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a b s t r a c t

This research explores how to determine when mathematical problems are solved by retrieval versus
computation strategies. Past research has indicated that verbal reports, solution latencies, and neural imaging
all provide imperfect indicators of this distinction. Participants in the current study solved mathematical
problems involving two distinct problem types, called ‘Pyramid’ and ‘Formula’ problems. Participants were
given extensive training solving 3 select Pyramid and 3 select Formula problems. Trained problems were
highly practiced, whereas untrained problems were not. The distinction between untrained and trained
problems was observed in the data. Untrained problems took longer to solve, more often used procedural
strategies and showed a greater activation in the horizontal intraparietal sulcus (HIPS) when compared to
trained problems. A classifier fit to the neural distinction between trained–untrained problems successfully
predicted training within and between the two problem types. We employed this classifier to generate a
prediction of strategy use. By combining evidence from the classifier, problem solving latencies, and
retrospective reports, we predicted the strategy used to solve each problem in the scanner and gained
unexpected insight into the distinction between different strategies.

& 2013 Elsevier Ltd. All rights reserved.

1. Introduction

The ability to accurately identify the strategy a student uses to
solve a math problem can help the teacher provide guidance and
feedback; however, any number of different strategies could possi-
bly be used to solve a single arithmetic problem. While some
strategies can be identified by outward behaviors, such as finger
counting, other strategies are more difficult to distinguish. Various
methods of strategy detection vary in tradeoffs between reliability,
reactivity, and ease of use. The current study investigates three
different indicators of strategy use: verbal reports, response latency,
and fMRI evidence. We will describe a method for combining
these three indicators that has applicability beyond study of math
cognition.

One basic division between types of strategies lies in the distinc-
tion between procedural and retrieval. Procedural strategies use
mathematical computations, whereas, retrieval strategies involve
the recall of facts from long-term memory. Procedural strategies
are variants of calculations, such as, counting or transforming an
unknown problem into known sub-problems (25þ9¼20þ5þ9).
Retrieval strategies, on the other hand, allow a person to arrive at
solutions more quickly and accurately thanwhen utilizing procedural

strategies (LeFevre, Sadesky, & Bisanz, 1996; Siegler & Shrager, 1984).
While complex procedural methods might include some retrieval
within the mix of strategies used for problem solving, in this paper,
we use retrieval to refer to those strategies in which answers are
arrived at directly from memory. Previous developmental studies
documented that as children gain experience solving problems they
progress from the more mentally arduous procedural strategies to
efficient retrieval (Geary, Brown, & Samaranayake, 1991; Imbo &
Vandierendonck, 2007). Despite this evidence of progression towards
retrieval, both children and adults do not consistently use just one
strategy, but instead, a mix of strategies when solving problems
(Campbell & Xue, 2001; Hecht, 2006; LeFevre, Sadesky et al., 1996;
Siegler, 1988). This means that even after training a participant to use
a specific strategy, exclusive use of that strategy cannot be reliably
assumed.

We will consider three measures of strategy use: participant
report, problem solving latency, and brain response. Verbal strat-
egy assessments are based on self-reports and are collected during
(concurrent) or after (retrospective) the participants complete the
task being studied. Within the problem solving process, the
different methods of verbal strategy assessment vary in their
reliability (the accuracy of the assessment) and their reactivity
(the impact of the assessment on the participant0s behavior during
the experimental task). A second method for determining strategy
use comes from the relation between strategy use and problem
solving latency (LeFevre et al., 1996; Siegler & Shrager, 1984).
While retrieval tends to be faster than computation, often the
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latency distributions overlap making latency an imperfect indica-
tor of strategy use. Finally, brain imaging studies show distinctions
between retrieval and procedural strategies in areas such as the
horizontal intraparietal sultucs (HIPS) and the angular gyrus
(Delazer et al., 2003; Grabner et al., 2009). While a few fMRI
studies have used verbal strategy assessments to label in-scanner
trials, we are aware of no studies that have used fMRI findings to
predict strategy use, leaving the accuracy of such a method
untested (Cho, Ryali, Geary, & Menon, 2012; Grabner & De Smedt
2011). The three measures discussed here provide information
regarding the retrieval–procedural distinction; however, each
method is an imperfect measure for assessing what participants
are actually doing.

1.1. Validity of strategy assessment

When studying the use of math strategies, researchers have
often relied on self-reports from the participants. Depending on
the study constraints and the questions of interest, procedures for
collecting strategy assessments vary widely. Several studies (Geary
& Brown, 1991; LeFevre, Sadesky et al., 1996) have assessed
strategy by asking the participants to describe their methods for
solving math problems immediately after reporting the solutions
(concurrent assessments). Other concurrent assessments provide
predetermined sets of strategies from which the participants must
choose the method most similar to the one used (Campbell &
Timm, 2000; Imbo & Vandierendonck, 2008; LeFevre et al., 1996).
An alternative to concurrent strategy assessments collects retro-
spective strategy assessments (RSAs) after the set of problems
have been solved. RSAs have been used in fMRI studies where
participants solved problems during the scanning session and then
reported strategy use outside the scanner (Cho, Ryali, Geary, &
Menon, 2012; Grabner et al., 2009). Although retrospective reports
are generally considered less accurate than concurrent reports
(Russo, Johnson, & Stephens, 1989), concurrent strategy reports
during a functional magnetic resonance imaging (fMRI) task are
less feasible due to the risk of head movements and the fluctua-
tions in the blood-oxygen-level-dependent (BOLD) signal caused
by breathing changes associated with speaking (Birn, Smith, Jones,
& Bandettini, 2008).

A debate exists as to the best methodology for accurately and
unobtrusively eliciting reports of strategy use. Verbal self-reports
have been challenged for causing reactivity in participant reports
and for not being veridical assessments of actual mental processes
(Kirk & Ashcraft, 2001; Russo et al., 1989). In a study of simple
arithmetic, Kirk and Ashcraft (2001) found that participants
reported an increase in the use of the experimenter0s suggested
strategy. While differences in latency confirmed the validity of the
reports, the reactivity of the assessment on participant behavior
meant the findings did not reflect natural strategy use. In addition,
while RSAs do not influence strategy selection during the solving
process, they present difficulties with respect to reliability. In
particular, it is unclear how accurately and consistently partici-
pants remember what strategies are employed. This problem is
aggravated by strategy variability. For instance, Siegler and Shrager
(1984) found that over time children not only switched between
strategies, but also, one-third of the children in the experiment
applied a different strategy to the same problem. This makes it
unreliable to generalize strategy use information collected at the
end of the task for items solved during a task.

