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ABSTRACT: A rule-based approach to categorization is compared with an exemplar-based 
approach. Both models were developed using the ACT-R architecture. Both approaches yield 
similar accuracy and are relatively impervious to varying model parameters. Implications for the 
nature of implicit and explicit knowledge and learning are discussed. 
 
1. Overview 
 
The research in this paper pertains to the general issue 
of the relationship between existing cognitive theories 
of categorization.  The use of cognitive models that 
implement descriptive theories allows for quantitative 
comparisons of the theories.  ACT-R has been used 
previously to compare and contrast exemplar-based 
and rule-based approaches to categorization (Anderson 
& Betz, 2001).  This paper describes two groups of 
ACT-R models of a common task.  One set is 
exemplar-based while the other is rule-based.  The 
results of this paper support the notion that exemplar-
based theories and rule-based theories are largely 
commensurable. 
 
Two groups of ACT-R models of a categorization task 
are compared.  The task was to categorize four types of 
facilities depicted in simulated satellite images.  Each 
facility type corresponded to one category; the terms 
facility type and facility category will be used 
interchangeably, hereafter.  Each facility type was 
defined in terms of the probabilities of the presence or 
absence of various facility features, none of which 
were unique to any facility.  Human participants were 
trained to learn the facility categories by studying 
multiple examples of each.  One group of ACT-R 
models learned the categories by storing the 
(declaratively represented) examples in memory (i.e., 
exemplar models).  The models in the other group were 
provided with explicit rules that were supplied to the 
models a priori.   

 
Within each group of models, there were versions of 
the model that attended to different features in the 
examples; in the case of the exemplar models, these 
versions corresponded to different ACT-R memory 
retrieval mechanisms (partial matching and spreading 
activation).  The purpose of this modeling effort was to 
compare the performance of rule-based ACT-R models 
of categorization to exemplar-based ACT-R models of 
the task described.  The fact that this effort was 
successful has interesting implications beyond this 
specific project as it provides evidence for the general 
commensurability of exemplar and rule-based theories 
of categorization. 
 
1.1 Category Learning 

 
There are many distinct theories of category learning.  
Most fall into three main groups: rule-based theories 
(Goodman, Tenenbaum, Feldman & Griffiths, 2008), 
prototype theories (Rosch, 1973), and exemplar 
theories (Nosofsky, 1986).   
 
Rule-based theories are committed to the ability of 
categorizers to identify the category of an object (or an 
abstract concept) by testing it against one or more 
rules.  Rules typically take an if/then form whereby the 
object is deemed to be a member of a category (or, is 
ruled out) if it satisfies the ‘if’ conditions of one or 
more rules.  Rule-based theories, such as RULEX, can 
include the possibility of exceptions (Nosofsky & 
Palmeri, 1995; Nosofsky, Palmeri & McKinley, 1994; 
Palmeri & Nosofsky, 1998) and/or probabilistic 



category assignment (Goodman et al., 2008).  The rule-
based ACT-R model discussed below employs rules to 
determine the probabilities that an unlabeled facility is 
a member of each of four possible categories. 
 
Prototype theory postulates that learned categories are 
represented, mentally, by prototypes.  The membership 
of an instance to a category is determined by the 
agreement between the properties of the prototype and 
the properties of the instance.  Multiple-prototype 
theories allow for multiple prototypes for each category 
to accommodate non-linearly separable categories. 
 
Exemplar theories postulate that category instances 
(i.e., exemplars) are memorized individually.  Category 
assignment decisions are made by comparing a new 
instance to existing exemplars.  For example, the 
judged category can be the one belonging to the 
exemplar nearest (most similar) to the new instance 
(i.e., winner-take-all); alternately, the judged category 
can be based on a function of the combined distances 
from the new instance to each of the exemplars (e.g., 
least mean squared distance for each set of category 
exemplars).  Standard declarative memory retrieval in 
ACT-R would support a winner-take-all categorization 
process.  However, the exemplar-based ACT-R model 
discussed below makes use of a mechanism called 
blending, which allows all exemplars to contribute to 
categorization decisions.   

 
1.2 ACT-R Architecture 
 
ACT-R is a computational implementation of a unified 
theory of cognition (Anderson et al., 2004; Anderson & 
Lebiere, 1998).  It accounts for information processing 
in the mind via a set of task-invariant mechanisms, 
which are constrained by biological limitations of the 
brain.  It consists, primarily, of a set of modules, such 
as the declarative memory system (DM), and a 
production system.  Each module exposes a buffer, 
which contains a single chunk, to the rest of the 
system.  Each chunk is a member of a chunk type, and 
consists of a set of type-defined slots with instance 
specific values.  
 
