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ABSTRACT 

In this paper, we describe a framework for processing big data that 

maximizing the efficiency of human data scientists by having them 

primarily operate over information that is best structured to human 

processing demands. We accomplish this through the use of 

cognitive models as an intermediary between machine learning 

algorithms and human data scientists. The ACT-R cognitive 

architecture is a computational implementation of a unified theory 

of cognition. ACT-R cognitive models can take weakly structured 

data and learn to filter information and make accurate inferences 

orders of magnitude faster than machine learning, and then present 

these well-structured inferences to human data scientists. The role 

for human data scientists is both oversight and feedback; one 

complementary piece of a hierarchy of cognitive and machine 

learning techniques that are computationally appropriate for their 

level of information complexity. 
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1. BACKGROUND 
The effective and efficient analysis of big data requires the 

complementary engagement of human data scientists, cognitive 

models, and machine learning algorithms. Each component brings 

together distinct yet complementary characteristics. Similar to the 

DIKW (Data-Information-Knowledge-Wisdom) [1] cycle of big 

data research, we argue for a pyramidal structure of data 

refinement, analogous to the process of sensemaking, albeit with 

more bidirectional interconnections than the bottom-up DIKW 

approach (see Figure 1).  

 

Figure 1. Sample knowledge tree where information becomes 

more structured as it reaches progressively higher stages of the 

pyramid. 

The DIKW pyramid (left) begins with large amounts of 

unstructured (big) data at its base.  By filtering and extracting 

relevant features from the raw data, a primitive semantics is 

developed, which transitions data to information [16]. By 

contextualizing and hierarchically organizing this information, we 

generate knowledge. This knowledge is akin to the kind of 

sensemaking frames seen in intelligence analysis [8]. Finally, 

wisdom is gained when knowledge is transformed into actionable 

elements with refined semantics (Koomey, 2008). By analogy, we 

propose a data analysis hierarchy with massively-parallel machine 

learning algorithms operating over unstructured data at its base to 

filter and organize them, cognitive models refining this loosely 

structured information with more elaborate knowledge semantics, 

and finally human analysts at the top level providing overall 

awareness of context in organizing knowledge into actionable 

intelligence. Each processing layer matches the characteristics of 

the data layer that it transforms [21].   

2. DATA PYRAMIDS 
This section will present our analogy to the traditional DIKW 

pyramid in detail, describing the nature of each layer and their 

integration and interactions for both processing and learning. 

2.1 Information / Machine Learning 
Machine Learning algorithms like Deep Learning are massively 

parallel and can cope with large amounts of data; however they are 

limited because of relatively primitive semantics and thus are best 

suited for the initial filtering and structuring of data. Machine 

learning algorithms provide a scalable complement to the human 

analyst by structuring large amounts unfiltered data into 

information. To assume that machine learning can replace data 

scientists entirely is to ignore their current inability to capture the 

complex contextual semantics needed for high-level inference in 

domains such as computer vision and the daunting combinatorics 

of achieving data coverage in real-world intelligence scenarios. 
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Computer vision, by analogy, is typically viewed as a bottom-up 

process refining raw inputs like pixels into increasingly high-level 

features. However, the process has proven so difficult it is 

considered unsolvable due to the ambiguities and combinatorics in 

raw input. The emerging solution is to view vision as a bi-

directional process that utilizes top-down input in the form of 

contextual expectations to provide strong priors for constraining 

bottom-up perception.  This view is compatible with the evolving 

understanding of the neuroscience of human vision, where what 

was initially thought of as a bottom up process of generating 

increasingly abstract representations is how understood to be 

deeply influenced by top-down expectations for higher-level 

cognitive processes.  The same criticisms have been applied to 

sensemaking, where attempts to cull and organize data in a bottom-

up, context-free way has led to countless intelligence failures [14]. 

Our solution to this problem is to use cognitive models, constrained 

by an architecture (in our case, ACT-R), to provide not only these 

top-down expectations for bottom-up perceptual processes, but to 

also operate independently over these data and structure them in a 

way that is more appropriate for the capabilities and limitations of 

human data scientists. 