While recognizing these issues, verbal strategy assessments
remain an accepted standard and studies indicate behavioral and
neuroimaging measures tend to agree (Grabner & De Smedt, 2011;
Imbo & Vandierendonck, 2008; Siegler & Shrager, 1984). Items
reported as having been ‘retrieved’ displayed faster reaction times
and fewer mistakes than those reported as solved via procedural

strategies (LeFevre et al., 1996; Siegler & Shrager, 1984). Addition-
ally, the strong problem size effect of procedural strategies is
significantly lessened when only retrieval strategies are reported
as used (LeFevre et al., 1996). Neuroimaging studies have explored
the neural signatures of the different strategies participants report
using. An event related potential (ERP) study found no evidence of
the problem size effect in the ERPs for math problems participants
reported as retrieval. Items reported as calculated, on the other
hand, showed a problem size effect in the recorded ERPs (Núñez-
Peña, Cortiñas, & Escera, 2006). Another more recent neuroima-
ging study by Grabner and De Smedt (2011) specifically designed
to test the validity of strategy assessment combined both electro-
encephalography (EEG) methodology and concurrent strategy
assessment data. This study used event-related synchronization
and desyncronization ERS/ERD to record frequency bands com-
monly associated with retrieval and procedural processes. The
results indicated a significant relationship between the strategies
reported and the frequency bands of the corresponding problems.

1.2. Arithmetic training effects and the brain

Several fMRI studies of strategy use have used math-training
paradigms to influence the strategies participants chose to use
(Delazer et al., 2005; Ischebeck, Zamarian, Egger, Schocke, &
Delazer, 2007). As mathematical problems are practiced, there
tends to be a strategy switch from procedural to retrieval (Imbo &
Vandierendonck, 2008; Logan & Klapp, 1991). The Distribution of
Associations (DOA) model (Siegler & Shrager, 1984) explains how
practice solving arithmetic problems results in an increased
association between problem and solution and a decrease in
confusion between similar math facts. Procedural strategies are
often used when the solution to a problem cannot be quickly or
confidently remembered, whereas, direct retrieval occurs when
there is a strong association between the problem and solution.
The DOA model has been supported by findings from several
experiments, as well as observed in various participant popula-
tions (Campbell & Timm, 2000; Geary & Brown, 1991; Imbo &
Vandierendonck, 2008; Reder, 1988).

Practice of problem solving generally results in a switch from
procedural to retrieval strategy use, and is associated with changes
in activation in different areas of the brain. Imaging studies
investigating the effects of training (practice) on solving math
problems have reported clear distinctions in neural activity
between trained and untrained problems. Several math training
studies (Delazer et al., 2003, 2005; Grabner et al., 2009; Ischebeck
et al., 2006) report that untrained, in contrast to trained problems,
activates the frontal–parietal network. The parietal region com-
monly observed in arithmetic studies, the horizontal intraparietal
sulcus (HIPS) is generally associated with calculation processes,
magnitude comparison and counting (Dehaene, Piazza, Pinel, &
Cohen Kadosh, 2003; Cohen Kadosh, Lammertyn, & Izard, 2008).
The frontal regions observed in arithmetic studies include the
lateral inferior prefrontal cortex, which is generally associated
with more complex computations that require a degree of plan-
ning and working memory (Anderson, Betts, Ferris, & Fincham,
2011). The comparison between retrieval and calculation shows
that the practiced problems involved less activity in these regions
and more activity in the angular gyrus (Delazer et al., 2003).

1.3. Brain imaging to detect specific cognitive processes

While there have been studies which used brain imaging to
investigate the reliability of verbal strategy reports (e.g., Grabner
et al., 2009; Grabner et al., 2011), these studies have not taken
advantage of the power of multi-voxel pattern analysis (MVPA).
There have been applications of MVPA, however, that predict other
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kinds of distinct cognitive processes (Damarla & Just, 2012;
Pereira, Mitchell, & Botvinick, 2009; Shinkareva et al., 2008).
In practice, a classifier is first trained on a distinction of interest
using a sample of fMRI data. It is then tested on a separate data set
to see how well it can detect the same distinction. How well the
classifier distinguishes items reflects both the uniqueness of the
two elements within a set being compared and the similarity
between the sets of data used for training and testing. Most of the
research on classification of brain activity requires a definition of
“ground truth”. Simply put, the experimenter knows what the
participant is doing. It is natural to use verbal reports to assess the
ground truth for the classification of fMRI data, but, as we have
noted, there are questions concerning the validity of these reports.
Even if there is a solid ground truth, these classification methods
are imperfect and do not always correctly classify events. As with
the previously discussed methods of evidence, classification also
offers an imperfect measure of strategy use.

1.4. Current study

We used a 2�2 within-subject factorial design where we manipu-
lated training (trained instances vs. untrained, novel instances) and
problem type (two distinct problems each requiring different compu-
tational procedures to solve). We used both training and problem type
as means of manipulating the strategies that participants used during
the scan task. We contrasted trained and untrained items to examine
the effect of training on latency, brain activation, and RSA. In line with
previous studies, we expected untrained items to take significantly
longer for participants to solve than trained items (Delazer et al., 2003;
Imbo & Vandierendonck, 2008). Furthermore, we expected reduction
in activation of the HIPS region for trained problems in comparison to
untrained problems (Delazer et al., 2003, 2005; Ischebeck et al., 2006).
Numerous findings about the effect of training on strategy use lead
us to expect RSAs to predominantly indicate the use of retrieval
strategies when solving trained problems and procedural strategies
when solving untrained problems (Imbo & Vandierendonck, 2008;
Logan & Klapp, 1991). Thus, in our latency, fMRI, and RSAmeasures we
expected the contrast between trained and untrained problems mirror
the contrast between retrieval or computation strategies.

The current study used two distinct problem types; one (referred
to as ‘Pyramid problems’) involved adding several numbers together
and the other type (referred to as ‘Formula problems’) involved the
use of division, subtraction and addition. We chose to use two
problem types in our study to test if our method of classifying
problem solving strategy is problem specific or can generalize.
Previous studies have found that neural distinctions between differ-
ent problem types decrease when problems are solved by retrieval
(Delazer et al., 2005; Ischebeck et al., 2006), suggesting that neural
patterns converge in problem retrieval. We hypothesize that the shift
from procedural to retrieval strategies will be generalizable across
problem types.

The principal interest of this study was to form a prediction of
strategy use for each item solved in the scanner. We trained a
classifier to distinguish between trained and untrained problems.
We expected the classifier to use neural evidence of retrieval in
making this classification. For any given trial, the classifier com-
putes the evidence that the trial belongs to the ‘trained’ category.
This evidence can be used as an indicator of whether the trial
involved retrieval. We also collected RSAs where participants tell
us after the fMRI session whether a retrieval strategy was
employed for particular problems. Just as the classifier is an
imperfect reflection of retrieval, such a report is also imperfect.
This is particularly apparent given the research that indicates
participants switch between computation and retrieval for the
same problems on a trial-by-trial basis (Russo et al., 1989; Siegler
& Shrager, 1984). Finally, we used the latency on a particular trial

as another imperfect indicator of strategy use. We compared the
classifier, problem solving latencies and retrospective reports and
investigated how to best combine all three measures to improve
our ability to assess strategy usage.

2. Material and methods

The current study spanned two consecutive days. On the first day, the participant
completed a behavioral training session. The second day, the participant returned for
an fMRI scan.