Information is processed in ACT-R by the production 
system, which operates on the contents of the buffers.  
Each production consists of an if-then condition-action 
pair.  Conditions are typically criteria for buffer 
matches, while the actions are typically changes to the 
contents of buffers or actions that trigger operations in 
the associated modules (e.g., the recalling of a 
memory).  The normal process sequence for a model is 
to loop through probabilistically selecting an eligible 
production to fire and executing its effects on the 
system until no production matches the state of the 
system, causing the model to stop.  The production 
with the highest net utility (after the effects of noise are 

factored in) is selected to fire from among the eligible 
productions.   
 
When a retrieval request is made to declarative 
memory, the single most active matching chunk is 
returned.  Chunk activation is computed as the sum of 
base-level activation, spreading activation, mismatch 
penalty and stochastic noise (see figure 1).  Spreading 
activation is a mechanism that propagates activation 
from the contents of buffers to declarative memory 
proportionally to their strength of association.  The 
consequence of this is that chunks in DM that share 
content with chunks in buffers will have an increased 
probability of being recalled irrespective of degree of 
match.  Partial matching is a mechanism that allows for 
chunks in memory that do not perfectly match a 
retrieval request to be recalled if their activation 
overcomes a similarity-based mismatch penalty.   
 

!! =   !! +   !! +   !! +   Ɛ! 
Figure 1. The chunk activation formula in ACT-R. Ai is the 
net activation, Bi is the base-level activation, Si is the effect of 
spreading activation, Pi is the effect of the mismatch penalty, 
and Ɛi is magnitude of stochastic noise. 

 
An advanced memory retrieval mechanism, called 
blending, differs from standard retrieval in that all 
chunks in DM that match the retrieval request 
specification are blended together to create a new 
chunk, which is retrieved (Lebiere, 1999).  This 
mechanism allows for exemplar categorization models 
similar to those described in Shi et al. (2010), to be 
created in ACT-R.  These models obey the Luce choice 
axiom (see figure 2; Luce, 1959), where the weight of 
each exemplar is based on a similarity metric.  The 
default similarity metric is to compare chunk slot 
values.  In the case of the models discussed in this 
paper, this amounts to comparing the occurrences of 
facility features (discussed below). 
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Figure 2. Luce choice axiom.  The probability that option i is 
selected is relative to the weighted sum of the pool of options 
j. 

 
2 Facility Identification Task 
 
Experimental participants were trained to identify four 
kinds of facilities in simulated geospatial images.  Each 
image is of a single facility (e.g., factory complex) that 
is composed of a collection of discrete features (e.g., 
buildings) drawn, probabilistically, from three distinct 
categories.  The three categories of features were: 
IMINT (image intelligence), representing buildings and 
other terrain features such as roads and rivers; 
MASINT (measurement and signature intelligence), 
representing signals such as chemical concentrations or 



radiation etc.; and, SIGINT (signals intelligence), 
representing communication transmissions.  There 
were nine unique IMINT features, seven that 
represented buildings, and two that represented water 
features.  In contrast, there were only two kinds of 
MASINT features, while the SIGINT features were 
entirely homogeneous.  Each IMINT could appear at 
most one time in each image, whereas multiple 
instances of SIGINT and each MASINT could occur in 
each image.  Additionally, each building (IMINT) 
could have one piece of rooftop hardware attached to 
it, or not.   
 
The four facilities were defined by different 
probabilities for the occurrences of each of the possible 
features.  In the case of the IMINT features, these 
probabilities simple defined the likelihood of the 
feature occurring in an instance of the given facility.  In 
the case of MASINTs, SIGINTs, and rooftop hardware 
the probabilities defined the likelihoods of few or many 
instances of the feature.   
 
The experiment was divided into two main phases: a 
training phase and a testing phase.  In the training 
phase the participants were presented with 48 
annotated examples of each facility (192 total 
examples), 16 at a time (in a four by four grid).  
Participants were not limited in how long they could 
study the images.  Training time ranged from 8 minutes 
to 73 minutes (mean 24 minutes).  In the testing phase 
the participants were presented with single unlabeled 
images, one at a time.  For each image, the participant 
was required to report a probability distribution over 
the four possible facilities indicating the likelihood that 
the image contained each of the facilities. 
 
3 ACT-R Models 
 
This paper is devoted to comparing and contrasting the 
performance of ACT-R models of the facility 
identification task.  The main comparison is between 
models that instantiate an exemplar theory account of 
category learning and models that instantiate a rule-
based account.  In common to all the models discussed 
below are the following details. 
 
