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a b s t r a c t

In an fMRI study, participants were trained to play a complex video game. They were scanned early and
then again after substantial practice. While better players showed greater activation in one region (right
dorsal striatum) their relative skill was better diagnosed by considering the sequential structure of whole
brain activation. Using a cognitive model that played this game, we extracted a characterization of the
mental states that are involved in playing a game and the statistical structure of the transitions among
these states. There was a strong correspondence between this measure of sequential structure and the
skill of different players. Using multi-voxel pattern analysis, it was possible to recognize, with relatively
high accuracy, the cognitive states participants were in during particular scans. We used the sequential
structure of these activation-recognized states to predict the skill of individual players. These findings
indicate that important features about information-processing strategies can be identified from a model-
based analysis of the sequential structure of brain activation.

& 2015 Elsevier Ltd. All rights reserved.
1. Introduction

This paper is concerned with identifying the patterns of brain
activation that are associated with skilled performance in a com-
plex task. Many studies have investigated perceptual expertize in
recognizing visual patterns (e.g., Bilalić et al., 2011, Scherf et al.,
2011; Tarr and Gauthier, 2000). The typical result is greater acti-
vation in visual areas like the fusiform for objects in the domain of
the expertize. There is also increased distinctiveness in the acti-
vation patterns in these regions (Haxby et al., 2000, Nestor et al.,
2011). However, increased activation is not always a sign of in-
creased skill. Looking at other domains such as problem solving or
visual-motor tasks, researchers have found that higher skill was
characterized by decreased activation, which is taken as a sign of
improved processing efficiency (Anderson, 2005; Gobel et al.,
2011; Poldrack et al., 1998). Chein et al. (2005, 2012) emphasize
the drop out of different brain regions as a skill develops.

While activation in specific regions may reflect expertize in
some tasks and patterns of activation across regions may reflect
expertize in other tasks, such static perspectives ignore the im-
portance of the sequential structure of many tasks. Behavioral
studies have shown that experts often approach a task with a very
different sequence of mental steps than someone less expert
(Anderson et al., 1984; Larkin, 1981). This paper will describe such
14
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a task where expertize is reflected dynamically in how whole
brain activity changes over an episode of doing the task. That is,
expertize is reflected by patterns in the spatial-temporal structure
of brain activation. We will describe how these patterns can be
measured by combining of multi-voxel pattern analysis (MVPA –

e.g., Norman et al., 2006; Pereira et al., 2009) and hidden Markov
models (HMMs, e.g., Rabiner, 1989) to recognize patterns defined
in reference to a cognitive model of how the task should be per-
formed. While the current task is a video game whose sequential
structure is relatively easy to identify, the general approach is
applicable to a wide range of tasks.

1.1. The Space Fortress game

The Space Fortress video game, which has had a long history in
the study of skill acquisition, was first used in the 1980's by a wide
consortium of researchers (e.g., Donchin, 1989; Frederiksen and
White's, 1989; Gopher et al., 1989). Fig. 1 shows a schematic of the
Space Fortress video game. The player is supposed to keep a ship
(red) flying between the two hexagons. This is challenging because
the ship is flying in a frictionless space and there is no braking
system for navigation. To navigate the player must combine
thrusts in various directions to achieve a circular orbit. While
doing so, they need to shoot at the central fortress (blue) and avoid
being shot by it. In addition the player must deal with mines
(green) that appear at irregular intervals. Players must distinguish
between “foe” and “friendly” mines, which can be identified by a
set of letters that appear under header IFF (“Is Foe or Friendly”) in
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Fig. 1. Left: a schematic of the screen for Space Fortress. The ship (indicated in red) is controlled by the user and must circle the fortress (in blue) staying within the two
hexagons. The hexagon (in green) represents a mine coming at the ship. At the bottom of the screen is an information bar that displays critical information. The red
highlighted vulnerability information keeps track of the number of times the fortress has been hit and the highlighted IFF information contains a letter that identifies
whether the mine is friendly or foe. The dollar sign (yellow) is one of a sequence of symbols that must be tracked for bonus points. Right: mapping of fingers onto actions –
L¼counter-clockwise (left), T¼ thrust, R¼clockwise (right), F¼fire, I¼ IFF; B¼bonus. (For interpretation of the references to color in this figure legend, the reader is referred
to the web version of this article.)
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the bottom panel (before each game the player learns 3 letters that
will indicate foe mines for that game). Finally, potential bonus
symbols (yellow) appear on the screen below the fortress. If
players identify when two dollar signs appear consecutively they
will receive points or ammunition.

The player interacts with the ship by pressing 6 keys with their
ring, middle, and index fingers on both hands1. The left hand uses
the three keys involved in ship control – for turning clockwise,
counterclockwise, and thrusting. The left hand needs to master the
correct execution of thrusts and turns to maintain a circular orbit
in the frictionless space. The right hand controls the firing and
response to critical events. Timing of right hand keys is particu-
larly important. Shots at the fortress must satisfy a number of
timing constraints – at least 250 ms between shots up until the
fortress is vulnerable for a “kill shot” which requires a pair of shots
under 250 ms. Neutralization of foe mines requires a double click
with another right-hand finger and must be between 250 ms and
400 ms. The players are trying to optimize their point totals, which
is a sum of points for navigating, dealing with the fortress, pro-
cessing the mines, and responding to the bonus opportunities.

A number of neuro-imaging studies have looked at learning in
Space Fortress. Erickson et al. (2010) found that striatal volume
predicted learning. Working with basically the same data set, Vo
et al. (2011) found that both mean activation and multi-voxel
patterns in the striatum predicted learning gain. Anderson et al.
(2011) found that the increase in motor and fusiform activation in
response to mines predicted learning gains. While we will report
results on learning gains, the focus will be on differences among
individuals that are stable across learning.

1.2. The cognitive model

Bothell (2010) developed a model in the ACT-R architecture
(Anderson et al., 2004; Anderson, 2007) that was capable of per-
forming the task2. This model predicted the brain imaging data in
Anderson et al. (2011). The model's performance is subject to
1 Our implementation uses the Pygame version of Destefano and Gray (2008)
and involves a significant control simplification over the original task, which re-
quired mastering a 2nd order, acceleration-control joystick.

2 The runnable model and a detailed description of that model and its beha-
vioral correspondence are available in the supplementary materials and at http://
act-r.psy.cmu.edu/publications/pubinfo.php?id¼974. Also we have placed at the
web site experimental software that runs with human participants or the model.
human-like constraints on the speed of visual, motor, and cogni-
tive processes. These constraints have been set on the basis of a
wide literature. The model performs at a high level of performance
comparable to our best human participants. However, because of
its human-performance limitations, it does not do as well as a
“pure-AI” system can, as we will discuss.