2.1. Participants

Twenty university students (10 females; mean age 21.8/ SD 2.2) participated in the
study. Participants were recruited by posting flyers on university online message
boards. Participants gave informed written consent and received monetary compensa-
tion for their participation. All participants were right handed and had normal or
corrected-to-normal vision. The university ethics board approved the study.

2.2. Materials

Each participant was trained on two novel operations associated with distinct
procedural algorithms. The first type of problem, called a ‘Pyramid problem’, uses the
same algorithm as in the experiment by Anderson et al. (2011). Pyramid problems
have ‘$’ as an operator between two values, the base and the height (i.e., B$H, where B
is the base and H the height). The base is the starting number and the height indicates
the total number of terms to add together where each item is one less than the
previous. For example, 11$4 would be expanded as 11þ10þ9þ8, and thus evaluates
to 38. The second type of problem, the ‘Formula problem’, uses ‘#’ as an operator and
is evaluated according to the equation V#H¼(V/H)þ(H/2)�0.5. This formula was
specifically chosen because it represents a method of finding the base of a Pyramid
problem given the height and the value of the Pyramid problem (i.e., 11$4¼38 and
38#4¼11). Participants were unaware of this relationship (as confirmed by strategy
assessment after the study). The maximum base (B) was 10, and the smallest base for
any problem set was height minus one. To control for difficulty between the two
problem types, only problems with a height (H) of 3, 4 and 5 were used.

2.3. Training procedure

During one 35–45 min session, participants were initially taught how to solve
both a Pyramid and Formula problem and then given practice on both to help them
memorize answers for three problems from each problem type. The Pyramid
problems were taught by explaining the role of the base and height of the problem.
Participants were told to start with the base and then count down until the number
of terms they had listed was equal to the height. After that, they were instructed to
add these values together. To teach Formula Problems, the experimenter showed
how the variables in the V#H expression mapped onto the equation previously
shown, and then gave the participants time to study the equation.

The experimenter worked with the participant to solve three sample problems of
each problem type before beginning the computer-based training. During the
computer training participants were exposed to 6 distinct problems (3 Pyramid and
3 Formula problems). The memorized Pyramid and Formula problems were matched
in difficulty, featuring base values of 3, 4, 5, and distinct height values. After each
problem was solved, the participant received correctness feedback and instruction on
how to solve the problem. This feedback featured the problem shown and the
mathematical productions required to calculate the answer (either the iterative
addition or the formula filled in with the appropriate terms). Training was divided
into 6 blocks; for each block, the participant was drilled on each problem 6 times.
Over the course of training, the participant solved each problem 36 times. In between
blocks, the participant practiced using a numeric keypad with a similar layout as the
one used during the fMRI scan. Since the participant cannot see the keypad during the
fMRI scan, a cover was placed over the keypad halfway through training in order for
the participant to practice using the keypad by touch only.

2.4. Scanning procedure

On the day following the training session, each participant completed 6 fMRI
imaging blocks. Each block contained 3 randomly ordered sets of 7 Pyramid
problems (3 trained and 4 untrained), 7 Formula problems (3 trained and
4 untrained) and 7 Addition and Division problems. Untrained problems matched
the trained problems in difficulty. The first problem of each set was omitted from
statistical analysis to avoid warm-up effects and effects of switching operations.
Untrained problems were repeated twice (once per 3 imaging blocks) and trained
problems were repeated six times (once per imaging block). Problems were
presented in a slow event-related design. During the solving stage of the trial,
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the participant had a maximum of 30 s to indicate knowledge of a solution by
pressing the return key on the numeric keypad. After pressing ‘return’, participants
then had 5 s to input a solution and press the return key. Because there is no
backspace key on the keyboard, participants were unable to correct any typos made
when entering answers. After answering the problem, the participant was given
correctness feedback and information about how the problem should have been
solved. This feedback was the same as that which was received during the previous
day’s training. In between problems, a 12 s repetition detection task was presented
onscreen to prevent metacognitive reflection on the previous problem and allow
the hemodynamic response to return to baseline. In the repetition detection task,
participants were asked to judge if the letter in the center of the screen was the
same as the previous letter seen. Because the participant determined solving and
input time, the length of the scan task was variable across participants and trials.

2.5. Strategy assessment

Following the completion of all 6 imaging blocks, participants exited the
scanner and then solved 16 paper-based problems which included all the trained
and some of the untrained problems that they had solved in the scanner. Problems
were presented on paper, and included 8 Formula problems (3 trained, 5 untrained)
followed by 8 Pyramid problems (3 trained, 5 untrained). Participants were asked
to report the solution to the problem and then explain how it was solved. The
researcher recorded the participant’s verbal report. The participants’ strategy self-
reports were coded based on five categories: retrieval, calculated using method
taught, guessed, calculated using an alternative method and started to solve for the
answer but retrieved the solution half way through calculation [from here on
referred to as the “partial” strategy]. We used these codes as an indicator of how
these problems had been solved in the scanner.

2.6. fMRI data acquisition

Images were acquired using gradient echo-echo planar image (EPI) acquisition
on a Siemens 3T Verio Scanner using a 32 channel RF head coil, with 2 s. repetition
time (TR), 30 ms. echo time (TE), 791 flip angle, and 20 cm. field of view (FOV). The
experiment acquired 34 axial slices on each TR using a 3.2 mm thick, 64�64
matrix. This produces voxels that are 3.2 mm high and 3.125�3.125 mm2.
The anterior commissure–posterior commissure (AC–PC) line was on the 11th slice
from the bottom scan slice. Acquired images were pre-processed and analyzed
using AFNI (Cox, 1996; Cox & Hyde, 1997). Functional images were motion-
corrected using 6-parameter 3D registration. All images were then slice-time
centered at 1 s and co-registered to a common reference structural MRI by means
of a 12-parameter 3D registration and smoothed with an 6 mm full-width-half-
maximum 3D Gaussian filter to accommodate individual differences in anatomy.

2.7. fMRI analysis

We processed the fMRI data used for region of interest (ROI) analysis and
classification analysis in different ways. For the ROI analysis, the two predefined
regions we focused on were the left and right HIPS from the triple-code theory
(Dehaene, 1997) expecting to replicate the finding of less activation for trained
problems. To locate these regions we used the coordinates from the meta-analysis
of Cohen Kadosh et al. (2008) (Maxima TC: �31, �50, 45). Imaging data were
analyzed using a GLM. The design matrix consisted of 9 model regressors and a
baseline model of an order-4 polynomial to account for general signal drift. The
9 model regressors corresponded to the following: the solution periods of correct
trained and untrained Pyramid and Formula problems (4 regressors) and Addition
and Division problems (2 regressors); response activity for solution entry
(1 regressor across all problem types); the feedback period (1 regressor) and
finally a single regressor for the solution period of incorrect problems. The design
matrix regressors were constructed by convolving the boxcar functions of these
variables with a hemodynamic function (assuming the standard SPM hemody-
namic response – Friston et al., 1998).1 The GLM yielded 9 beta weights per voxel
for each participant. Our focus was on those representing solution periods for the
correct Pyramid and Formula problems. Our ROI analysis was done on the averaged
beta weights of voxels within the HIPs regions.

