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Abstract 

Associative learning is a mechanism ubiquitous throughout 
human and animal cognition, but which is absent in ACT-R 6. 
Previously, ACT-R 4 had implemented a Bayesian learning 
algorithm which derived the strength of association between 
two items based on the likelihood that one item was recalled 
in the context of the other (versus being recalled outside of 
this context). This algorithm suffered from asymmetries 
which tended to lead all associations to become strongly 
inhibitory the longer a model ran. Instead, we present a 
Hebbian learning algorithm inspired by spiking neurons and 
the Rescorla-Wagner model of classical conditioning, and 
show how this mechanism addresses asymmetries in the prior 
Bayesian implementation. In addition, we demonstrate that 
balanced learning of both positive and negative associations 
is not only neurally- and behaviorally-plausible, but has 
benefits in both learning and in constraining representational 
complexity. This is demonstrated using a simple model of list 
learning derived from Anderson et al. (1998).  

Keywords: cognitive architectures; Hebbian learning; 
associative learning; representation; list learning 

Introduction 

Associative learning occurs when a relationship is formed 

between two possibly-unrelated items that are presented in a 

close temporal proximity. This kind of learning is flexible 

and experience-driven, and is implicated in many major 

cognitive phenomena such as classical and operant 

conditioning (Rescorla & Wagner, 1972), context sensitivity 

(Wickelgren, 1969), sequence learning (Gheysen & Fias, 

2012), and expectation-driven learning (Lukes, Thompson, 

& Werbos, 1990). It is describable as both a micro (e.g., 

neural specialization) and macro (e.g., behavioral 

conditioning) function of both human and animal cognition.  

Despite being an essential element of many basic 

cognitive functions, associative learning is not currently 

implemented in recent versions of cognitive architectures 

such as Soar (Laird, 2012) and ACT-R 6 (Anderson et al., 

2004). Previously, ACT-R 4 (Anderson & Lebiere, 1998) 

had implemented Bayesian-inspired associative learning 

which derived the strength of association between two items 

based on the likelihood that one item was recalled in the 

context of the other (versus being recalled outside of this 

context). This implementation, however, suffered from 

some asymmetries which led to issues with stability.  

We argue that difficulties in balancing the Bayesian-

inspired learning were due to the asymmetry in log-

likelihood calculations and by deriving associative strength 

from a global variable such as the number of times an item 

was recalled. Instead, we present an associative learning 

algorithm derived from both neural evidence from spiking 

neurons (Caporale & Dan, 2008) and behavioral evidence 

from the Rescorla-Wagner (1972) model of classical 

conditioning.  

For the remainder of this paper, we will provide an 

overview of the neural and behavioral evidence used to 

derive our associative learning algorithm, argue how this 

algorithm avoids the instabilities of ACT-R 4’s Bayesian 

algorithm, and present a sample ACT-R model using 

associative learning in a list learning paradigm. 

Neural Evidence (AKA: the Micro Level) 

At the micro level, associative learning is the process by 

which neuronal firing patterns are specialized, such that 

neurons that fire together, wire together (Hebb, 1949). In its 

simplest form, hebbian learning can be described by:  

(1)              

where Sij is the synaptic strength of the connection between 

an input neuron i and output neuron j, and xi and xj  are the 

inputs to i and j (Hebb, 1949). When both i and j are active 

together in a given temporal window, Sij is strengthened.  

While this simple hebbian rule is unstable due to a lack of 

mechanisms to control for weakening of connections or to 

set a maximum state of activation (e.g., a softmax function; 

Sutton & Barto, 1998), several variants such as Oja’s rule 

(Oja, 1982) and the generalized hebbian algorithm (Sanger, 

1989) have addressed these issues to provide a stable 

learning rule across multiple output neurons: 

(2)           (        ∑      
 
   ) 

where Sij is the synaptic strength of the connection between 

neurons i and j, and xi and xj  are the vectors of i and j, and   

is the learning rate.  