The ACT-R architecture consists of a set of modules, which are
active in parallel to perform a complex task like this video game.
Fig. 2a illustrates the modules of relevance to the model for Space
Fortress and Fig. 2b illustrates how these modules are deployed in
the 2 s after a mine appears. During this 2 s the Visual module is
detecting the presence of a mine and encoding the letter to identify
the mine; the Goal module is switching focus from processing the
fortress to processing the mine; the Imaginal module is determin-
ing how to aim at the mine; the Declarative module is retrieving
information about whether the letter identifies a foe: and, if ap-
propriate, the Manual module is executing the double tap needed to
enable a shot at the foe mine in addition to firing at the mine. The
coordination of these modules is controlled by a set of production
rules (procedural module). Each rule recognizes particular states of
modules and makes requests of the modules. These productions can
be broken into three categories – productions that control the na-
vigation of the ship around the fortress, productions that fire at the
fortress and collect bonus points, and productions that handle
mines. All of these productions are highly reactive and respond to
the state of the game. Only one production is able to apply in at any
time. When multiple productions could apply, the most urgent is
determined by ACT-R’s conflict resolution.

1.3. The Current Study

This paper will use that model to assess how participants are
responding to the game and will use this information to predict
their skill. The current experiment differs from our earlier 2011
study in three ways that facilitate the goals of this paper. First, the
number of participants was doubled to get a better sample of in-
dividual variation. Second, whole brain activation was used rather
than focusing on activation in specific brain regions. Third, rather
than having a very regular sequence of game events (which fa-
cilitated model fitting in our earlier study) an asynchronous se-
quence was used to better assess sequential structure.

The past study showed that it was informative to examine
performance in various simpler versions of the game as well as
performance in the most complex version of the game, and that
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Fig. 2. (a) The interaction of the ACT-R modules during the presentation of a mine. Beside each module is an example of its activity during this period. (b) A swimlane
representation of the activity of the ACT-R modules during the 2 s after a mine appears. This would correspond to an IFF scan in the state analysis to follow.

J.R. Anderson et al. / Neuropsychologia 81 (2016) 94–10696
same condition structure will be used here. In the Orbit condition
all that participants have to do is successfully fly their ship around
the fortress, receiving points for keeping the ship within the outer
hexagon, not hitting the inner hexagon, and keeping their speed
within the specified bounds. In the Mines-Only condition parti-
cipants also have to deal with mines, receiving additional points
for successfully destroying mines but losing points if the mines hit
them. In the Fortress-Only condition participants have the fortress
and bonus symbol, receiving additional points for destroying the
fortress and collecting bonus points, but losing points if the for-
tress shoots them. The Both condition is the original Space For-
tress game, involving the points for navigation, mines, destroying
fortress, and bonus symbols.
Fig. 3. The structure of the experiment: within days there are 2 sessions and within each
session involved a random sequence of the Orbit, Mines, Fortress, and Both conditions
8-minute scanning block. Each block had a 20-second fixation period (denoted by F) at
letters (denoted by L) and then 10 s to inform participants about the condition (denoted
2. Material and methods

2.1. Participants

Forty right-handed participants (14 female and 26 male, 18–31
years of age, mean¼24.0) were recruited from the Pittsburgh
community.
2.2. Experimental procedure

Fig. 3 unpacks the overall structure of the experiment. The
experiment lasted 5 days with two 1-hour sessions each day. The
second session of the first and fifth day was performed in an fMRI
session there is a sequence of 16 games. The 4 games in each quarter of each fMRI
(the order in the figure is just illustrative). Two 3-minute games occurred in each
the beginning, middle, and end. Each Game was preceded by 10 s to study the Foe
by C). Each game was followed by 10 seconds of feedback on score (denoted by S).



3 The definition of a “excess of extreme values” is more than .5% of the scans
with values more than 10% from baseline.

4 To review the considerations that drove this choice, the problem is that some
participants will change their breathing patterns when the game playing gets
challenging and this has identifiable effects on the BOLD response. We did try a
number of alternative regions but found that using a grey-matter are, that did not
respond to task structure, like the auditory region, provided the best correlate.
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magnet.
The Space Fortress game was the same as in Anderson et al.

(2011) with one difference that allowed us to better assess se-
quential structure: rather than mines appearing regularly once
every 20 s they appeared at random intervals uniformly sampled
from 4–8 s. In all sessions participants responded with three fin-
gers (ring, middle, and index) in two data gloves (see Fig. 1 for
mapping of fingers). In each session they performed 8 two-game
scanning blocks for a total of 16 games per session. Each game
began with 20 s of fixation, then 10 s to memorize the 3 letters
that would be used to identify “foe” mines in that game, and then
10 s notifying them of the condition (Orbit, Mines-Only, Fortress-
Only, or Both) of the upcoming game. The game lasted for 3 min
and was followed by 10 s in which participants could study their
score. A final 14-second fixation period followed the feedback for
the second game in a block.

There were 10 sessions, administered 2 per day. On the first and
fifth day, there were 4 games in each of the Orbit, Mines-Only,
Fortress-Only, and Both conditions. Each game appeared once in
random order in each set of four games in a session. The second
sessions of the first and fifth days (Sessions between 2 and 10)
were conducted in the scanner. Half of the participants practiced
the Both condition during the intervening 3 days and half alter-
nated between the Mines-Only and Fortress-Only conditions dur-
ing those days.

2.3. Imaging analysis

Images were acquired using gradient echo–echo planar image
(EPI) acquisition on a 3 T Verio Scanner using a 32-channel RF
head coil, with 2 s. repetition time (TR), 30 ms echo time (TE), 79
degree flip angle, and 20 cm field of view (FOV). We acquired 34
axial slices on each TR using a 3.2 mm thick, 64�64 matrix. This
produces voxels that are 3.2 mm high and 3.125 � 3.125 mm2. The
anterior commissure-posterior commissure (AC-PC) line was on
the 11th slice from the bottom scan slice. Acquired images were
pre-processed and analyzed using AFNI (Cox, 1996; Cox and Hyde,
1997). Functional images were motion-corrected using 6-para-
meter 3D registration. All images were then slice-time centered at
1 s and co-registered to a common reference structural MRI by
means of a 12-parameter 3D registration and smoothed with a
6 mm full-width-at-half-maximum 3D Gaussian filter to accom-
modate individual differences in anatomy.

We calculated the mean maximum movement per block. Roll,
pitch and yaw were (in degrees) 0.66, 1.65, and 0.80, respectively.
Translations in z, x and y directions were (in mm) 2.06, 0.77 and
0.94 respectively. Only yaw showed a significant decrease from
Session 2 to Session 10 (from 90 degrees to 71 degrees; t(35)
¼2.24, po0.05) and it was not significantly correlated with score.