2.8. fMRI classification analysis

To prepare the fMRI data for a linear discriminate analysis (LDA), we went
through a number of steps to restrict the set of features used by the classifier to
avoid over-fitting the data and impacting the reliability of our results (Pereira et al.,
2009). For the first step we subdivided the brain into 4�4�4 voxel cubes (a voxel
is 3.2�3.125�3.125 mm3) over 32 slices of the 64�64 acquisition matrix to create

an initial 408 ‘mega-voxel’ ROIs (Anderson, Betts, Ferris, & Fincham, 2010).
We chose to divide the brain in this manner because it maximizes the tradeoffs
between two objectives. First, we did not choose larger anatomical ROIs because we
want a whole brain perspective that uses variation within regions. Second, we did
not choose a smaller voxel-level analysis because we want to find patterns that
exist across participants and using the 4�4�4 mega-voxels smooths the brain
making it more likely that the mega-voxels overlap between participants.

The second step was to eliminate regions that had highly variable fMRI signals.
A measure of variability was calculated for each of the 6 imaging blocks by dividing the
block range by the mean. ROIs containing more than 15 TRs across all participants that
fluctuated more than 15% during a block were eliminated. The reduced sample
comprised 266, 4�4�4 voxel regions of raw data. Previous work using the 408 voxels
found reducing the voxels by half had no effect on classifier accuracy reflecting the
correlations that exist among voxels (Anderson et al., 2010).2 The majority of the regions
eliminated from the analysis were the most dorsal and ventral slices or on the edges of
the other slices. For the 266 regions, we estimated 23 regressors for each subject for
each block: one input regressor for all the trials, one feedback regressor for all trials, and
21 solving period regressors, one for each problem. We constructed the design matrix
regressors by convolving the boxcar functions of each of the regressors with a
hemodynamic function (see footnote 1). Each boxcar function0s duration was equal to
the time the participant spent on the trial (Grinband,Wager, Lindquist, Ferrera, & Hirsch,
2008). A GLM was used to estimate the betas for each problem as well as the input and
feedback periods of the scan block. Combining our results across blocks we get an
estimate of engagement (a beta from the GLM) during problem solving for each of the
6�21¼106 trials and these are the values that wewill use in our classification analyses.

As a third step of dimensional reduction, we used a Principle Components
Analysis (PCA) to create uncorrelated variables from linear combinations of the ROI
activity. We chose this method of dimensional reduction for three reasons: the ease
with which we can map classifier results back to the brain, the reduction in
computational cost of running the classifier, and because it eliminates redundan-
cies in the data (Ford et al., 2003; Thomaz et al., 2004). The PCA was performed on
the z-scores of the beta values for the 266 regions. Using z-scores rather than raw
values allowed for comparison across subjects. To eliminate fluctuations in the
BOLD signal that were physiologically implausible, z-scores were Winsorized such
that scores greater than 5 or less than �5 were changed to 5 or �5 respectively.3

The combination of both trimming the regions that fluctuated excessively and
Winsorizing the data is a commonly accepted technique for removing the largest
outliers (usually due to signal drop out) while maintaining the “true” outliers that
deviate less severely (Kettaneh, Berglund, & Wold, 2005; Marchini & Ripley, 2000).

We then preformed an LDA on the first 50 factors extracted from the PCA. Both the
Kaiser–Guttman rule and an analysis of the scree plot indicate that the first 20
components capture the most the variance in our data. We chose, however, to use
the first 50 factors because work pairing PCA with LDA suggest it is better to include
more factors (Yang & Yang, 2003). We used the LDA to identify which of these factors
contributed to distinguishing the categories. Because we were interested in identifying
similar features that exist across participants, we used a leave-one-out cross-validation
method. We trained on all but one participant and then tested on the remaining
participant. Besides returning a predicted category for each item, an LDA generates a
continuously varying evidence measure for category membership and a posterior
probability that an item is from a category. Both of these measures were used in
subsequent analyses.

3. Results

3.1. Behavioral results

Our measure of latency was calculated as the time between the
appearance of the problem on the screen and the point at which
the participant pressed the return key to indicate readiness to
input the solution. We only considered correct trials in our analysis
of latency and the fMRI data. Fig. 1 shows average performance
during training. A repeated measures ANOVA on solution times of
correctly solved problems with training block (block 1 through
block 6) and operation (Pyramid and Formula) as factors showed a

1 The difference between two gamma functions used was gamma (6,1)�gamma
(16,1).

2 This finding was echoed in the current experiment. Running the classification
described in Section 3.4.1 on all 408 ROIs rather than the 266 regions, we continued
to be able to distinguish the training distinction (mean d-prime¼1.37, t(19)¼8.27,
po .0001).

3 To assess the effect of Winzoring on our classification analysis we ran the
classification described in Section 3.4.1 un-Winzorized data. We continued to be
able to distinguish the training distinction (mean d-prime¼ 1.42, t(19)¼9.66,
po .0001), with a hit rate of 63.8% and a false alarm rate of 24.7%. Eliminating
Winzoring adds noise, which has negative, but not substantial effects on our
classifier.
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significant effect of training block, F(5,95)¼192.52, po .0001,
and a significant interaction between block and problem type,
F(5,95)¼2.72, po .05, but no significant effect of problem type,
F(1,19)¼2.49, p¼ .13.4 A similar repeated measures ANOVA on
accuracy found a significant effect of training block, F(5,95)¼
12.96, po .001, a marginally significant effect of problem type,
F(1,19)¼4.19, p¼ .06, and no interaction, F(5,95)¼1.28, p¼ .27.
Participants reached a high level of performance that we would
associate with retrieval.

Table 1 shows the results from the fMRI session. Participants were
slightly less accurate and considerably slower for trained problems
on the day 2 scan task than they were on the last block of the day
1 training. Whereas the training task featured only 6 problems
repeated several times, the scanner task consisted of a mix of both
trained and untrained problems, making it harder for participants to
identify the problems for which they had memorized answers.
Nevertheless, participants were still considerably more accurate
and much faster on trained problems than on untrained problems.
For correct problem solving latencies there is a main effect of
training, F(1,19)¼44.3, po .0001, with trained problems being solved
faster than untrained problems. There was, however, no significant
main effect of problem type, F(1,19)¼2.17, p¼ .17, or interaction,
F(1,19)¼3.155, p¼ .92. Accuracy scores showed a significant main
effect of training, F(1,19)¼35.9, pr .001 and problem type, F(1,19)¼
6.47, po .05. There was a cross-over interaction of problem type by
training, F(1,19)¼11.2, po .005: for untrained problems, accuracy
was 9% better on Formula problems, but for trained problems
accuracy was 2% worse for Formula problems.