More recently, improvements in measuring techniques 

have found evidence that the timing of the pre-synaptic 

input neuron i and post-synaptic output neuron j firings 

influence whether the likelihood of j firing in the presence 

of i increases (hebbian learning) or decreases (anti-hebbian 

learning). More specifically, when the pre-synaptic neuron 

fires just before (5 - 40ms) the post-synaptic neuron then 

their association is strengthened, whereas if the post-

synaptic neuron fires just before the pre-synaptic neuron 

then their association is weakened (Bi & Poo, 1998; Dan & 

Caporale, 2008). This timing creates a neurally-driven 

temporal coding (Gerstner et al., 1999), and has been 

experimentally reproduced in human hippocampal cells 

(Lamsa et al., 2007; Wittenberg & Wang, 2006). While an 

understanding of the mechanisms of spike-timing is 

incomplete, the flow of calcium at voltage-specific calcium 

channels and NMDA receptors at the post-synaptic neuron 

are a consistent finding amongst researchers, with the same 

receptors triggering both hebbian and anti-hebbian learning. 



Behavioral Evidence (AKA: the Macro Level) 

At the macro level, associative learning occurs when a 

stimulus is reliably paired with another stimulus or 

behavior. In terms of classical conditioning, an association 

is formed when a neutral stimulus is reliably paired with an 

unconditioned stimulus which produces a response. 

Eventually the neutral stimulus alone is able to elicit the 

response, at which point it is considered a conditioned (i.e., 

learned) stimulus. In the canonical example, when Pavlov 

rang a bell (a neutral stimulus) just before feeding his dogs 

(an unconditioned stimulus) then the dogs would salivate (a 

response). He discovered that the dogs began to salivate 

before receiving the food, and determined that the dogs had 

learned to associate the previously-neutral act of ringing the 

bell (now a conditioned stimulus) with the imminent 

presentation of food. Further research determined that the 

conditioned stimulus predicting the unconditioned stimulus 

drove learning, rather than simply their co-occurrence. 

Much like the shift in thinking from Hebbian learning to 

timing-dependent spiking neurons, Chang, Stout, and Miller 

(2004) varied whether a conditioned stimulus was presented 

either before (forward conditioning) or after (backward 

conditioning) an unconditioned stimulus. Similar to the 

spiking neuron account, in the forward conditioning trials, 

the conditioned stimulus tended to be positively associated 

with the unconditioned stimulus, whereas in the backward 

conditioning trials the conditioned stimulus tended to be 

negatively associated with the unconditioned stimulus.  

Computational models of classical conditioning are a 

common macro-level application of associative learning. 

Perhaps the most well studied implementation is the 

Rescorla-Wagner model (1972), which is based on the 

following equations: 

(3)       
        (        ) 

(4)        
       

      
    

where ∆Sx is the change in strength of the association, αx is 

the salience of the conditioned stimulus, β is the salience of 

the unconditioned stimulus, γ is the maximum amount of 

learning that can occur, and Stotal is the total associative 

strength of all conditioned stimuli. Learning is proportional 

to the degree that the conditioned stimulus predicts the 

unconditioned stimulus, which is set by the salience 

parameters. Thus, when there is no prediction error (i.e., no 

violation of expectation) the salience of the unconditioned 

stimulus is low, and no significant learning occurs. 

However, there is no a prioi justification to initially set 

saliences other than to tune them to fit data patterns. Thus, 

the model is effectively explanatory rather than predictive. 

In summary, at the behavioral level associative learning 

allows humans to predict outcomes based on prior 

experience, with learning mediated by the saliency of the 

stimuli and the mismatch between the predicted outcome 

and the actual result. There is also a strong analogy between 

forward and backward conditioning with the balanced 

hebbian and anti-hebbian learning seen in spiking neurons. 

We argue that an associative learning algorithm should be 

consistent with these balanced timing-based approaches.  

The ACT-R Architecture 

ACT-R is a computational implementation of a unified 

theory of cognition which accounts for information 

processing in the mind via task-invariant mechanisms 

constrained by the biological limitations of the brain. ACT-

R 6 includes declarative memory and perceptual-motor 

modules connected through limited-capacity buffers. Each 

module exposes a buffer, which contains a single chunk, to 

the rest of the system. A chunk is a member of a specific 

chunk type, and consists of a set of type-defined slots 

containing specific values. 

The flow of information is controlled by a procedural 

module which is implemented by a production system. 

Modules process information in parallel with one another. 

For instance, the visual and motor modules may both 

operate at the same time. There are two serial bottlenecks: 

1) only one production may execute during a cycle; and 2) 

each module is limited to placing a single chunk in a buffer.  

Each production consists of if-then condition-action pairs.  

Conditions are typically criteria for buffer matches, while 

the actions are typically changes to the contents of buffers 

that might trigger operations in the associated modules. The 

production with the highest utility is selected to fire from 

among the eligible matching productions. Production 

utilities are learned using a reinforcement learning scheme.  