2.2 Knowledge / Cognitive Models 
Cognitive models are capable of transforming the loosely-

structured data coming from machine-learning algorithms into a 

more structured form appropriate for human data scientists. We 

argue that the best way for models to do this is to be grounded in a 

cognitive architecture. A cognitive architecture is a set of 

computational processes representing cognitive processes 

including attention, memory and pattern-matching, organized in a 

structure reflecting the organization of the human brain. A 

cognitive architecture provides a principled platform for 

developing behavior models constrained by human processes and 

predictive of human performance, but also with the means to 

mitigate limitations in human reasoning such as cognitive biases. 

Cognitive models – built within the constraints of the architecture 

– provide a computational implementation of cognitive 

mechanisms that can be de-biased through the adoption of proper 

procedures such as Structured Analytic Techniques and scaled up 

beyond human abilities such as through faster processing time and 

larger memory.  Still, by matching human expert patterns against 

new situations, they transform information into knowledge.  

An advantage of using a cognitive model as a smart filter is that the 

underling architecture provides some of the benefits of human 

heuristic reasoning while allowing for more control over biases in 

reasoning. The model relieves human data scientists of the more 

time-consuming pattern-matching effort required in data 

wrangling, while also providing a more bias-free implementation 

of that functionality. In the IARPA ICArUS (Integrated Cognitive-

Neuroscience Architectures for Understanding Sensemaking) 

project, we have developed an integrated neurocognitive model of 

complex sensemaking processes that was capable of matching 

human performance and predicting (and mitigating) the sources of 

multiple biases [8].  Cognitive biases arise from the interaction 

between (a) powerful but limited cognitive processes, (b) complex, 

demanding sensemaking tasks in a dynamic fast-paced 

information-rich environment, and (c) adaptive heuristic strategies 

adopted to accomplish the tasks under strong time constraints using 

limited means.  The notion of architecture is essential to this 

argument. It is because of the constraints of the cognitive 

architecture that we can understand the sources of biases in 

analysts, and provide alternative approaches in the form of 

cognitive models that alleviate them.  

Using the notion of architecture, it is also appropriate to view our 

processing hierarchy as an integrated architecture with complex 

data flows including both top-down expectations and bottom-up 

filtering and elaboration, and corresponding learning flows that 

continually tune the system for improved performance. This stands 

in contrast to the predominantly bottom-up processing of the 

DIKW pyramid, which we argue falls prey to the same limitations 

of solely bottom-up processing approaches as in other fields. In 

another analogy from the memory literature, the process of learning 

is called a process of consolidation and elaboration, representing 

the fact that organizing data in memory is an organic process rather 

than a set of sequential filters. 

This is not to argue that cognitive architectures are a panacea for 

data analysis research, or are ‘only one breakthrough away’ from 

replacing data analysts. While recent advances in cognitive 

architectures are exploring novel brain-inspired mechanisms to 

create hierarchies of information [20], we still require human 

feedback to build increasingly abstract and semantically rich levels 

of structured representations. Hierarchical knowledge structures – 

by compartmentalizing the data space – make decision-making 

more efficient and are an essential component of applying cognitive 

methods to big data. 

2.3 Wisdom / Human Data Scientists 
Cognitive models operate over a limited range of semantics and 

require human specification, whether through feedback/oversight 

or in the model design process itself. Data scientists have extremely 

rich semantics but very limited capacity, thus their place is at the 

top of the pyramid providing the final step: they provide cognitive 

oversight over the whole system and as such, they transform 

knowledge into wisdom. This process of oversight provides 

feedback to the model, providing additional learning instances to 

the cognitive model from which to make future decisions, and 

feedback to deep learning over the usefulness of learned features.  

Learning flows reciprocal to data flows are an essential component 

of an adaptive intelligent architecture. 

Data scientists can elaborate this richly structured knowledge into 

a set of actionable elements by leveraging the strengths of human 

cognition operating over a much more constrained decision space. 

By setting humans in the complementary role at the tip of the 

hierarchy, we are leveraging their conceptual inference strengths 

and limiting the man-hour requirements that go into data wrangling 

[2]. The notion of a human as an overseer and capstone over a 

combination of machine learning and cognitive models has been 

applied in other domains. In the Mind’s Eye project [15] concept of 

a smart camera, machine learning algorithms extracted perceptual 

features from a camera input, and a cognitive model operated over 

those visual features to match them to known patterns and detect 

suspicious behaviors, which are then flagged for a human security 

officer to examine. This feedback is then filtered back into the 

cognitive model in the form of new knowledge patterns and into the 

perceptual algorithms as feature utility. 