3.2. Strategy assessment

We coded the strategy assessments for 5 strategy types: direct
retrieval of the solution, calculation according to the taught
strategy, a mix of retrieval and calculation (“partial), guessing,
and calculating the problem using an untaught method. Of the
untrained problems, 90.8% (Pyramid: 90%, Formula: 92%) were
reported as solved by the taught method, 3% were reported as
solved using a partial strategy, 2.5% were reported as retrieval and
less than 3.5% fell into the other categories. Of the trained
problems, 60.5% (Pyramid: 64%, Formula: 57%)were reported as

retrieved, 25.2% as calculated according to the taught strategy,
10.9% as partial and 3.4% in the remaining categories.

3.3. Imaging data – the effects of training

We used the Cohen Kadosh, Kadosh, Lammertyn, and Izard (2008)
ROI for the HIPS to investigate the effect of training on two different
problem types.5 We ran a hemisphere (left, right)�problem type
(Pyramid, Formula)� training (trained, untrained) repeated measures
ANOVA on the HIPS. There were significant main effects of hemi-
sphere, F(1,19)¼36.7, po.0001, which reflected less activation in the
right than the left hemisphere, as well as a significant training-by-
hemisphere interaction, F(1,19)¼16.2, po.001, which reflected a
greater decrease in the left hemisphere activation. There was a
significant effect of training, F(1,19)¼9.2, po.01, but not problem
type, F(1,19)¼1.4, p¼ .25, and a marginally significant operation-by-
training interaction, F(1, 19)¼3.9, p¼ .06. Fig. 2 displays a decrease in
activation for trained problems in the left HIPS.6

3.3.1. Classification of training
An LDA was conducted using the first 50 factors from the PCA

to predict whether or not a problem was trained or untrained.
The classifier was trained on all but one participant and then
tested on that one participant who had been left out of the
training set. We calculated for each participant the proportion of
hits (the percentage of problems correctly classified) and the
proportion of false alarms (the percentage of problems incorrectly
classified). From these two numbers we calculated a d-prime
measure of discriminability (Wickens, 2001). We calculated the
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Fig. 1. Average problem solving latency and average accuracy scores of each block in the training task with error bars representing standard error.

Table 1
Mean solution time (total time in parentheses) and accuracy scores of the trained
and untrained problems of both operation types.

Trained Untrained

Latency (s) Accuracy (%) Latency (s) Accuracy (%)

Pyramid 2.59 93.10 5.88 71.50
(4.34) (7.84)

Formula 3.35 91.10 5.68 82.60
(4.83) (7.33)

4 Subjects averaged 1.32 (SD¼ .29) seconds to type in their answers after
solving each problem. A similar analysis of total time (solution plus typing) yields
similar statistics: a significant effect of training block, F(5,95)¼243.5, po .001 and a
significant interaction between block and problem type, F(5,95)¼2.49, po0.04 but
no significant effect of problem type, F(1,19)¼0, p4 .99. We focus on solution time.

5 An exploratory analysis of the effects of training across problem types is
reported in Appendix A.

6 Appendix B reports the results for the angular gyrus.
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mean d-prime over all participants and performed a t-test of
whether or not the d-primes were significantly greater than zero.

We first ran an LDA combining data from both problem types.
This classifier was successful in distinguishing the trained and
untrained problems, mean d-prime¼1.58, t(19)¼10.2, po .0001,7

with average hit rates of 63.86% and false alarm rates of 20.1%.
The classifier produced positive d-prime in its predictions for each
of the 20 participants. We examined the classifier to find out how
it was making its discrimination. Classification of the trained and
untrained categories is done on the basis of a weighted sum of the
50 factors, which can be viewed as the brain evidence for the
problem being untrained. We took the coefficients associated with
the factors and calculated weights for each of the 266 brain
regions. Fig. 3 shows the positive values of these weights for the
slice of the brain that contains the HIPS. The most positive regions
overlap the HIPS, which our ROI analysis showed as having the
greater activation during untrained problems.

Given that there was a significant effect of training on the HIPS
ROI, one might wonder how well an LDA would do using only that
region. The classifier was not very successful in distinguishing the
trained and untrained problems, mean d-prime¼ .021, t(19)¼2.09,

p¼ .10, yielding a hit rate of 82.31% but with a false alarm rate of
80.27%. This poor performance is most likely due to considerable
trial-to-trial variability in activation. A classifier based on whole
brain activation can calibrate activation in any one region relative
to activation elsewhere and is thus more robust to variability
between trials.

3.3.2. Classification of training – similarity between problem types
We were interested in whether or not the same features

distinguished trained from untrained problems for the two problem
types. To test this we crossed training on Pyramid and Formula
problems with testing on Pyramid versus Formula problems. In all
cases, we trained on 19 participants and tested on the 20th. The
results were:

Train on Pyramid, Test on Pyramid: d-prime¼1.60,
t(19)¼10.87, po0.001

Train on Pyramid, Test on Formula: d-prime¼1.47, t(19)¼9.02,
po0.001

Train on Formula, Test on Pyramid: d-prime¼1.27, t(19)¼7.63,
po0.001

Train on Formula, Test on Formula: d-prime¼1.28, t(19)¼8.46,
po0.001

In all cases, the effects were highly significant with 19 or 20 out
of 20 participants showing positive d-primes. To test if there were
significant differences in prediction success, we took the 20
d-primes for each case and subjected them to a 2�2 within-
participant ANOVA. The effect of training source approached
significance, F(1,19)¼3.72, po .10, but there was no effect of test
source, F(1,19)¼0.57, nor a significant interaction between the
factors, F(1,19)¼1.40; p4 .25. Thus, while Pyramid data may have
provided a more reliable case for training, it seems that the same
information is being used to discriminate between trained and
untrained problems for both Pyramid and Formula problems.

3.4. Validating the retrospective strategy report and use of
classification to detect strategy use

Among correctly solved problems, all three measures (reports,
latencies, and classifier evidence) show clear differences between
trained and untrained problems:

1. Solution time: Across both problem types participants average
2.96 s to solve trained problems and 5.81 s to solve untrained
problems.
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Fig. 2. Mean percent change in activation from baseline in the left HIPS for trained and untrained pyramid and formula problems with error bars representing standard error.

Fig. 3. Distinguishing regions used in the untrained vs. trained classification
(pyramid and formula together). These are the voxels that are more active for
untrained than for trained problems. Locus of the HIPS is marked by the dark
squares. The z-value is for x¼y¼0 in Talairach coordinates.

7 Throughout, significance levels are calculated for 2-tailed t-tests.
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2. Retrospective reports: Participants report retrieving solutions for
60% of the trained problems and for 2% of the untrained problems.

3. Classification of imaging data: The classifier provides a measure
of evidence that each trial belongs to the trained or untrained
category. Fig. 4 shows distribution for the trained and untrained
problems, with negative values indicating evidence for
untrained and positive values indicating evidence for trained.
One can take a positive value on this dimension as also evidence
for retrieval.