When a retrieval request is made to declarative memory 

(DM), the most active (highest Ai) matching chunk is 

returned according to the following function: 

(5)                      

where activation Ai is computed as the sum of base-level 

activation (Bi), spreading activation (Si), partial matching 

(Pi) and stochastic noise (εi). Spreading activation 

propagates activation from the contents of buffers to 

declarative memory proportionally to the strength of 

association between buffer contents and memory chunks. 

Partial matching allows for chunks in memory that do not 

perfectly match a retrieval request to be recalled if their 

activation overcomes a similarity-based mismatch penalty.  

Bayesian Associative Learning in ACT-R 4 

Associative learning was deprecated in ACT-R due to a lack 

of scalability in spreading activation as the number of 

chunks in a model increased and as new productions fired 

(i.e.,  new contexts generated). The reason for this was that 

the Bayesian associative learning algorithm would render 

larger and longer-running models unstable. In ACT-R 4, the 

strength of association (Sji) represented the log-likelihood 

that chunk Ni was relevant given context Cj: 

(6)       (
 (     )

 (  ̅̅ ̅   )
)   

 (  )

 (  ̅̅ ̅)
 ∏

 (     )

 (     ̅̅ ̅)
   

When Cj is usually not in the context when Ni is needed, 

 (     ) will be much smaller than  (  ̅   ) and the Sji will 

be very negative because the log-likelihood ratio will 

approach 0 (see Figure 1). In a long-running model with 

many chunks, these chunks may have been recalled many 

times without being in context together, leading to strongly 

inhibitory Sji. 



 
Figure 1. The Influence of Retrieval Context on Sji 
 

Once a connection between chunks j and i was made, the 

initial Sji was set by the following equation: 

(7)            (  ⁄ ) 

where m is the total number of chunks in memory and n is 

the number of chunks which contain the source chunk j. 

This ratio is an estimation of the likelihood of retrieving 

chunk i when j is a source of activation. Unconnected 

chunks were set at 50% likelihood because, before Cj 

appears in a slot of Ni, the total probability of retrieving a 

chunk unconnected to Cj is 0 (Sji → -∞).  

As can be seen from Equations 6 and 7, given sufficient 

experience or sufficient numbers of chunks in the model, Sji 

will become increasingly and unboundedly negative as more 

chunks are learned and more unique contexts experienced. 

This is a direct result of Sji reflecting the statistics of 

retrieval of chunk j given that source i is in the context. The 

issue is with the ratio-driven global term (Cj) which alters Sji 

values for a chunk whenever a new chunk is added and/or 

production fires, which means that learning an unrelated fact 

causes all existing associations to weaken. This effect is 

further magnified by the log-likelihood calculation which 

penalizes the inevitable low context ratio. 

Spreading Activation Rule in ACT-R 6  
Due to the abovementioned issues with stability, associative 

learning was deprecated in ACT-R 6 and a spreading 

activation function was implemented that does not learn 

activation, but instead spreads a fixed amount of activation: 

(8)                (     ) 

where smax is a parameterized fixed spread of association 

(replacing the m term from the previous equation), and fanji 

is the number of chunks associated with chunk j (the n 

term). More specifically, fanji is the number of times chunk j 

is a slot value in all chunks in DM and represents the effect 

of interference. It is important to note that under this 

definition, activation is only spread symbolically by 

overlapping slot contents, and not due to experience.  

With a default smax usually between 1.5 and 2 (Lebiere, 

1999), a given chunk can appear as a slot value in 6 chunks 

before its strength becomes inhibitory (see Figure 2). In the 

context of modeling a single session psychology experiment 

this may be reasonable, but if ACT-R is used to model long-

term knowledge effects, then the Sji term will become 

inhibitory for most commonly-used chunks. One solution 

(applied after a version of this argument was presented at 

the ACT-R 2012 Workshop) was to institute a floor of zero 

activation to the strength of association. 