In complex tasks like this, which involve many cognitive pro-
cesses, the focus is on patterns of activity across the whole brain
common across individuals. As a step of dimension reduction and
to accommodate variations in anatomy over participants that may
not be dealt with in co-registration, we aggregated the voxels in
each slice into larger 2�2 voxel regions. The fundamental moti-
vation is to predict across individuals and this eliminates our
ability to have very precise localization. The process of co-regis-
tration in itself already forgoes strong inference on smaller sub-
cortical structures, independent of other dimension reductions
that we may apply. We chose only to aggregate in the 2D plane
because the mismatch between subject brains can be dramatic at
the curvature around inferior frontal brain regions. In this area,
moving from one slice to the next in the inferior direction, there is
often an abrupt transition from signal to non-signal (imagine the
saggital view). There are 12,481 such 2�2 regions. However, some
of these show an excess of extreme values for some participants,
likely reflecting differences in anatomy3. Most of these outlying
regions were located on the top and bottom slices as well as near
the perimeter of the brain. Eliminating these resulted in 9,029
usable regions for analyses.

To correct for brain-wide activation fluctuations that were not
task related (for instance, due to changes in breathing patterns
found while playing video games, Birn et al., 2008), we regressed
out correlated activity involving bilateral regions of the secondary
auditory cortex (two bilateral rectangular volumes defined as
5�5�4 voxels in the functional acquisition matrix centered at
Talairach coordinates 7 42, �61, �9). These regions correspond
to the Aural module in ACT-R and should not be engaged in the
Space Fortress task. We regressed the full 8-minute BOLD response
in each of the 9029 regions against the mean BOLD response in
these reference regions. The corrected activity for a region of in-
terest was the residual BOLD response not predicted plus the
mean BOLD signal in that region for that 8-minute period. An-
derson et al. (2011) found that this residual measure did not
change the direction of any of the effects but increased the sig-
nificance of many. Performing this step of analysis keeps our
processing with the earlier publication4.

The means of the scans 4 through 6 in each fixation period
were used to establish baselines for each game. The baseline for
any scan in the first game of a block was calculated as the linear
trend between the first and second fixation means. The baseline
for the second game was calculated as the linear trend between
the second and third means. The BOLD response on any game scan
was calculated as its percent change from its baseline. A Wiener
filter (Glover, 1999) with a noise parameter of .1 was used to de-
convolve the BOLD response into an inferred activity signal on
each scan. The hemodynamic function used in this deconvolution
is the SPM difference of gammas (Friston et al., 2011: gamma(6,1)-
gamma(16,1)/6). The Appendix reports an exploration of the ef-
fects of variations on this deconvolution step on classification and
provides a justification of the hemodynamic function we used.

The output of this process is an estimation of activity in 9029
regions during each of the 90 two-second scans in a game. How-
ever, because of high correlation among regions this reflects
nothing like 9029 independent pieces of information. For the
purpose of identifying sequential patterns, we performed a spatial
principal component analysis (PCA) of the voxel activity where
each voxel was treated as a variable that varies over scans, games,
and participants. Separate PCAs were done for Sessions between
2 and 10. The first 100 components of these PCAs were used in
subsequent analyses. These captured just over 73% of the total
variance in each session. To focus on the sequential changes across
the course of games (rather than differences among games within
a condition), the 100 PCA scores for each game were standardized
to have means equal to the mean for that condition and variance 1.
The predictive analyses will use these normalized PCA scores over
the 90 2-second scans that define a game.
3. Results

3.1. Preliminary analyses

Our focus will be on relating participants’ average scores to



Fig. 4. Performance of the 40 participants during Sessions between 2 and 10 plus
20 simulated participants.
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their brain activation5. Fig. 4 displays the average scores over 16
games for each participant in the two imaging sessions, Session
2 and Session 10. There is substantial improvement over the
course of the experiment (average 2494 points in Session 2 and
3518 points in Session 10). All but one participant improved and
the correlation between participants’ score on scanner session
2 and their score on scanner session 10 was 0.752. Of the 20 top
players in Session 2, 17 are still in the top 20 on Session 10. Fig. 4
displays the individual scores on these two days plus the results
from 20 simulated participants (ACT-R model), which averaged
4190 points. The simulated scores are more tightly clustered than
the human participants, but there is some variation in the model
performance depending largely on randomness in the appearance
of mines and bonus points and on randomness in ACT-R’s motor
timing. The best performing simulated participant slightly exceeds
the best performing human participant (4370 points versus 4258
points). We determined what an Ideal model would do that em-
bodied the same strategy as ACT-R but had no randomness or
delays. Thus, it performed every action perfectly and could re-
spond instantly to any event. Such a model would have averaged
5785 points given the statistics of the games that the ACT-R model
faced.

The imaging analyses excluded 4 participants who showed an
excess of extreme values (defined as BOLD responses greater than
5% from baseline) and thus involved 36 participants. The Appendix
reports an exploratory analysis looking for regions that sig-
nificantly (brain-wise alpha of 0.01) differed according to four
binary variables – whether it was Session 2 or Session 10, whether
the fortress was present or not, whether the mine was present or
not, and whether or not the participant was in the top half of the
players. Numerous sensible regions were identified for the first
three binary contrasts but no region was found that separated
stronger from weaker players.

Having failed to find any region that responded to the binary
contrast of stronger versus weaker players, we performed a re-
gression analysis examining the relationship between player mean
activations and player average score. This analysis yielded one
region in the right dorsal striatum (details of analysis in Appen-
dix), involving the caudate and claustrumwhose mean activity did
correlate with score. This region appears to partially overlap with
the region reported in Ref. Vo et al. (2011).

3.2. Using sequential structure of brain activation to predict
expertize

Below we describe the three steps in producing a predictive
measure of the sequential structure of brain activation during a
game. First, independent of brain activation, we identify the se-
quential structure of the states occurring during game play and
show that better participants display sequences of states more like
the sequences that the ACT-R model displays. Second, we show
that we can use brain activation to predict the state that a parti-
cipant is in on any particular scan. Third, we combine the previous
two steps to use the sequential structure of brain activation to
diagnose the skill of a player.

3.2.1 Step 1: using a states to measure sequential structure6

The sequential structure of the model is controlled by what
5 We are collapsing our results over the two groups. There was neither a sig-
nificant difference between groups in their average scores (F(1,39)¼2.31, p40.1)
nor any significant interactions of group with the other factors, and results are
averaged across group in all subsequent analyses.

6 The analyses in the remainder of the section is unconventional. The under-
lying data, software and code is available and discussed at http://act-r.psy.cmu.edu/
?post_type¼publications&p¼16893.
production rules match the state of the game, which is recorded at
any point in time. Thus, we can infer from the state of a player's
game what rules would be firing if the participant were identical
to the ACT-R model. As described earlier, the ACT-R productions
break into three groups: navigating, handling events associated
with the presence of a fortress and bonus points, and handling
events associated with mines. Each of these task groups was par-
titioned into a unique set of states where different subsets of
production rules apply (see Table 1). In the discussion to follow we
will use states to refer to the four partitions of each task group. For
example, for the mine-handling group the four states are: i) IFF,
which refers to executing a timed double-click to neutralize a
mine identified as foe so that it can to be shot; ii) Shoot the mine;
iii) Fix the orbit from drift during processing the mine; and iv)
None when no mine is present. The same states for each group
will occur for all players, whether they are behaving like ACT-R or
not. However, their duration and sequence will be strongly influ-
enced by the actions of the player7. Any particular point during a
Both game can be described as a 3-tuple whose elements consist
of a state from each of the task groups Navigation, Fortress and
Mines. For example, a scan flying at normal speed, with a bonus
opportunity, and a mine to shoot would be described by the
3-tuple oNormal, Bonus, Shoot4 . We labeled each 2-second scan
(for model or participant) in this manner. Because game states can
change at any time, more than one state within a group can occur
during a single scan. In such cases we labeled that scan with the
more urgent state (as determined by ACT-R’s conflict resolution,
with urgency decreasing from states a to d in Table 1).