Of great concern to data scientists (similar to intelligence analysts) 

is the influence of cognitive biases. The massive amounts of 

information that data scientists must sift through make an ideal 

environment for cognitive biases such as confirmation bias and the 

availability heuristic. In each case, the inability of human working 

memory to maintain a sufficient trace of all incoming information 

leads to heuristic shortcuts being used and improper generalizations 

being made. In the case of confirmation bias an analyst may only 

search for information that supports their current hypothesis while 

not looking for evidence that would disconfirm it. In the case of the 

availability heuristic underlying a satisfaction-of-search bias, the 



analyst may cease to look for alternative explanations once an 

initial hypothesis is formed. These are natural, and often effective, 

ways of coping with increasing demands on a fixed cognitive 

capacity.  What is needed is an external augmentation of those 

capabilities that integrate naturally because they work on similar 

principles but within their limitations. 

3. ACT-R COGNITIVE ARCHITECTURE 
Before presenting examples of the efficacy of cognitive models, we 

will describe the ACT-R cognitive architecture. ACT-R is a 

computational implementation of a unified theory of cognition. It 

accounts for information processing in the mind via task-invariant 

mechanisms constrained by the biological limitations of the brain 

[2]. While sensemaking theory abstracts away from brain 

processes, it makes commitments to the control and flow of 

information that are commensurable with ACT-R’s functional 

perspective. For example, the elaboration and reframing loops in 

sensemaking can be instantiated in the production rules controlling 

the flow of control and information in ACT-R. Furthermore, ACT-

R is committed to localization of neural architecture, allowing for 

functional models to guide the development of neurally-inspired 

models. As such, a cognitive architecture like ACT-R provides a 

conceptual bridge between coarse-grained naturalistic processes 

such as sensemaking and fine-grained neural-level computational 

constructs. 

The ACT-R architecture is organized as a set of modules, each 

devoted to processing a particular kind of information, which are 

integrated and coordinated through a centralized production system 

module (see Figure 2). Each module is assumed to access and 

deposit information into buffers associated with the module, and 

the central production system can only respond to the contents of 

the buffers, not the internal encapsulated processing of the 

modules. For instance, the goal module stores and retrieves 

information that represents the internal intention and problem 

solving state of the system and provides local coherence to 

behavior.  These information bottlenecks correspond to important 

attentional and working memory limitations of the architecture but 

they enable scalable (i.e., parallelizable), tractable processes in the 

corresponding modules. 

 
Figure 2. An overview of ACT-R’s modules and their 

dependent buffers. 

The declarative memory and production system modules, 

respectively, store and retrieve information that corresponds to 

declarative knowledge and procedural knowledge.  Declarative 

knowledge is the kind of knowledge that a person can attend to, 

reflect upon, and usually articulate in some way, while procedural 

knowledge consists of the skills we display in our behavior, 

generally without conscious awareness. This distinction between 

explicit and implicit knowledge provides a powerful model of the 

human ability to acquire information from its environment and 

continually improve its performance.  

Declarative knowledge in ACT-R is represented formally in terms 

of chunks, which corresponds to the episodic and semantic 

knowledge that promotes long-term coherence in behavior. Chunks 

have an explicit type, and consist of a set of slot-value pairs of 

information. Chunks are retrieved from declarative memory (DM) 

by an activation process. When a retrieval request is made the most 

active matching chunk is returned, where activation is computed as 

the sum of base-level activation, spreading activation, mismatch 

penalty and stochastic noise. Base-level activation reflects a 

chunk’s recency and frequency of occurrence. Activation spreads 

from the current focus of attention through associations among 

chunks in declarative memory. These associations are built up from 

experience, and reflect how chunks co-occur in cognitive 

processing. Chunks are also compared to the desired retrieval 

pattern using a partial matching mechanism that subtracts from the 

activation of a chunk its degree of mismatch, additive for each 

component of the pattern and corresponding chunk value. Finally, 

noise is added to chunk activations to make retrieval a probabilistic 

process governed by a Boltzmann (softmax) distribution. These 

subsymbolic processes endow the cognitive architecture with much 

of the graded and adaptive nature of human cognition. 