 
Figure 2. The Influence of Fanji on Strength of Association 
 

Another difficulty is that spreading activation has no 

mechanism to chain together sequences of events due to the 

fact that a source chunk in a buffer only spreads activation 

to target chunks in DM which match slot values in source 

chunk’s contents (i.e., the chunk tree with slot values 

branches and green only spreads activation to the chunks 

branches and green in DM). Due to this limitation, it is very 

difficult to chain together sequences of retrievals without 

including additional slots with contextual and/or indexical 

information. Furthermore, since there is no learning of 

associations, it is up to the modeler (as opposed to the 

architecture) to determine the nature of the indexical/ 

contextual information. Finally, fanji is a global term (i.e., it 

changes based on adding new chunks to the model) thus 

changing the Sji between two chunks without either chunk 

ever being retrieved. For these reasons, we argue that such 

contextual information should be implicit, sub-symbolic, 

and driven by experience; rather than be explicit and 

symbolic as is currently implemented in ACT-R 6. 

A Balanced Associative Learning Rule 

As previously discussed, associative learning is ubiquitous  

in both human and animal cognition, and serves as a kind of 

statistical accumulator which is applicable at both the micro 

(neural) and macro (behavioral) level. In abstracting away 

this essential learning mechanism, we are losing out on the 

exact kind of human-model comparisons that might lead to 

more general models of learning (as opposed to task-

specific models). Perhaps, it is in part for this reason that 

ACT-R (and other architectures) have had their generative 

power limited due to a lack of newer, more complex models 

being built from successful extant models (ACT-R 

Workshop, 2012). To reconcile the difficulties in prior 

implementation of associative learning, we will now present 

an associative learning algorithm inspired by spiking 

neurons and models of classical conditioning.  

The major issues with ACT-R 4’s Bayesian associative 

learning rule were the reliance on asymmetric log-



likelihoods and the fact that context (Cj) was a global term 

which altered Sji whenever a new chunk was created and 

whenever a production fired. Low log-likelihoods become 

strongly inhibitory, and the generation of context-based 

ratios necessitates low likelihoods in a long-running model. 

An alternative framework is to eliminate the ratio function 

and remove the global nature of the context term, while also 

moving away from of probability-based algorithm.  

By switching to a frequency-based algorithm, it is 

possible to reshape the range of Sji values and make Sji 

independent of changing global context. Learning, rather 

than being a global property of the system, is now a local 

property based on co-occurrence and sequential 

presentation. As previously discussed, our algorithm is 

influenced by time-dependent spiking neurons and timing-

dependent forward and backward conditioning. Unlike 

traditional Hebbian implementations which simply give a 

bump to association so long as the pre-synaptic and post-

synaptic neurons both fire within a given temporal window, 

with spiking neurons, if the pre-synaptic neuron fires before 

the post-synaptic then the association is strengthened (long-

term potentiation; LTP). Conversely, if the post-synaptic 

neuron fires before the pre-synaptic then the association is 

inhibited (long-term depression; LTD).  

This theory of neural plasticity was adapted to our 

modeling approach by assuming that the set of chunks (and 

their contents) in all ACT-R buffers at the time a request is 

initiated (such as a declarative retrieval) act analogously to 

pre-synaptic firings, and the set of chunks in the buffers at 

the time the request is completed is analogous to post-

synaptic firings. In behavioral terms, the requested chunk is 

analogous to the conditioned stimulus, the set of chunks at 

the time the request is initiated are analogous to the 

unconditioned stimuli, and the set of chunks at the time the 

request is completed are analogous to the response. 

The Associative Learning Algorithm 

The associative learning algorithm is implemented as an 

ACT-R module which detects when a request is made to any 

module (by the request-detected event), stores the current 

context (i.e., state of chunks in all the buffers), and when the 

request is fulfilled (by a scheduled set-buffer-chunk event) 

learns a positive association between the chunks at the time 

the request is initiated and a negative association between 

the chunks at the time the request is completed. Note this 

learning may not be on the next production fired (as 

requests may span the time-course of several productions), 

thus the context may be markedly different. Furthermore, 

the chunks in the buffer must be a match (i.e., equal-chunks) 

to a chunk already existing in DM in order to be a source. 

Associations are by default buffer-specific, thus an object 

only experienced by the visual buffer would only spread 

activation when in the visual buffer, and not if the same 

object were moved to the imaginal buffer. This buffer-

specificity is important for neural plausibility and to 

distinguish chunks as being cues from extrinsic (e.g., 

sensory) and intrinsic (e.g., memory) sources. Furthermore, 

associations are learned asymmetrically (Sji ≠ Sij). 