The behavior of the ACT-R model defines a semi-Markov
structure (SMS – Yu, 2010) on the states in each task group. Fig. 5
shows the structure for the four Mine states, with part (a) showing
the transition probabilities and part (b) showing the durations in
each state (the Appendix goes into the game details to explain
these probabilities and durations). These transitions and durations
are determined by how a participant (human or model) plays the
game. Fig. 5a contrasts the transition probabilities for ACT-R with
the transition probabilities of the Ideal model (in parenthesis). Not
constrained by human limitations, the Ideal model responds in-
stantaneously and always performs actions with perfect precision.

To measure the degree to which a human's game was being
played like the ACT-R model would play, we applied the ACT-R
SMSs8 to calculate the probability that the sequence of states in
that game came from ACT-R. Consider the following starting se-
quence of 5 Mine states: 2 scans in the None state, 2 in the Shoot
state, and 1 in the None state,

The probability of this sequence is the probability that the ACT-
7 The game itself also strongly influences the duration and sequence of these
states.

8 The Navigation SMS applies over all conditions; the Mine SMS only applies in
the Mine and Both conditions; the Fortress SMS only applies in the Fortress and
Both conditions. The likelihood of a game is the average of the SMSs that apply.
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Table 1
Three groups of game states: descriptions of game situations that evoke different
productions in each state

1. Navigation.
Start. When the game begins or the ship respawns after being destroyed, the
ship starts out motionless and needs to be put into orbit around the fortress.

Fast. When the ship is in orbit with a speed above 1.7 pixels per second.
Slow. When the ship is in orbit with a speed below 1.0 pixels per second.
Normal. When the ship is in orbit with a speed between 1.0 and 1.7 pixels
per second.

2. Fortress
Bonus. The bonus symbol repeats and there is an opportunity to collect bonus
points.

Kill. The fortress has been hit 9 or more times, the ship is aiming at the fortress,
and the special hit shot can be executed.

Shoot. The fortress has been fewer than 9 times, the ship is aiming at the
fortress, the fortress and can be shot.

None. The ship is not aiming at the fortress and there is not a bonus
opportunity.

3. Mines
IFF. An enemy mine is present which requires a double-click to be neutralized
so that it can be shot.

Shoot. A friendly mine is present or an IFF'd mine is present, both of which can
be shot.

Fix. After destroying a mine the ship has drifted out of its circular orbit.
None. No mine is present and the ship has not drifted out of its circular orbit.
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R model stays in the None state for 2 scans (0.48) times the
probability of it transitioning to the Shoot state (0.5), times the
probability of it staying in the state for two scans (0.46), times the
probability of it going to the None state (0.65). This leads to a
probability of 0.072 for that sequence. The probabilities get very
small when one calculates sequences of 90 states in a game and so
we calculate log probabilities. This also proves to be a better scale
for correlating with score.

The average log probability of the games from a player was
used as the measure of similarity of that player to ACT-R. Fig. 6a
shows how the average score for different participants varies with
the average log probability, plotting separately participants for
Session between 2 and 10 as well as the 20 simulated participants.
The correlation between log probability and score for human
participants is 0.899 (the within-session correlations are 0.850 for
Session 2 and 0.749 for Session 10). We used three permutations
tests of 10,000 permutations to establish that the 0.899 was sig-
nificantly greater than three null models. First, to test that the
correlations were greater than a chance assignment of states to
scans, we permuted all the states for all the subjects across days.
The mean correlation was indeed 0 and the maximum correlation
across the 10,000 permutations was 0.438. Second, to determine
that the effects were not just due to changes in the states across
Fig. 5. (a) Transition probabilities of ACT-R model among Mine states (Ideal model proba
upon a visit.
days, we permuted the ACT-R state sequences for each day. The
mean correlation in this case was 0.622 and the maximum of
10,000 was 0.746. Third, to determine that the effect was just due
to the states in a game their sequence, we randomized the state
sequences for each game for each participant for each day. The
mean correlation was 0.844 and the maximum in 10000 was
0.887. So, in all 10,000 cases for all 3 permutations, correlations
that did not reflect the sequential structure of the states were less
than the observed 0.899. The relatively high correlations for
within-game permutations reflects the fact that there is strong
correlation between the states one visits and the sequential
structure one displays.

We also looked at the correlations for other models of beha-
vior: Log probability based on the Ideal model correlates 0.725 and
log probability based on average Session 10 behavior drops to
0.678. Using tests for paired correlations (Steiger,1980), these two
predictors are not significantly different (t(70)¼1.16, p40.2) but
both are significantly worse than the cognitive model used for
Fig. 6a (difference with Ideal model is t(70)¼10.95, po0.0001;
difference with Session 10 behavior is t(70)¼8.88, po0.0001). The
X-axis in Fig. 6a reflects an average of the log odds of the SMS's for
navigation, fortress, and mines. Individually, each has a strong
correlation to score (navigation 0.747, fortress 0.799, and mines
0.812). In a stepwise regression, all three factors make in-
dependent contributions to predicting score. The optimal weight
of these three factors would be 0.26*log-navigationþ0.35*log-
fortressþ0.39*log-mines, which would result in a very slightly
stronger correlation with score (r¼0.902) than the simple equal
weighting we are using.

Part b of Fig. 6 shows the relationship between the increase in
the log probability from Session 2 to Session 10 and the increase in
score (r¼0.704). To assess the overall statistical significance of the
relationships displayed in Fig. 6s we fit a regression model to the
data of the form Score¼aþb*LP where LP is log probability. The
best fitting parameters where a¼8500 and b¼56. The slope b is
highly significant (t(70)¼17.18, po0.0001). The fit is not improved
by having different intercepts (a’s) for the two sessions (t(69)¼
1.11, p40.10) or by having different slopes(b’s) for the two ses-
sions (t(69)¼ 1.34, p40.10).

Thus, not only do the better participants have scores like the
ACT-R model, they are achieving this performance in similar ways.
Moreover, they improve their score over sessions to the degree
they come to act more like the model. It is worth noting that the
relationship in Fig. 6 between log probability and score emerges
without any parameter estimation specific to predicting score. The
model and its parameters are the same as those used in Anderson
et al. (2011).