The testing phase in the simulations consisted of the 
presentation and categorization of 300 simulated 
images of unknown facilities.  For each presentation, 
the ACT-R model holds an instance of a facility frame 
representing the current facility under examination in 
the imaginal buffer, which corresponds to the parietal 
lobe of the brain (Anderson, 2007).  The facility chunk-
type defines a slot for the facility type, a slot for the 
total number of IMINTs in the image, a slot for the 
total SIGINTs, one slot each for the totals of two kinds 
of MASINT, a slot for the total number of pieces of 
rooftop hardware on buildings in the image, and one 

slot for each of the nine kinds of IMINT.  Each IMINT 
slot stores a chunk representing the presence of that 
IMINT or is left empty.  There were an average of 5.05 
IMINT features per facility instance. 
 
Three related concepts are used almost interchangeably 
in this paper: facility chunk, facility frame, and facility 
exemplar.  A facility chunk is an ACT-R representation 
of a facility instance.  Facility exemplars are 
represented as chunks in declarative memory.  The 
term facility frame is used to refer to schematic 
structure of a facility and is used in the context of 
maintaining a facility in an ACT-R buffer. 
 
3.1 Exemplar Models 
 
During the training phase the annotated images are 
imported into the declarative memory of the model one 
at a time.  For each image, the model temporarily holds 
a facility frame in working memory by populating the 
imaginal buffer with appropriate chunk representations 
of the features present in the image.  Once filled, the 
imaginal buffer is cleared and the facility chunk is 
committed to memory (DM).   
 
During the testing phase, images are presented to the 
model one at a time.  The model performs a blended 
retrieval request of DM for a facility frame chunk 
based on some information available in the images.  
The facility slot value of the blended chunk is used as 
the model’s answer to the identification question.  The 
model is able to assign probabilities to each category 
by converting the activations of all exemplar chunks of 
each category to an aggregate probability using the 
ACT-R Probability Retrieval (Boltzmann) Equation 
(see figure 3).  Note that the Boltzman equation below 
is equivalent to the Luce choice axiom (shown above in 
figure 2), where w = eA/s. 
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Figure 3. Boltzman equation controlling the probability 
(Pi) that chunk i with activation Ai is retrieved relative 
to the activation levels of all of eligible chunks (j). The 
s parameter reflects chunk activation noise. 
 
Two distinct retrieval mechanisms could apply to the 
recall of facility frames.  They are partial matching and 
spreading activation.   
 
3.1.1 Partial Matching Model 
 
The partial matching version of the ACT-R model uses 
only the slots that store the counts of the various 
feature types (and hardware) as part of the retrieval 
request.  This model represents a participant who is not 
attentive to the particular buildings that are present in a 
test image.  When classifying a facility image, the 



model compares the feature counts in the image to the 
counts in facility chunks in DM (see figure 4).  
 
The effect of partial matching is that the model is able 
to make similarity-based inferences in making facility 
discriminations.  By limiting the model to representing 
only the numbers of each feature type, this similarity-
based inference mechanism is fruitful only if there is a 
statistically significant difference in the distribution of 
feature totals for the different facilities.  Our results 
show that such a statistical relationship exists.   
 

 
Figure 4. Green circles indicated perfect matching slots 
values; yellow circles indicated good matches; and, red 
circles indicate poor matches. 
 
The ACT-R model making use of partial matching only 
was able to correctly identify the facility in each test 
sector 46.2% of the time, on a cross-validated 
80%/20% training/testing split of the 300 sample 
scenes.  The confusion matrix (see Table 1) listing the 
probability of classifying an instance of a given facility 
type as any of the four facility type options shows a 
pattern dominated by confusion between facilities A 
and C, and B and D. 
 
Table 1 
Confusion matrix for partial matching model 
Facility A B C D 

A .559 .090 .274 .077 
B .077 .490 .116 .316 
C .356 .124 .375 .145 
D .108 .288 .180 .424 

 
3.1.2 Spreading Activation Model 
 
The spreading activation version of the model ignores 
the feature counts; instead, the IMINT features in the 
imaginal buffer form the context of retrieval.  The 
model assembles a facility frame in the imaginal buffer 
using chunks representing the IMINT features present 
in the image.  Each feature spreads activation to facility 
chunks in DM that include the feature to a degree 
inversely proportional to the logarithm of the number 
of chunks including that feature (see figure 5), a 
phenomenon known as the fan effect (Anderson, 1974; 
Rutledge-Taylor & West, 2008; West et al. 2010).  
This model represents a participant who is solely 
focused on the particular buildings in the image.  When 
the request for a facility chunk from DM is made, 

chunks that share IMINT features in common with the 
image will get a boost in activation, increasing the 
probability that they will be retrieved.   
 