Additionally, we investigated the convergence of latency, RSA, and
the classification scores analysis for both trained and untrained
problems. The RSAs were collected on all of the trained problems,
but only a subset of the untrained problems was assessed. We
eliminated trials in the scanner that did not appear in the RSA. We
examined the relationship between these reports and the time it
took participants to answer the problems during the scanning
session. For all the correct problems, Table 2 reports the average
times for problems reported as retrieved versus those problems
reported as calculated. Participants were 2.53 s faster for Pyramid
problems reported as retrieved and 1.62 s faster for Formula pro-
blems reported as retrieved. We built a multilevel model to test this
relationship while taking into account the effect of individual
differences and training. Furthermore the multilevel model allowed
us to deal with the problem that different participants reported
different numbers of problems retrieved. This model examined how
retrospective reports and training affected latency taking into
account the effects of individual differences. To specifically test the
significance of the relationship between latency and retrospective
reports we used the Markov Chain Monte Carlo method. This is a
recommended method to arrive at confidence intervals of models
that include random effects (Baayen, Davidson, & Bates, 2008;
Goldstein & Browne, 2002). Retrospective reports of retrieval were
associated with decreased latency for both Pyramid and Formula
problems. Pyramid problems showed an estimated coefficient of
� .56, T2 (19)¼�3.1, po0.005, and Formula problems showed an
estimated coefficient of � .63, T2 (19)¼�4.3, po0.005.

We similarly investigated the relationship between problem
solving latency and the classifier0s evidence of training. We trained
the classifier on the distinction between trained and untrained
problems using the leave-one-out LDA mentioned previously.
We used the classifier to calculate for each item the evidence that
it belongs to the trained category subtracted from the evidence
that it belongs to the untrained set. We built a multilevel model
examining how evidence scores and training affected latency
taking into account the effects of individual differences. For both
Pyramid and Formula problems, problems classified as trained
were faster (Pyramid coefficient of � .28, T2 (19)¼�9, po0.005,
Formula coefficient of � .36, T2 (19)¼�9.9, po0.005).

Finally, we investigated whether there was an association
between the classifier evidence and participant reports (Table 2).
Both Pyramid and Formula problems were reported as retrieved
averaged higher evidence scores than those reported as not
retrieved. We ran two multilevel models exploring how retro-
spective reports and problem type affected evidence, taking into
account individual participants. Both problem types showed a
significant positive relationship between report of retrieval and
evidence scores (Pyramid coefficient of 1.15, T2 (19)¼4.4,
po0.005, Formula coefficient of.76, T2 (19)¼3.9, po0.005).

3.5. Retrieval identification for the trained problems

Within the trained problems category, each of the three data
sources provides evidence of a participant0s strategy on every
scanner trial. For all the correct problems, Table 3 shows the
following distribution of the trained problems: (1) according to
retrospective self-report, (2) whether the classifier had positive
evidence that the item belonged to the trained set, and (3) whether
the problem solving latency was greater than the overall mean,
which was 3 s. There are some consistencies among these dimen-
sions; however, there are quite a few cases where the sources
seem to conflict as to predicting if a problem was retrieved. For
instance, on 48 trials (8.6% of trained problems) participants
reported retrieval strategies; yet, these problems feature long
latencies (M¼5.54 s, SD¼1.88) and the classifier predicted that
the problems were calculated (mean � .72, Fig. 4). Similarly, on 81
trials (14.5% of trained problems) participants reported the use of
procedural strategies; yet, these problems feature fast latencies
(M¼1.98 s, SD¼ .5) and strong classifier evidence for retrieval
(M¼2.08, SD¼1.53). More generally, nearly half of the cases
(47.6%) involve two of the measures voting one way, and the other
measure voting in the opposite direction.

How can one best combine these three sources of information
(RSAs, latencies and classification evidence scores) to predict how
a problem was solved? Essentially, the solution process is a hidden
state that is associated probabilistically with these three observa-
ble measures. We used expectation maximization to fit a mixture
model (Aitkin & Rubin, 1985; Bailey & Elkna, 1994) to these three
measures to identify the hidden process states for the trained
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untrained data set.

Table 2
The average in-scanner latencies and evidence scores of trained and untrained
problems divided based on retrospective strategy reports.

Reported retrieval Reported procedural

Latency (s) Evidence Latency (s) Evidence

Pyramid 2.19 1.82 4.72 �0.07
Formula 3.03 1.21 4.64 �0.21

Table 3
The distribution of the trained problems according to the retrospective reports
(RSA), whether the classifier had positive evidence that the item was trained,
and whether the problem solving latency was shorter than the mean solution time
(3 s).

RSA Classifier Solution time

Short Long

Calculate Untrained 13 70
Trained 81 31

Retrieve Untrained 38 48
Trained 223 55
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problems. A mixture model assumes that partially correlated mea-
sures arise from a mixture of states in which the measures are
independent. We suspected that there were two such states,
retrieval and calculation, and that we were observing a mixture
in which some trials reflected retrieval and some trials reflected
calculation; however, not to prejudge the matter we searched for
the best number of states over the range 1–10.

Each latent state i is associated with a probability pi of
reporting retrieval, a distribution Fi of latencies, and a distribution
Gi of evidence from the classifier generated probabilities. We
assumed that the latency distribution Fi will be shaped as a
gamma with shape vi and scale ai and that the classification
evidence distribution was distributed as a normal with mean μi
and standard deviation si. Then the probability of a trial j with
reported strategy rj, latency tj, and evidence ej, is

Probðrj; tj; ejÞ ¼∑
i
½sinPiðrjÞnFiðtj; vi; aiÞnGiðej; μi;siÞ�

where si is the probability of being in state i and Pi(rj)¼pi if the RSA
rj is retrieval and 1�pi if it is compute. Each state requires
estimating 6 parameters – si, pi, vi and ai, μi and si. To assure that
expectation maximization did not get stuck on a local maximum,
we ran 12,000 parameter searches from random starting points for
each number of states.

To our surprise, the best model involved 3 states rather than 2.
For comparison, Table 4 reports the parameters estimated and the
measures of goodness of fit for models with states varying from
1 to 4. More states mean more parameters, resulting in better
fitting models and higher log likelihoods. To correct for this we
calculated the Bayesian information criterion (BIC) that penalizes
the fits for number of parameters (Lewandowsky & Farrell, 2011):

BIC¼ �2 ln Lþk ln n;

where L is the likelihood value from maximum likelihood estima-
tion, k is the number of free parameters, and n is the total number
of observations contributing to the data. The 3-state model results
in the lowest (best) BIC value.

Fig. 5a shows the inferred latency distributions for the 3-state
model in Table 4, and Fig. 5b shows the inferred evidence
distributions for the three states. The figures also illustrate how
the inferred distributions combine to match the observed distri-
butions. Just as the self-reports are only partially diagnostic, the
3-state model implies both classifier evidence and latency are also
only partially diagnostic. This can be seen in the overlap of the
inferred distributions where some retrieved items have longer
times than some compute items, and some retrieved items have
less evidence than some compute items.