3.2.2 Step 2: classification of states from brain activation
The previous section showed that we can predict the score of a
bilities in parentheses). (b) Mean number of scans the ACT-R model stays in a state



Fig. 6. (a) Average score of games as a function of log probability of the observed states in the games according to the ACT-R model (averaged over all SMSs that apply to a
game). (b) Improvement of participants from Session 2 to Session 10 as a function of the increase in the log probability of their observed states.
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participant from the sequential structure of the states they go
through. We now investigate whether we can train a classifier to
recognize the state a participant is in on a scan from the pattern of
fMRI activity on that scan. To classify the states of specific scans we
used a linear discriminant analysis (LDA), a technique we have
used to classify such sequential states in other efforts (e.g., An-
derson et al., 2010, 2012). As described in the methods, we used
the first 100 dimensions of standardized PCA scores and the PCA
was done on the scan activity deconvolved using a Weiner filter.
Note that these measures were standardized such that each in-
dividual and game type had the same average values over scans.
Thus, our classification effort is focused on differences among
scans within a game. As in our earlier efforts, to predict the data
for a particular game, we trained the LDA classifier using an equal
weighting of other games (but not the test game) from that par-
ticipant and sequences from other participants. This tends to give
an optimal combination of sensitivity to the specifics of a parti-
cular participant and robustness based on the general predictive-
ness of the fMRI signal.

We trained 3 classifiers, one for each of the three task groups
(Table 1: Navigation, Fortress-handling, Mine-handling), to dis-
criminate scans among the 4 states within that group. Fig. 7 shows
the success in making these classifications within each group. The
average accuracy in Session 2 was 48.5% and in Session 10 it was
50.7%, which are both better than chance (25%). All participants
were predicted better than chance for all groups of states. So, the
brain activation for a scan does contain information about the
Fig. 7. Average accuracy in the 4-way classification of Navigation states, Fortress
states, and Mine States for Session 2 and Session 10. The error bars plot 7
2 standard errors of the mean.
state of the game at that time. While this information is far from
perfect as indicated by the roughly 50% accuracy, it is sufficient to
lead to success in the next step where we try to predict individual
proficiency.

Our method involved training the same classifier in multiple
conditions of the experiment and applying it to multiple condi-
tions. For instance, the same Navigation classifier is used in all of
the Orbit, Mines-Only, Fortress-Only, and Both conditions. This
approach works slightly better than using a different classifier for
each condition. The Appendix provides information on how well a
classifier trained in one condition generalizes to another condition.

As an illustration of how these states are being classified, Fig. 8
shows a projection of the activation patterns for the Mine states
onto the two-dimensional plane that captures the majority of the
variance (79%) among the means of the four states. The Appendix
provides similar plots for the Navigation States and the Fortress
states. The origin of the graph corresponds to the average activa-
tion. The individual points in the space represent the average ac-
tivation of different states (plotting separately between Session
2 and Session 10). The activation pattern for any point in this space
can be reconstructed from the sum of three images: the origin, the
x-vector weighted by the x coordinate of the point, and the y
vector weighted by the y coordinate. The x-vector, on which the
Fig. 8. Projection of the 4 Mine states onto 2 dimensions. The origin of this space
corresponds to the average activation during Mine games. The X and Y vectors
indicate the activity added to this average activation for individuals types of scans.



Fig. 9. (a) Average score of games as a function of log probability of the LDA-inferred states in the games according to the ACT-R model (averaged over all SMSs that apply to
a game). (b) Improvement of participants from Session 2 to Session 10 as a function of the increase in the log probability of their inferred states.
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Shoot and IFF states have highest values, is most associated with
increased left motor activation reflecting the increased right-hand
actions in the states. The y-vector, on which the state of fixing the
orbit is highest, has reduced left motor activity and increased
posterior parietal and fusiform activity. During orbit correction
there is no right hand activity and increased perceptual
processing.

Successful classification of states could arise from any reg-
ularity between activation patterns and the states. However, ex-
amination the classifier solutions as shown in Fig. 8 suggests that
successful classification depends on the fact that participants are
exhibiting similar behavior to the model in each state. Participants
who are more accurately classified tend to score higher – the
correlation between a participant's mean D-prime measure (see
Appendix for its calculation) of classification accuracy and score is
0.659 (t(34)¼5.10; po0.0001) for Session 2 and 0.348 (t(34)¼
2.16; po0.05) for Session 10.

3.2.3 Step 3: diagnosing expertize from sequences of activation
patterns

Now we will combine the previous two steps by classifying the
brain activity on scans as to states (Step 2) and then using the
sequence of classified states to predict skill (Step 1). Fig. 9a shows
how the average log probability of all the games played by the
participant correlates with a participant's average score across the
two sessions. Fig. 9b shows how the change in log probability
(from Session 2 to 10) relates to the increase in score. The overall
correlation in part a is 0.798 (the within-session correlations are
Fig. 10. (a) Average score of games as a function of the score predicted from the participa
10 as a function of the increase in predicted score.
0.643 for Session 2 and 0.565 for Session 10). The correlation in
Part b is 0.536 between increase in score and increase in log
probability. To assess the overall statistical significance of the re-
lationships displayed in Fig. 9 we fit the same regression model as
for Fig. 6: Score¼aþb*LP where LP is log probability. The best
fitting parameters where a¼12650 and b¼58. The slope b is
highly significant (t(70)¼11.05, po0.0001). The fit is not im-
proved by having different intercepts for the two sessions (t(69)¼
1.45, p40.10) nor by have different slopes for the two sessions (t
(69)¼1.53, p40.10).

3.3. Alternatives to sequential structure

Fig. 9 shows that we can do a good job of identifying the ex-
pertize of individuals by a measure of the sequential structure of
states classified from their brain activation. We considered a
number of ways to identify expertize from brain activation that did
not include sequential structure. Earlier we reported finding a
dorsal striatum region whose mean activation correlated with
score. This region was identified looking at correlation between
mean activation across both sessions and mean score across both
sessions. Fig. 10a shows what happens when we break this into
sessions for comparison with Fig. 9a. The correlation is much re-
duced to just .306. There is stronger within-session correlation
between this activation measure and score (0.519 for Session 2,
and 0.346 for Session 10) but the mean activation does not change
between sessions (0.30% on Session 2 and 0.27% on Session 10)
and so it cannot explain the improvement in score.
nts’ distribution of states. (b) Improvement of participants from Session 2 to Session



9 Also the earlier studies used a joystick and its additional motor demands may
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Of the various other non-sequential analyses we tried, we will
describe here the only one that had some success in predicting
both the within and across-session effects. This analysis used the
MVPA classification of scans from Step 2. However, rather than
using the sequential structure of the ACT-R SMS's from Step 1, we
looked at how individual states in the ACT-R model were asso-
ciated with changes to the score. Each scan resulted in an incre-
ment to the score and the total game score was just the sum of
these increments. We estimated from the ACT-R model how the
expected increment on a scan varied with different states. With
these estimates we could then predict the score for any scan of any
game. For instance, if a scan from a Both game was in the Slow
Navigation State, the Kill Fortress State, and None Mine state its
predicted score would be

− + − + − + −m D D DBoth Slow Kill None

where μ-Both was the overall mean score increment for scans in
the Both condition (60.9 according to the model), Δ-Fast is the
mean difference between this average increment and the incre-
ment on Fast scans (�12.9 in the model), Δ-Kill is the difference
associated with Kill scans (þ20.1 in model), and Δ-None the dif-
ference associated with None scans (�17.7 in model). Thus the
predicted value for the scan would be 60.9712.9þ
20.1717.7¼50.4. Predictions calculated in this way correlated
0.74 with the actual increments on the 28800 scans in the model
games.