While the most active chunk is usually retrieved, a blending process 

can also be applied that returns a derived output reflecting the 

similarity between the values of the contents of all chunks, 

weighted by their retrieval probabilities reflecting their activations 

[9]. This blending process is used intensively in models of decision-

making since it provides a tractable way to generalize decisions in 

continuous domains such as probability space. 

The flow of information is controlled in ACT-R by a production 

system, which operates on the contents of the buffers. Each 

production consists of if-then condition-action pairs.  Conditions 

are typically criteria for buffer matches, while the actions are 

typically changes to the contents of buffers that might trigger 

operations in the associated modules. The production with the 

highest utility is selected to fire from among the eligible 

productions. This control level enables the learning and execution 

of complex information processing strategies by the architecture 

itself to model the human ability to learn to perform new tasks 

almost without limitation. 

3.1 Instance-Based Learning 
Instance-based learning theory (IBL) is the claim that implicit 

expertise is gained through the accumulation and recognition of 

experienced events or instances. IBL was formulated within the 

principles and mechanisms of cognition in ACT-R, and makes use 

of the dynamics of chunk retrieval and blended retrievals [6]. The 

main claim of IBL is that implicit knowledge is generated through 

the creation of instances. These instances are represented in chunks 

with slots containing the conditions (e.g., a set of contextual cues), 

the decision made (e.g., an action), and the outcome of the decision 

(e.g., the utility of the decision). 

IBL offers constraints on explanation by grounding implicit 

learning within the mechanisms of a cognitive architecture. For 

instance, the dynamics of an instance’s sub-symbolic activations 

(e.g., frequency and recency in the base-level activation equation) 

provide a scientifically-justified mechanism for determining which 

instances are likely to be retrieved for a given situation, and also 

can explain why they were retrieved and what factors came into 



play. Models related to decision-making and problem-solving in 

ACT-R over the past 10 years have seen increasing use of IBL to 

learn implicit knowledge structures. This is unsurprising given that 

ACT-R’s declarative memory module and chunk structure is an 

excellent match for the storage and retrieval of instances, which 

effectively guides people to some form of IBL. In other words, the 

design and constraints of the architecture lead people to adopt an 

IBL-like approach by using the architecture in the most direct and 

intuitive way.  

4. DISCUSSION 
The goal of this data processing hierarchy is to increase the 

efficiency of data scientists by having each level of the hierarchy 

operate over the kinds of data on which they are most effective. 

Machine learning is massively parallel and operates best over large 

amounts of unstructured data to extract meaningful features and 

filter irrelevant data. The computing requirements are such that 

sequential extraction of hierarchical relations becomes impractical. 

Cognitive models require that their inputs have some structure over 

which their mechanisms can apply. While they have some of the 

parallelization characteristics of machine learning algorithms (in 

terms of matching large amounts of expert patterns to data), they 

also have the kinds of sequential and symbolic processing that can 

construct a richer knowledge structure with substantially less 

processing demands (e.g., Wigmorean evidence trees) [21].  

We have recently developed a prototype cognitive model to 

categorize malware into families and extract intents [12] and 

compared it to a machine learning algorithm [19]. This model 

leverages the core features of ACT-R and uses an instance-based 

learning approach, with each sample of malware represented as a 

single instance in ACT-R’s declarative memory. With one person 

working for less than one week of development, our model 

categorizes the full dataset in under 5 minutes and was able to 

exceed the machine learning algorithm’s performance (accuracy 

67.3%; recall precision, and F-1 score all exceeding 85.5%). That 

said, the basic malware families and intents (i.e., the features of 

each malware family) were provided to the model from human 

input. This kind of human ontological input is exactly the kind of 

complementary engagement that will prove successful in analyzing 

big data.  