3.6. Investigating the effect of including untrained data in the model

We next included the untrained data into our data set to check
the validity of our 3-state predictions. While trained data contains
a range in strategy use, we know that untrained problems are
unfamiliar to the participants and are solved using procedural
strategies. Since we only collected reports on 6 untrained pro-
blems per participant, we eliminated two-thirds of our untrained
problem set from the data used by our mixture model. The
mixture model discussed in Section 3.6, when run on a combina-
tion of trained and untrained data best fit four states. Table 5a
shows the average value of the evidence scores, latency, and
retrospective reports given for each of the four states. For every
problem, the model outputs the probability of belonging to each of
the states. To achieve a single state assignment for every problem,
we assigned each problem to the state category that the model

Table 4
Parameter estimates, measures of goodness of fit and Bayesian information criterion (BIC) reports for three models.

Proportion
of trials

Report probability
(%)

Latency (gamma) Evidence (normal) Log likelihood Number of
parameters

BIC Measure

Mean SD Mean SD

1-State 1.000 65.1 3.00 1.75 1.16 1.87 �2541 5 5118

2-State 0.533 78.7 1.76 0.60 2.27 1.78 �2334 11 4749
0.467 49.7 4.41 1.90 �0.11 0.90

3-State 0.217 88.2 1.29 0.25 3.03 2.06 �2298 17 4722
0.325 67.4 2.16 0.53 1.81 1.17
0.457 52.5 4.41 2.07 �0.20 0.91

4-State 0.320 86.7 1.47 0.55 2.57 2.13 �2284 23 4738
0.216 63.3 2.18 0.45 1.86 0.92
0.340 54.3 3.66 1.25 0.16 0.70
0.124 42.3 6.54 2.00 �0.94 0.67
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Fig. 5. (a) (Left) shows inferred latency distributions for the 3-state model in Table 4 and (b) (Right) shows the inferred evidence distributions.
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indicated had highest probability of representing that problem.
Table 5b compares how the trained and untrained problems
assigned to the four states, best fit by the second model, relate
to the trained problems assigned to the three states, best fit by the
first model (Table 4). It is apparent that the model of all the data
has recovered the original three states of the trained data model
and then added a fourth state mostly occupied by untrained
problems. Comparing the parameters for the two models also
indicates that the first three states of the model of all the data
(Table 5) are found in the three states of the trained data model
(Table 4). The largest deviation from perfect correspondence
between the models is the 60 trained problems assigned to states
3 by the trained data model that are now classified in State four.
The fourth state emerges with descriptors for the most extreme
cases of calculation, those with the longest latency, lowest reports
of retrieval and highest evidence of calculation.

Table 5b examines the distribution of the different states
among the trained and untrained problems. As we would expect,
untrained problems are for the most part predicted to be in either
the third or fourth state. Trained problems, on the other hand,
consist of a mixture of procedural and retrieval strategies. In
Table 5a we see that the dominant feature in state 1 is rapid
response – almost all the items in this category show latencies
under 2 s, matching the speed that participants showed at the end
of training (Fig. 1). At the other extreme, State four is dominated by
evidence having virtually no case where the evidence indicates
retrieval. States two and three, on the other hand, represent more
ambiguous cases of retrieval and calculation.

3.7. Contribution of the three sources to the mixture model

The previous results confirm the model0s ability to distinguish
strategic states. To assess the contribution of the different mea-
sures on the predictions made by the model we investigate how
well each measure alone could predict the values generated by the
mixture model. We used the output of multi-source mixture
model run on trained and untrained data to assign each trial to
one of four states. We ran three multinomial logistic regressions;
one on each data source separately to explore how well each
explained the full model0s four state predictions. The BIC scores for
the models indicated that latency best fit the data (BIC 838.56)
followed by the evidence scores (BIC 1,161.1) and lastly by retro-
spective reports (BIC 1,714.4). While no measure alone fit the
4-state model, this analysis tells us how well each measure could
predict four states.

We next looked at the ability of the various combinations of
sources to predict the state solution we obtained when using all
sources. Using the original parameters we estimated from all
sources we then reran the model with different combinations of
0, 1, 2, or 3 sources of information. Assigning each problem to the
most likely state we looked at the match between the states
discovered and the state solution obtained with all four sources.
Table 6 shows the results. While all sources contribute to the state
identification, it is clear that the retrospective reports contribute
less than either evidence scores or latency.

4. Discussion

The current study investigated the effect of training on problem
solving strategy. We studied two different problem types, Pyramid
and Formula problems, each of which employed unique opera-
tions. Participants received training on 3 Pyramid and 3 Formula
problems prior to the scan. During the scan session, participants
solved a mix of trained problems and untrained problems that had
not been seen before. The effect of training suggests that while
learning did take place, it was inconsistent among trained pro-
blems. As a result, we were challenged to explore a method for
predicting strategy using problem solving latency, retrospective
strategy reports and fMRI data.

Table 5
(a) Parameter estimates for the four state model fit on trained and untrained data.

4 States Proportion
of trials

Report probability
(%)

Latency (gamma) Evidence (normal)

Mean SD Mean SD

1 0.25 86.6 1.4 0.3 2.6 2.11
2 0.23 65.4 2.4 0.52 1.6 0.95
3 0.29 37.7 4.08 1.4 �0.01 0.6
4 0.23 13.0 6.76 3.14 �1.28 0.74

(b) Number of problems in each of the combination of 3 states (Table 4) and
each of the 4 states (Table 5a).

4 States all problems

1 2 3 4

3 States of trained problems
1 173 5 0 0
2 2 144 24 0
3 1 0 157 60

Untrained 2 3 37 95

Table 6
The percentage of the total mixture model accounted for by using different
combinations of the three measures.

Latency
used

Reports
used

Evidence scores used (%)

No Yes

No No 31.0 72.7
Yes 41.8 74.8

Yes No 76.1 92.3
Yes 81.4 100.0
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4.1. Effect of training

This study used a training paradigm in order to influence the
problem solving strategies employed by participants. Consistent
with prior research (Delazer et al., 2005; Imbo & Vandierendonck,
2008; Ischebeck et al., 2006), trained problems had decreased
problem solving latency and increased accuracy when compared
to untrained problems. When trained problems were randomly
mixed with untrained problems during the scan task, there was an
increase in latency and decrease in accuracy; however, trained
problems continued to be more quickly and accurately solved than
untrained problems. After the scan task, participants reported
using procedural strategies in about 40% of trained trials. Previous
training studies showed greater reductions in latency and lower
reports of procedural strategy use than our study (Delazer et al.,
2003, 2005). We trained participants in a single session, whereas
other studies used 5 or more sessions to train participants (Delazer
et al., 2003, 2005). We chose not to ‘over train’ our trained
problems in order to create problem sets that varied in familiarity.
Even after many years of schooling, participants have been found
to solve common arithmetic problems like 8þ6 or 8n6 using
mixtures of retrieval and procedural strategies (Campbell & Timm,
2000; Hecht, 2006). Our goal in this study was to build a method
for assessing strategy in the scanner that was robust enough to
study math problem solving without requiring that participants be
trained to such a degree that their distribution of strategies used
becomes artificial.