Formally, the strengths of association are learned 

according the following algorithm: 

(9)         (     
     

)   (     
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where Sji are the strengths of association between contextual 
chunks j and the successfully requested chunk i,   is a 
learning rate parameter,  (     

   
) is the context of chunks 

  
   

 at the time of the retrieval request for chunk Ni, and 

 (     
    

) is the context of chunks   
    

 after chunk Ni  
has been retrieved. Context is defined as the set of valid 
chunks in each of ACT-R’s buffers. 

When a request is initiated the chunk in the requested 

buffer is cleared. An important modeling decision was to 

include the successfully requested chunk in its post-request 

context. Thus a chunk learns to be self-inhibitory. We argue 

that this self-inhibition, while seemingly unintuitive, is 

actually a relevant and necessary mechanism to account for 

local refractory periods in neural firings and for driving 

expectation-driven behavior. Self-inhibition and forward-

chaining positive association have the effect of inhibiting 

the current context and spreading activation to the next 

experienced context, thus driving a form of temporal 

sequencing between requests. This feature is essential for 

expectation-driven learning (such as that needed in sequence 

learning paradigms) and provides an implicit measure for 

traversing a list in serial recall paradigms without the need 

for extraneous contextual/ indexical markers.  

 The learning rate parameter controls the maximum 

strength of association by introducing an interference-based 

squashing mechanism, as opposed to a decay-based 

mechanism such that seen as in base-level activation. At 

each learning step (i.e., at each completed request), the 

equation is updated by squashing the prior Sji by the 

learning rate before adding a positive and/or negative 

increment. At a value of .85, the maximum Sji is 

approximately 6.6 per source, which is similar to the 

practical maximum of the base-level activation equation. In 

practice, the Sji values should not be so high.   

Much like the base-level activation equation, Sji are by 

default incremented or decremented by a value of 1; 

however, when j is a slot value of a chunk in a buffer, then 

the increment/decrement is divided by the number of valid 

slots in the buffer’s chunk (i.e., slots whose values match 

chunks in DM). Thus, by having more slots in a target 

chunk, ΔSji is reduced. It is possible, by having a chunk with 

many slots, to reduce the Sji between a strongly associated 

slot and the retrieved chunk even during a positive 

association (due to the squashing influence of the learning 

rate). Thus, it is important to mediate the number of 

extraneous slots to not dilute the effect of learning. 

Note that only changes in context will have a net ΔSji due 

to the balanced positive and negative learning phase. That 

is, the only significant learning that occurs at a successful 

recall is where the contents of the buffers have changed 

between the initiation and completion of the request. In the 

module code, the negative learning is applied serially before 

the positive learning, which leads to a very small positive 



association between chunks that occur in both the pre and 

post context. This is due to the serial application of the 

squashing mechanism ( ), and leads to only a very small 

association (asymptotes at .54 after 30 – 50 presentations). 

While the balanced hebbian/anti-hebbian phase at each 

request is analogous to the positive and negative 

associations seen at both the neural and behavioral level, the 

learning rule is also similar to the Rescorla-Wagner rule 

(compare Equations 3 and 4 to Equations 9 and 10). 

Specifically, the strength of association in the Rescorla-

Wagner rule is derived by the salience of the conditioned 

and unconditioned stimulus, the learning rate, and the 

difference between the current and maximum level of 

activation. Our associative learning algorithm utilizes the 

learning rate to both determine the maximum strength of 

association and control the degree of learning (lower rates = 

slower learning and learning with a lower theoretical 

maximum). The salience parameters of Rescorla-Wagner 

are implicitly captured by the base-level activation of the 

source and requested chunks, in addition to any mismatch 

penalty driven by the difference between the requests chunk 

specification and the chunk successfully requested. 

Variants of Learning and Spreading Activation 

There are several variants of associative learning and 

spreading activation which may be enabled. It is possible to 

learn associations between elements in context and a 

successfully requested chunk: 1) from a chunk in a buffer 

(i.e., a context chunk) to the retrieved chunk (C-C); 2) from 

a chunk in a buffer (i.e., a context chunk) to the slots of the 

requested chunk (C-S);  3) from the slot of a context chunk 

to the retrieved chunk (S-C); and 4) from the slots of a 

context chunk to the slots of the retrieved chunk (S-S). In 

the case of S-C and C-S variants, the learning increment for 

each association is mediated by the number of valid slots in 

either the source chunk or the retrieved chunk’s slots, 

respectively (see Figure 3). In the S-S variant, the increment 

is mediated by both the number of slots in the source chunk 

and the number of slots in the retrieved chunk (thus 3 valid 

slots in source chunk j and 4 valid slots in retrieved chunk i 

will result in a learning increment of 1/12 per Sji).  

