1.

4.

Top out of 20: This shows the strongest correlation between each original factor
and any of first 20 new factors computed over the 20,619 scans. The first 6 old
factors correlate most strongly with the corresponding new factors, but the
correspondences change for later factors. For instance, the 7t old factor correlates
most strongly with the 9t new factor. The 15t old factor (which largely reflects
brain-wide fluctuation) seems totally reproduced by the 15t new factor, but the story
for the remainder is more complicated:

. Twenty: This shows how well we can reconstruct the each of the original factors as

a linear combination of the new 20. Reconstruction is high for the first 16

factors. Thus, the new space largely contains the space spanned by the first 16
original factors, but the axes through that space have rotated (and perhaps shrunk
or expanded).

. Hundred: This shows how well we can reconstruct the original 20 factors from the

top 100 new factors. This reveals that the some of the variation in the last 4
original factors has shifted down to later factors in the new analyses.

Variance: Indicates how much that old factor varied among the 4 Stages -- i.e,, its
importance to the stage definitions. The last 4 factors were not important.

Since the new factors reflect most of the variance that drove the old analysis one

would suspect the results would be the same if we used the new factors. We checked to
see if the residual differences would affect our conclusions about the factors the timing
of stages in conditions. The figure below should be compared with Figure 6 in the
published paper. Itis shows how the time in the stages (derived in the new analysis
stream) varied with problem type and algorithm. Its correspondence with the original
figure is striking (r > .99).
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Similarly, we can calculate the results displayed in Figure 7 given the new parsing of the
trials. These data are displayed below and again show a strong correlation (r >.99) with
the latency parsing based on factors extracted from the 2x2 voxels.
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Factors 1-5 and proportion of variance among stages explained:
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Factors 6-10 and proportion of variance among stages explained:

6 (9.6%)

7 (3.9%)

8 (0.4%)

9 (8.2%)

10 (0.8%)




Factors 11-15 and proportion of variance among stages explained:

11 (1.8%)
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13 (2.4%)
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15 (9.0%)




Factors 16-20 and proportion of variance among stages explained:
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