Another instance of the efficiency gained through that combination 

of statistical learning and symbolic (de)composition is our 

cognitive model of backgammon that is able to learn to perform at 

a highly skilled level after playing a few hundred games, as 

opposed to tens-of-thousands to millions of games for the 

equivalent machine learning algorithms to reach a comparable 

performance [18]. In general, we argue that cognitive models are a 

natural complement to machine learning techniques, providing 

scalable learning in structured information environments. 

4.1 Shared Mental Models 
Our argument that humans should best be used as supervisory 

control (and perform the high-level decision-making to which they 

are best suited) is not unique, and is similarly represented by other 

papers in this issue, such as [4]. For instance [12] examines the 

efficiency of human-in-the-loop analytics, and [5] argues for 

humans and machines/machine learning operating in continuous 

production loops (analogous to our learning flows and data flows).  

The notion of shared mental models between humans and machines 

is a common thread when examining human-centered big data 

research. Mental models provide a representation of situation, 

various entities, capabilities, and past decisions/actions. These 

models are dynamic, with people and machines engaged in a 

continuous production loop [5][12].  Research on human teamwork 

in big data analysis [16] examines the degree to which teammates 

from different backgrounds have overlapping shared mental 

models, and the degree to which multiple agents can recognize a 

common plan from reading large corpora [3].  

Cognitive models can provide a computational link between human 

and machine: they provide a quantitative, predictive understanding 

of shared mental models, and a cognitive computational basis for 

implementation of mental models in applied domains like robotics 

(see Figure 3), and as such support improved design of human-

robot interaction tools and protocols. 

ACT-R has recently been used to model a task that involved 

deciding on the allocation of responsibilities between a human and 

a robot teammate across several pursuit scenarios [10]. This model 

was designed to be able to parse any procedural information that 

may be described in a decision-tree form (i.e., an acyclic directed 

graph). That said, there is nothing about the control of this general-

purpose model that precludes cyclic behavior, meaning that the 

model can theoretically perform any decision whose steps can be 

broken down into a directed graph.  

The model takes a series of instructions, called decision factors, and 

accesses factor values for the current situation until it is instructed 

to make a decision. At that time, a decision chunk is retrieved either 

via standard retrievals with partial matching, or by blended 

retrievals through instance-based learning. The decision is also 

stored as a factor value for use in later decision-making steps. With 

the decision retrieved, the model moves onto the next decision in 

the chain.  

 

Figure 3. Example of Shared Mental Model from Robot Pursuit 

Task. 

While the sequence of decision chains has to be provided as input 

to the model, they are derived from task instructions. The benefit 

of this general mental model is that it can process any arbitrary set 

of instructions using the same core productions.  The model does 

not need to be changed in any way to tackle a new task but rather 

just needs a new set of instructions, just as human subjects do. In 

addition, it is possible to perform foraging behavior by having a 

pre-decision trigger that determines a value (such as expected 

information gain) that must reach a given threshold before moving 

onto the generation or revision of a decision.  

To bring this discussion back to the particulars of big data, a 

cognitive model can then learn a human data analyst’s search 

patterns and execute a shared plan to analyze big data. It can also 

take feedback from human operators to reinforce the utility of the 



learned procedures. This is analogous to the model exhibiting a 

naïve theory of mind of the human data scientist. A benefit of using 

cognitive models includes the offloading of data crunching from 

human data scientists onto the cognitive model. From some 

examples, we have shown that cognitive models are able to 

approximate the effectiveness and overall behavior of human in 

complex tasks without the same massive data requirements as 

traditional machine learning approaches. However, cognitive 

models still need further development to handle more automated 

abstraction of hierarchical data, and further research onto 

scalability will determine the best degree of abstraction for 

cognitive models to maximize their efficacy as a complementary 

tool in the analysis of big data. 

5. SUMMARY 
We argue that big data analysis is best performed with human 

oversight as a complementary piece of a hierarchy of cognitive and 

machine learning techniques that are computationally appropriate 

at their level of information complexity. Grounding intermediate 

knowledge structuring in a cognitive architecture provides for 

human-inspired reasoning with more flexible learning constraints 

(vis. parallelization) that can mitigate cognitive biases prevalent in 

comparable disciplines such as intelligence analysis. By doing so, 

we can increase the efficiency of the data analysis process by 

maximizing the effectiveness of structuring incoming data through 

massively parallel machine learning algorithms. 
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