 
Figure 5. Frames that share features in common with the 
context in the imaginal buffer receive a boost in activation. 
 
Performance of the spreading activation version of the 
model was better than the partial matching version.  It 
was able to correctly identify the facility 65.5% of the 
time, on a cross-validated 80%/20% training/testing 
split of the data. The pattern of individual confusion 
probabilities (see Table 2) reflects the overlap between 
the features likely to belong to each facility, as well as 
the fact that the number of features increases from 
facility A to B, C and D, leading to more spreading 
activation for the latter. 
 
Table 2 
Confusion matrix for spreading activation model 
Facility A B C D 

A .585 .017 .247 .151 
B .006 .635 .061 .297 
C .065 .062 .585 .287 
D .025 .108 .054 .813 

 
3.1.3 Combined Model 
 
A third version of the model, referred to as the 
combined model, which uses both partial matching 
over feature counts and spreading activation from 
IMINT features, was created.  In this model, frames 
include slots for both the feature totals, and for each 
IMINT feature individually.  The count slots are used 
as retrieval cues (partial matching), while the IMINT 
features are used as retrieval context (spreading 
activation).  Performance on this was somewhat better 
than for either model alone.  It was able to correctly 
identify the facility 72.0% of the time, on a cross-
validated 80%/20% training/testing split of the data.  
The confusion matrix is presented in table 3 and 
displays uniformly good performance. 
 
Table 3 
Confusion matrix for combined model 
Facility A B C D 

A .719 .013 .177 .090 
B .006 .716 .074 .203 
C .065 .058 .691 .185 
D .035 .133 .079 .753 



 
3.1.4 Blending 
 
By default in ACT-R, a retrieval request to declarative 
memory produces the single chunk representing the 
frame with the greatest net activation.  An exemplar-
based model using standard retrieval would be a 
winner-take-all categorization model.  However, we 
hypothesize that the experimental participant is not 
making the facility identification judgment based on 
the single exemplar in memory that best matches the 
set of features in the target sector.  Rather, every 
exemplar in memory should contribute to the 
categorization decision.  The relative contribution of a 
chunk is a function of its base-level activation, partial 
matching and spreading activation.  The blending 
mechanism creates a new chunk of the requested 
chunk-type that is an aggregate of all the exemplars in 
memory.  The value for each of the new chunk’s slots 
is that which is the best compromise value amongst all 
the values occurring in all the exemplars, weighted by 
the activation strength of the exemplars.  The blended 
facility category slot value corresponds to the model’s 
categorization decision. 
 
The outcome of blending is somewhat different than 
generating a prototype in that the relative contribution 
of each exemplar is based on its activation, which is 
affected by the specific retrieval cues (i.e., the specific 
features present in the facility to be identified).  
Additionally, there are no persistent prototypes in DM.  
This is why we consider these models to implement 
exemplar-based categorization.  However, a case can 
be made that this could be considered a kind of 
dynamic multiple-prototype learning, if the persistence 
of prototypes is not necessary. 
 
3.2 Rule-based Models 
 
The ACT-R models of rule-based category learning 
presented in this paper were created as a proof of 
concept that a particular choice of rule representation 
would be effective in producing categorization 
accuracy approximately equal to, or better than, the 
exemplar-based ACT-R models.  As such, the models 
do not learn the categorization rules.  Rather, optimal 
rules were assigned to the models.  Each rule specified 
a layer type, the facility to which the rule applied, a 
multiplicative likelihood factor, and either a single 
IMINT feature or in the case of rules about countable 
features (e.g., SIGINTs), a matching quantity.  The 
condition for the rule match is either the presence of a 
single IMINT feature, or a quantity of countable INTs.  
The multiplicative factors for the IMINT features were 
based on a statistical information gain measure for each 
feature.  The count rule factors were estimated, and 
parameterizable.  An additional parameter of the model 
was the degree of permissible mismatch between the 

number of count features specified in a rule and the 
count in the facility to be identified.  For example, the 
rule chunk, (s1 isa rule layer sigint category a value 4.8 
factor 3), encodes the rule that the posterior probability 
of the unknown facility being of category A is three 
times greater than the prior probability if the facility is 
within a threshold difference of 4.8 SIGINT features.  
The threshold and factors were manipulated 
experimentally.  However, a broad range of thresholds 
and factors results in near ceiling performance in 
model accuracy. 
 