Having these estimates of value of game type (e.g., μ-Both) and
effect of state (e.g. Δ-Kill) from the model, we could then predict
the score increment for every scan of every participant game from
the states on those scans classified from their brain activations. We
could then sum these increments for each game to get a score for
the game and average these to get a predicted score for each
participant. Thus, we went from brain activation to state classifi-
cation to prediction of score without considering the sequential
structure of the states. Fig. 10b shows how average state-predicted
score correlates with a participant’s average score across the two
sessions. Compared to Fig. 9, the overall correlation has dropped
from 0.798 to 0.656. The reduction from 0.798b to 0.656 is sig-
nificant by a test for paired correlations (Steiger, 1980) – t(70)¼
2.60, po0.01.

To assess the overall statistical significance we fit a linear
model as we had for Fig. 9a: Score¼aþb*Pred where a is the in-
tercept and Pred is the predicted score. There is a significant
contribution of the state-predicted score (t(70)¼3.88, po0.0005
for slope b) but also a significant contribution of having different
intercepts for the two sessions (t(70)¼3.99, po0.0005). Thus,
unlike our use of the likelihood of the state sequences in Fig. 9, this
measure cannot explain the entire improvement from Session 2 to
Session 10.

To understand the relationship between these various ap-
proaches to predicting performance, we performed a stepwise
regression in which we had included the three variables of log
likelihood of the classified sequences (Fig. 9a), average activation
(Fig. 10a), and average score from the classified states (Fig. 10b).
Also we allowed for a different intercept for sessions. Log-Like-
lihood of the classified sequences entered first. It also entered with
high significance if we forced all the other three variables to enter
before it (t(68)¼6.15, po0.0001). If it entered first, the only
variable that had a significant further contribution was average
activation in the dorsal striatum region (t(70)¼3.76, po0.0005).
The other two factors of session and average state-predicted score
were not significant (both with nearly identical t's of 1.45, p40.1).
Given that the MVPA was performed on PCA values normalized to
have the same average values per subject, it is not surprising that
mean activation before normalization still had some small
contribution to make toward predicting score.
4. Discussion

This paper has shown that an individual's skill can be predicted
from how that individual's brain activation matches a model of
expert performance. Stated at this level of abstraction, it may seem
evident that this should be possible, but what is critical is how it
was achieved. We used an ACT-R model of this task and the suc-
cess of this effort provides evidence for the model and its useful-
ness. However, the basics of the approach could be applied with
other computational frameworks if one can define a mapping
between the detailed processing of such a model (e.g. Fig. 2) and a
state characterization appropriate for relating to fMRI data. As we
found, to capture the richness of what is happening in these scans
it was necessary to use multiple parallel state classifications. Our
scans could be classified by their navigational features, their mine
status, and their fortress status. One can then use standard MVPA
techniques to recognize these states in the brain activation. While
having such a state characterization offers some predictive power,
there is a critical contribution of the sequential structure of these
states. To capture this sequential structure we built SMS's that
embodied the model's statistics about state occupancies and
transitions. The critical measure we derived was log probability – a
model-based measure of the likelihood of the state sequences
reflected in the brain activity. A notable feature of this approach is
it never considered score in the estimation of its parameters and
yet this log probability measure showed a 0.8 correlation with
score.

Fig. 9b shows that the improvement of individuals can be
predicted by how much more they come to behave like the ACT-R
model. This is different than a number of other efforts that have
tried to use early activity in regions to predict how much an in-
dividual would learn. We performed a brain-wise analysis looking
for any regions that showed a significant correlation with im-
provement but failed to find any that showed a brain-wise alpha of
.01 between activity and improvement in score. Two of the studies
mentioned in the introduction (Erickson et al., 2010; Vo et al.,
2011) found a significant relationship between this difference
measure of improvement and regions in the striatum. Vo et al.
report a positive relationship between learning and dorsal striatal
activity (although they focus on the results from a support vector
analysis). None of the sub-regions they considered, including the
dorsal striatum, showed a significant positive correlation with the
difference measure. We did find a region that overlapped with the
striatum that showed a significant relationship with average score.
We examined what its relationship was to improvement in score.
In contrast to their result, this region in our study shows a negative
correlation (r¼�0.429, t(34)¼2.77, po0.01) between activation
during the first session and improvement in score. This negative
correlation is a consequence of the facts that the correlation be-
tween mean activity and score on Session 2 (r¼0.519) is stronger
than on Session 10 (r¼0.370) and that the Session 2 and Session
10 scores are strongly correlated (r¼0.723).

The region we identified by correlating with overall score is not
exactly the same as the Vo et al. region. Even if it were, there are
enough other differences between their study and ours to make it
hard to diagnose the source of our failure to find a positive re-
lationship anywhere between striatal activation and improvement
in score. We suspect that one of the reasons this study failed to
find a significant relationship to learning was that early and late
scores were so strongly correlated9. Our participants showed
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dramatic improvements over the course of the experiment, but the
best performers tended to stay the best performers. Their perfor-
mance was largely a function of the strategy they adopted early in
playing the game and the effect of practice was largely to hone
that strategy.
5. Conclusions

This research has indicated that one can predict individual
differences in performance by classifying scans of brain activity
into discrete states and then examining the sequential structure of
these states. The Space Fortress game allows a direct approach to
the classification step because we can map external states of the
game directly onto model states. This then provides an objective
basis for training a classifier to recognize the states. This is possible
in Space Fortress because the internal state of the ACT-R model
(and probably any successful cognitive model of the task) is highly
reactive to the external state of the game. Such a direct mapping
between external states and relevant mental states is true for
many human activities (such a driving) but hardly all. In more
reflective situations like mathematical problem solving people go
through critical mental states that are not indicated by changes in
the external world or in their overt behavior.