The distinction between trained and untrained problems was
also identified in our ROI analysis of the HIPS, a region that
contributes to the classifier and is highly implicated in arithmetic
and counting (Dehaene et al., 2003). In agreement with other
training studies (Delazer et al., 2003; Ischebeck et al., 2006), HIPS
showed a significant main effect of training with no difference
between the two problem types. While a classifier using only the
HIPS was not reliable, a classifier using a larger network of regions
including the HIPS was successful in distinguishing between
trained and untrained problems. It is worth noting that neither
the HIPS nor angular gyrus was identified in our exploratory
analysis contrasting trained and untrained problems (Appendix
A). First, these regions, though an important in distinguishing
retrieval and calculation, are two of many regions that provide
information useful in making this distinction (Arsalidou & Taylor,
2011; Dehaene et al., 2003; Grabner et al., 2009). Second, retro-
spective reports indicate that the trained problems were solved by
a mixture of strategies, it is unclear the percentage of retrieval
problems that would need to be present in this sample in order for
us to find robust training effects in the exploratory analysis.

We compared classifiers that were trained and tested on the
same operation or trained on one operation and tested on the
other. There was no significant difference in precision suggesting
that the effects of training are the same for the two problem types.
This finding indicates that the distinction between trained/
untrained used by the classifier is independent from problem type.

4.2. Convergent validity of strategy assessment

This study found that the three methods of assessing strategy
use (in-scanner latency data, strategy assessment reports, and
classifier predictions of retrieval) are related to one another. The
relationship between reports and latency is in agreement with
other studies (Grabner & De Smedt, 2011; LeFevre et al., 1996) that
show alignment between concurrent strategy assessment and
supporting latency data. Also in line with previous research, this
study finds participants are significantly slower to solve problems
when using procedural strategies than when using retrieval
(Goldman, Mertz, & Pellegrino, 1989; Grabner et al., 2011; Imbo

& Vandierendonck, 2008). Additionally, there was a significant
relationship between latency data and the evidence scores gener-
ated by the classifier. The trained problems showed substantially
increased latency in the scanner (as compared to the training task)
and many had latencies overlapping with untrained problems.
Similarly, the classifier found overlapping distributions of evidence
(Fig. 4). Finally, we found a relationship between strategy assess-
ment reports and classifier generated evidence scores. Previously,
both concurrent and RSAs have been verified by observing
established neural patterns of different strategies that reflect the
reported use of strategies (Grabner & De Smedt, 2011; Grabner
et al., 2009).

4.3. Predicting strategy use from three data sources

While we found similarities among the three measures, it is
clear no single method offered a perfect measure for assessing
strategy. This raised the question of how these three measures
might be combined to create a more accurate predictor of strategy
use. We combined classifier-generated evidence scores, the verbal
reports of retrospective strategy use, and the in-scanner latency
data to detect strategy use by identifying the best mixture model.
The BIC values indicated that within the trained problem set the
3-state model did the best job fitting the data. To provide a
convergent test, we ran the mixture model on a combination of
untrained and trained problems and found the model best fit four
states. Three of the four states fit by this model corresponded
closely to the three states fit by the model of only trained
problems. The additional fourth state mainly is composed of the
untrained problems. The addition of untrained data allows the
model to separate the calculation state into what appears to be fast
and slow calculations. The fact that untrained problems are
predominately represented by these states is evidence for the
reliability of the differentiations made by the model.

Examining the distribution of the different latencies, fMRI
evidence and retrospective reports in the different state categories
give some insight into what the states represent. The three states
of the mixture model run only on the trained data fall into two
retrieval-like states and one calculation state. Of the two retrieval
states, one encompasses the more obvious cases of retrial whereas
the other contains problems with slightly longer latencies, lower
evidence scores and fewer reports of retrieval. This second
retrieval strategy state may reflect problems that involve a strong
‘feeling of knowing’ yet require additional work to recall the
solution (Reder & Ritter, 1992). The Delazer et al. (2003) math
training study reported that, despite 5 days of training, some
participants used partial retrieval strategies as well as full retrieval
strategies. While that study was unable to test that hypothesis,
it seems possible that our model is disentangling the distinction
between fully or partially retrieved math facts.

4.4. Contribution of the three data sources in predicting strategy

Having identified that the models appear to be detecting
separate groups of strategies, we can then assess the contribution
of the three measures in the model. We looked at how well each
measure by itself predicts the four states predicted by the mixture
model of trained and untrained data. A comparison of the BIC scores
of the three logistic regressions of the measures indicates latency
scores best predicted the four states, followed by evidence scores
and finally retrospective reports. Next, we analyzed the ability of
different combinations of measures to generate the predictions of
the 4-state mixture model. The performance of each data source in
predicting the output of the full mixture model shows that latency
is only about 4% more accurate than the imaging classifier evidence
(see Table 6). When the two measures are combined together there
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is a 16% boost in accuracy, and we account for 92% of the full
model0s prediction. Retrospective reports contribute very little to
the ability to distinguish strategy, thus supporting claims that
retrospective reports are generally inaccurate (Russo et al., 1989).
Taken together these tests suggest that latency provides the best
source of data when distinguishing strategies: however, it is
apparent that without the addition of the other data sources, the
model is restricted in its ability to detect distinctions between
strategies.

4.5. Conclusion

In this study we used selective training in order to generate sets
of problems likely to be solved by either procedural (untrained) or
retrieval (trained) strategies. While training did influence the
speed, accuracy, strategy use, and brain activation patterns, parti-
cipants continued to use procedural strategies to solve some of the
trained problems. We used the distinction between trained and
untrained problem sets to train a classifier. When we applied this
classifier to the trained problem set, it appeared that the distinc-
tion identified was that between different problem solving stra-
tegies. The classification of fMRI data generated evidence scores
that were significantly correlated with latency data from the scan
task and aligned with the retrospective reports. Using the mea-
sures of brain activity, self-report and behavioral data, we dis-
covered a 3-state model that gives the best account of the trained
problems and a 4-state model that gives the best account of all
problems. These states appear to represent distinct problem
solving strategies. By combining activation data, latency measures,
and RSA, a clearer picture of strategy use emerges.
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Appendix A. Exploratory analysis – the effects of training

The results of the whole-brain contrast between trained and
untrained problems are listed in Table A1. This analysis combines
problem types, and focuses on the general distinction of training.
We found significant activation clusters (po .005), by using an
extent threshold 20 voxels and running a simulation to find a
brainwise alpha.05 (Cox, 1996).

Appendix B. Imaging data – the effects of training in angular
gyrus

We used the Dehaene et al. (2003) specification of the left
angular gyrus (AG) as located at �41, �66, 36 in Talairach
coordinates. We ran a problem type (Pyramid, Formula)� training
(trained, untrained) repeated measures ANOVA on the left AG.
There were no significant main effects. There was a moderately
significant operation-by-training interaction, F(1, 19)¼5.88,
p¼0.03, with Pyramid problems showing a slight increase in AG
activation (.014–.09%) with training and Formula problems show-
ing a very slight decrease in activation (.031–.026%). As these
percentages indicate, the absolute level of AG activation was quite
low. This interaction may be due to differences between these
operation types in the strategies used to solve trained and
untrained problems. The percentage reports of retrieval for trained
Pyramid problems is 7.7% higher than those of trained Formula
problems.
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