The models maintained probabilities for each facility 
category in the goal buffer, and adjusted these 
probabilities according to the multiplicative factors 
encoded in all the rules matching the contents of the 
sector under examination.  For each sector to identify, 
the model applied all of the applicable rules to produce 
a final probability distribution.  The facility assigned 
the highest probability was interpreted as the model’s 
forced choice response for accuracy evaluation. 
 
4 Results and Discussion 
 
The performance profiles of the rule-following models 
were largely parameter-invariant.  As such, the results 
for the various combinations of parameters will not be 
reported; rather, the results presented below reflect the 
single set of parameters that best matched the accuracy 
results of the exemplar-based ACT-R model.  The 
count mismatch threshold was 30% (over or under the 
value specified in the rule), the IMINT rule 
multiplicative factor was 1.2, the SIGINT factor was 
3.0, the MASINT factor was 3.0, and the hardware 
count factor was 1.2.  Table 4 summarizes the relative 
accuracies of the exemplar-based and rule-based ACT-
R models. 
 
Table 4 
Comparison of Rule-Based and Exemplar Models 
 Rule-Based Exemplar 

PM .476 .462 

SA .657 .655 

Both .755 .720 

 
The version of the rule-following model analogous to 
the partial matching version of the statistical learning 
model only applied rules that pertained to object 
counts.  It scored a 47.6% accuracy rate in categorizing 
unseen sectors, compared to the 46.2% rate of the 
exemplar model.  Another version of the rule-following 
model analogous to the spreading activation model 
only applied rules about the presence of specific 
IMINT features.  It scored an accuracy rate of 65.7% 
compared to 65.5% for the exemplar model.  The rule-
following model that applied all rules scored 75.5%, 



while the exemplar model that attended to counts as 
well as specific IMINTs scored 72.0%. 
 
The agreement between the exemplar learning ACT-R 
model and the rule-following ACT-R model support 
the hypothesis that the rules created for the rule 
following model captured the same information learned 
by the exemplar learning model.  We hypothesize that 
this is the case because both the exemplar models and 
rule-based models maximally exploit the information 
that can be extracted from the data given the parallel 
limitations imposed of the models. 
 
Human experimental participants scored a mean 
accuracy of 53.5%.  In post-experiment interviews it 
was revealed that some participants were explicitly 
aware of the relationships between feature counts and 
facility categories.  However, Given that they 
outperformed the partial matching models, it is likely 
that they were also able to detect correlations between 
specific IMINTs and facility categories.  These 
correlations would have to be applied in an incomplete 
or imperfect manner as the human participants scored 
less than the predicted 72% (or better) accuracy of the 
combined model.  An intriguing possibility is that the 
participants employed a strategy of augmenting an 
exemplar-based IMINT feature representation with the 
application of explicit feature count rules.   
 
Experimental evidence suggests that exemplar theories 
and rule-based theories can make similar predictions, 
with each accounting for different phases of concept 
learning (Rouder & Ratcliff, 2006).  Exemplars are be 
relied upon initially; rules are then inferred from the 
data; and finally, some exemplars are retained to 
account for rule exceptions.  See Anderson & Betz 
(2001) for an account of how exemplar-based and rule-
based models can be combined to produce 
classification behavior. 
 
The performance equivalence between the two groups 
of models establishes that functional Bayesian 
inference can be accomplished in ACT-R either 
through explicit, rule application or through the 
implicit, subsymbolic processes of the activation 
calculus, that support the exemplar model.  This should 
be expected as the semantics and learning mechanisms 
of the subsymbolic system in ACT-R is fundamentally 
Bayesian in nature (Anderson, 1990; 1993).  Elsewhere 
it is argued that exemplar models, interpreted as 
performing importance sampling, provide a plausible 
mechanism for implementing Bayesian inference (Shi, 
et al., 2010).  This further supports the notion that the 
blending mechanism of ACT-R, necessary for the 
current exemplar model, is a cognitively sound 
alternative to standard memory retrieval in ACT-R.  
 

The comparison of the sets of functionally equivalent 
models described in this paper is significant as it 
provides a principled quantitative comparison between 
two theoretically distinct accounts of categorization.  
When implemented in a cognitive architecture that 
obeys a variety of meaningful constraints the two 
theories, exemplar-based and rule-based, produced 
equivalent results.  We do not interpret this outcome as 
supporting one theory over another.  Rather, we take it 
to be a lesson when building models that incorporate a 
categorization component.  Specifically, we let the task 
dictate whether a rule-based or exemplar-based account 
is most appropriate, rather than a preconceived notion 
about how categorization ought to be done cognitively. 
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