We have also modeled such reflective tasks with hidden Mar-
kov models (HMMs – because the states are now hidden) where
we infer people's mental states by changes in brain activation and
connect these HMM models to ACT-R cognitive models (e.g. An-
derson and Fincham, 2014). These efforts differ from the current
effort in that there is not an external definition of the mental state.
Rather, we induce a mapping from brain activation to model states
that maximizes the regularity in the imaging data. We went back
to the data in Anderson & Fincham, classified the scans into states
given the induced mapping, and then looked at the log prob-
abilities of these scans according to the model described in that
paper. We did find a positive correlation (r¼0.644 for 75 partici-
pants) between this measure and percent of the problems parti-
cipants got correct. Thus, it may be possible more generally to use
the sequential structure of brain activation to predict success in a
task.
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Appendix A. Regions showing Effects of Binary Contrasts and
Correlation with Score

We performed a standard GLM of bold activity to determine
which regions showed effects of four binary variables – whether it
was Session 2 or Session 10, whether the fortress was present or
not, whether the mine was present or not, and whether or not the
participant was in the top half of the players. The threshold for
(footnote continued)
somehow be critical.
significance for the interaction was at least 10 contiguous voxels at
a voxel-wise alpha of po0.0001. Spatial smoothness of these data
were computed over the residuals and used as input for simulation
to estimate brain-wise alpha to be less than 0.01 (Cox, 1996; Cox
and Hyde, 1997).

No region showed a significant difference between better and
weaker players. Table A1 lists regions showing significant effects of
the other binary contrasts. Activation was higher in Session 2 re-
lative to Session 10 in superior parietal regions associated with
spatial attention and the fusiform areas, suggesting that partici-
pants are better managing the visual demands of the task at the
end of the experiment. The fortress conditions show increased
activation in the left motor region controlling the right hand, and
in the bilateral fusiform region. This reflects the demand for
shooting and monitoring of number of shots. The mine conditions
show increased activity in the lateral inferior prefrontal cortex and
the posterior parietal cortex, which are regions in the ACT-R model
that are responsible for handling the memory demands of the
mines conditions.

We also conducted an analysis of the correlation between
average score over the two sessions and average voxel activation.
Using the same threshold as with the binary contrasts (10 con-
tiguous voxels with a significance less than 0.0001) no region
reached significance. However, if we used an alternative threshold
more appropriate for correlation of p¼0.0025 with 40 contiguous
voxels, which also corresponds to a brain-wise alpha of 0.01, we
did find one right dorsal striatum region that consisted of 52
voxels overlapping with the caudate and nearby regions like the
claustrum (Talairach coordinates of x ¼ 21, y ¼ 7, z ¼ 22).
Training in all versus specific conditions

Fig. 7 presents classification performance training the classifier
on all other games but the game being predicted. So for instance,
in predicting the Navigation states for a Fortress-Only game we are
also including games from different experimental conditions such
as Mines-Only. This raises the question of whether it would be
better to restrict training just to games from the same condition.
Table A2 compares success in prediction when training and testing
on different combinations of conditions.

The training cases consist of all games from the 35 other par-
ticipants plus 35 copies of the games of the participant. In the
cases where the training and test conditions are the same, we
excluded the game being tested in making these 35 copies for
training. The measure reported in the table is the D-prime mea-
sure of discriminability (Wickens, 2002) generalized to four cate-
gories. This involves calculating 4 D-primes, one for each state. The
D-prime for a state is calculated from probability of a “hit”, which
is correctly labeling a scan from that state, and the probability of a
“false alarm”, which is assigning a scan from a different state to
that state. The definition of D-prime is

− = ( − )– ( − − )d prime Z p hit Z p false alarm

where Z is the inverse of the cumulative Gaussian distribution. The
D-primes reported in the table are the average of the D-primes for
the 4 states. The D-primes are further averaged over participants
and Sessions 2 and 10. Parts (a) – (c) of the table report perfor-
mance for the three groups of states. All the D-primes in Table A2
are positive and they are positive for all participants. Thus, with all
combinations of training and testing categories there is informa-
tion to discriminate states. Part (d) of the table reports results
averaged over different experimental conditions. Testing on the
same condition as trained results in better performance than
training on a different condition (second versus first row in part d).

http://act-r.psy.cmu.edu/?post_type=publications&p=16893
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Table A1
Regions showing Significant Effects of Binary Variables.

Voxel count Brodmann Areas Coordinates (x, y, z) Effect

(a) Session 2 : Session 10
1 R. Precuneus, Superior Parietal Lobule 181 7,19 8,�62,50 4
2 L. Precuneus, Middle Occipital G, Cuneus 80 40 �25,�78,30 4
3 L. Postcentral G, Inferior Parietal Lobule 17 9,6 �59,�20,26 4
4 L. Middle/Inferior Temporal G, Middle Occipital G 143 46,10,9 �47,�63,2 4
(b) Fortress : No Fortress
1 L. Precentral/Postcentral G, Inferior/Superior Parietal Lobules, Middle Frontal G 1226 6,4,3,40 �37,�22,53 4
2 M. Precuneus 64 7 0,�51,49 4
3 M. Medial Frontal G, Cingulate G 644 6,32,24 1,2,48 4
4 R. Precuneus, Superior Parietal Lobule 59 7 27,�48,48 4
5 R. Middle Frontal G, Precentral G 407 6 36,�3,47 4
6 L. Inferior Parietal Lobule, Angular G, Supramarginal G 121 39, 40 �45,�59,37 o
7 R. Middle/Superior Frontal G 368 9, 8 28,37,30 4
8 L. Middle/Superior Frontal G 66 9 �29,37,30 4
9 L. Inferior Frontal G, Precentral G 17 6,9 �37,4,28 4
10 M. Cuneus, Precuneus 73 18,7,31 �3,�75,27 o
11 L. Precuneus, Posterior Cingulate 19 31 �12,�51,26 o
12 L. Postcentral G, Inferior Parietal Lobule 39 2 �55,�18,24 4
13 L. Insula 21 13 �29,21,10 4
14 L/R. Thalamus 387 �7,�15,9 4
15 R. Insula, Inferior Frontal G 64 13 32,23,8 4
16 R. Middle/Inferior Temporal G, Middle/Inferior Occipital G 166 37,19 45,�67,5 4
17 L. Middle Occipital G, Middle Temporal G, Declive 389 19,37,18 �39,�70,0 4
18 L. Fusiform G, Culmen 29 37,19 �29,�53,�11 4
19 R. Culmen, Declive, Fusiform G 271 37,19 18,�52,�12 4
20 L. Parahippocampal G, Amygdala, Uncus, Superior Temporal G 70 �27,�3,�19 o
(c) Mines : No Mines
1 R. Middle/Superior Frontal G 44 6 31,�4,61 4
2 L. Precentral/Postcentral G, Middle Frontal G 363 6,4,3,40 �37,�16,53 4
3 M. Medial Frontal G, Cingulate G 166 6,32,24 �2,6,45 4
4 R. Middle Frontal G 43 8,9 32,34,41 4
5 L/R. Precuneus, Cuneus 699 7,19 �13,�64,40 4
6 L. Inferior/Middle Frontal G, Precentral G 113 9,6 �41,5,29 4
7 R. Middle Temporal G 17 19 45,�63,15 4
8 L. Insula, Middle Frontal G 112 13 �32,24,13 4
9 L. Thalamus 106 �12,�12,13 4
10 L/R. Lingual G, Cuneus, Posterior Cingulate, Declive 1119 18,19,30,17 �1,�72,2 4
11 L. Fusiform G, Middle Occipital G 71 37,19 �38,�56,�7 4

Table A2
D-prime measures of discriminability given different training sets

Test Sets

Orbit Fortress-
Only

Mines-
Only

Both

(a)Training Sets for
Navigation

Orbit 0.834 0.637 0.521 0.334
Fortress-
Only

0.679 0.917 0.614 0.660

Mines-
Only

0.617 0.658 0.664 0.501

Both 0.543 0.848 0.619 0.686
All 0.784 0.933 0.719 0.718

Test Sets
Fortress-
Only

Both

(b) Training Sets for Fortress Fortress-Only 0.920 0.767
Both 0.622 0.617
All 0.965 0.711

Test Sets
Mines-
Only

Both

(c) Training Sets for Mines Mines-Only 1.110 0.869
Both 0.633 0.900
All 1.094 0.928

Types of States
Navigation Fortress Mines

(d) Averaged over
Conditions

Different 0.603 0.695 0.751
Same 0.775 0.768 1.005
All 0.788 0.838 1.011
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In all cases these differences are highly significant (smallest effect
is t(35) ¼ 3.67, po0.001 for Fortress states). Training on all con-
ditions (third line in part d and what was used for Fig. 7) results in
slightly better performance than training on just the same con-
dition. The difference is significant only for Fortress states, but
there it is highly significant (t(35) ¼ 5.49, po0.0001).

In summary, there is a remarkable generalization of features
discriminating states in one experimental condition to another
experimental condition. While there is discriminating information
unique to a condition, it is slightly better to aggregate all condi-
tions, taking advantage of the larger database and variety of
training instances.
The deconvolution step

The deconvolution step is an attempt to infer the activity dur-
ing a scan from the pattern of BOLD activity in surrounding scans
(largely focusing on later scans). As noted in the paper we use a
Weiner filter assuming the canonical SPM shape for the hemody-
namic function. Handwerker et al., (2004) have argued that there
is considerable variation in the actual function across regions and
participants. They estimate ranges in time to peak from 2.5 to
6.5 whereas the SPM function has a time to peak of 5 s. We ex-
plored the performance of our model, using the standard double
gamma but setting the parameters so that time to peak varied in
1-second increments from 3 to 7 s. Fig. A1a shows the correlation
of the activity inferred for a scan with the BOLD signal on
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subsequent scans assuming hemodynamic responses with differ-
ent peaks. As can be seen, assuming the SPM function with a 5 s
peak the maximum correlation is with the third scan, which
makes sense since this scan spans the 4–6 s. In some of our other
work, we have just used the BOLD activity from two 2-second
scans later to infer activity during a scan. Similarly, the other peaks
tend to have maximum correlation with the BOLD response on the
scans that contain the peak.

A question of interest is whether the SPM function is the best
choice of a function and also whether we actually do better going
through the deconvolution step rather than just using BOLD ac-
tivity at a later point. To address this question Fig. A1b plots the
average D-prime classification of scan labels using functions with
different peaks and Fig. A1c plots the average classification using
different scans to classify activity on scan 1. The best classification
is obtained with the standard SPM peaks of 5 seconds but this is
not superior to 6 s (t(35)¼ 1.37, po0.05). However, it is superior
Fig. A1. (a) Correlation of the output of a Weiner filter for a scan in our data with
the BOLD response during subsequent scans. The different lines are the results
when hemodynamic responses are used that have different peaks. (b) D-prime
measures of accuracy of state classification using different peaked hemodynamic
responses in a Weiner filter. (c) D-prime measures of accuracy of state classification
using the BOLD response during different scans.
to 3 or 4 s for all 36 subjects and superior to 7 s for all but 2 sub-
jects. As can be seen from Fig. A1c using the bold activity 2 scans
later is clearly superior (for all subjects in the case of scans 0, 1, and
4 scans later and for 32 of 36 in the case of 3 scans later). While
using the BOLD signal 2 scans later results in a D-prime of 0.89,
using deconvolution with the 5 s SPM response is better resulting
in a D-prime of 0.94. This small difference holds for 30 of he 36
subjects and results in a highly significant t¼5.28, po0.0001.
Explanation of semi-Markov structure in Fig. 5

State Transitions (Part a): Initially, there is no mine and so the
model starts in the None state. If a friendly10 mine appears the
player first shoots it and then corrects the orbit of the ship, which
has drifted from the circular path while the mine is being pro-
cessed. If a Foe mine appears it must first be IFF’d (neutralized)
before it can be shot. This involves making a double key-press
between 250 and 400 m s. Randomly half of the mines are Friendly
and half are Foe, resulting in an equal probability of transitioning
from a None scan to either a Shoot scan or an IFF scan. Even
though the orbit usually needs to be fixed after shooting the mine,
there is only 35% probability of transitioning from a Shoot scan to a
Fix scan because 65% of the time the orbit can be fixed in the same
scan as the shooting and so the next scan is in the None state.
Similarly, even though a Foe mine still needs to be shot after being
IFF’d, there is only 50% probability that the next scan is a Shoot
scan. 29% of the time the mine is shot in the same scan as the IFF
and the next scan is in the Fix state. 21% of the time the mine is
shot and the orbit fixed in the IFF scan, and the next scan is in the
None state. Usually (74%), after the orbit is fixed the next scan is in
the None state because no mine has yet appeared. However,
sometimes a mine will appear in the next scan and that next scan
will then be either in the Shoot or IFF state.

State Durations (part b): More successive scans occur in the
None state than any other state. The actual duration of these “rest”
periods is determined both by the random appearance of mines
and how fast the player can dispose of the mines. Frequently, the
period of time from which an IFF can be executed to when it is
completed overlaps two scans but sometimes it can be completed
within a single scan. Shooting a mine requires aiming and waiting
until the mine appears at the aim point. Like an IFF, this is usually
either completed in one scan or overlaps two scans. The correc-
tions to orbits are usually brief and can be completed in a single
scan.
Navigation and Fortress Spaces

Fig. 8 provided a two-dimensional projection of the Mine states
onto a two dimensional plane that captured most of the variance
among the states. Fig. A2 provides the same information for the
Navigation and Fortress states. The two-dimensional structure for
Navigation in part (a) accounts for 84% of the variance and the
two-dimensional structure for Fortress in part (b) accounts for 71%
of the variance.
10 The terms “Friendly” and “Foe”, which are part of game, can be misleading. A
Friendly mine can still damage the ship and should be destroyed. The only differ-
ence is that one does not have to execute the double-click to neutralize a Friendly
mine. Indeed, doing so will energize a Friendly mine and make it invulnerable.



Fig. A2. Projection of the 4 Navigation states (a) and the 4 Fortress States (b) onto 2 dimensions. The origin of this space corresponds to the average activation during Mine
games. The X and Y vectors indicate the activity added to this average activation for individuals types of scans.
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