 
Figure 3. Hebbian (positive) and anti-Hebbian (negative) 

associative learning after the successful retrieval of ITEM2-

0 when ITEM1-0 was in the retrieval buffer at the time the 

retrieval was initiated. Solid lines represent S-C learning 

and dotted lines represent C-C learning. 

In the ACT-R 4 associative learning algorithm, only slot 

contents in the goal buffer were associated with the chunk in 

the retrieval buffer (i.e., S-C learning). Further testing of the 

mechanism will determine the best learning variants to be 

enabled; however, ideally all four kinds of learning will be 

enabled by default in the final release. 

Similarly, spreading activation (by default) is handled 

similarly to the original mechanism in ACT-R 6 where the 

slots of chunks in buffers spread activation to chunks in DM 

(consistent with S-C and S-S spread). This decision was 

made to directly compare the predictions of the original and 

updated implementations. Additionally, it is also possible to 

enable the full chunk in each buffer to spread activation as 

well (see C-C and C-S), which has benefits in tasks where 

one is recalling an ordered list of chunks, as there is a more 

direct associations between sequences of chunks passing 

through a buffer (generally the retrieval buffer). 

Testing the Model: Serial Order Memory 

There is evidence that humans do not explicitly encode 

positional information when sequentially recalling a list of 

items (Henson, 1998), yet a previous implementation of 

serial memory in ACT-R utilized mismatches over explicit 

positional information to drive recall (Anderson et al., 

1998). While very successful at fitting human data, this 

model (much like models of classical conditioning) was not 

predictive, only explanatory. The goal of the present model 

was to demonstrate a proof-of-concept that serial order 

effects can be explained as an implicit process of learning 

inter-item associations, rather than applying a mismatch 

penalty to explicit positional indices. 

The data to be modeled include the single-digit stimuli 

(from 1-9) and methodology used in Anderson et al. (1998), 

including the same presentation time used in their human 

trials (1 second per stimulus, presented serially on a 

display). Our model was serially presented single-digits in 

the center of a 300x300 pixel window. The model perceived 

the stimuli, stored them to memory, and upon perceiving the 

recall cue (“forward” presented on the display) was given 10 

seconds to recall the list. The model was run on lists of 

length 1 to 9 with no repeating digits, and was run for 100 

trials at each list length. The results of both aggregate model 

and human performance are presented in Figure 4 and 

describe a close fit to human data (r
2 
= .977). 
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Figure 4. Comparing aggregated full-list model and human 

results on a serial recall task. Model fit was r
2 
= .977. 



The current model utilizes the same kind of associative 

learning and spreading activation as in the 1998 ACT-R 4 

model, however, the current model required no mismatch 

penalty over explicit positional indices to recall the 

complete list with similar accuracy as humans. One 

modeling assumption was to explicitly mark the beginning 

and end of the list. The beginning-of-list marker spreads 

activation to the first list element to recall, which in turn 

inhibits itself and spreads activation to the next element in 

the list. The final list element spreads activation to the end-

of-list marker. Recall is a matter of retrieving the beginning-

of-list marker, which then drives an implicit temporal 

sequencing of list elements. Finally, the choice of rehearsal 

strategy drives the strengths of associations formed 

(implicitly through the ordering of requests), which is left 

up to the modeler to determine via productions. 

Discussion 

There are several beneficial effects seen in the current 

associative learning implementation. The first is that the 

algorithm is more balanced and geared towards specializing 

associative activations rather than just increasing all 

activations. Thus, the mechanism is more stable as it grows 

(i.e., it will not tend towards all associations becoming 

either strongly excitatory or inhibitory; Sji doesn’t vary with 

number of chunks in memory). Second, since the retrieved 

chunk self-inhibits, this reduces the likelihood that it will be 

the most active chunk in the following retrieval, causing a 

natural refractory period which avoids self-feedback loops. 

Third, by self-inhibiting and spreading activation to the next 

context, there is a forward momentum for the serial recall of 

chunks. Combined with recency and frequency of base level 

activation, this provides a mechanism for automatic serial 

recall of lists without the need for coding of explicit 

positional information and marking of previously retrieved 

chunks through FINST-like mechanisms. The uniqueness of 

the subsequent context drives order effects. 

This associative learning mechanism is an attempt to 

increase constraints within the ACT-R architecture and 

promote a broader explanatory power to numerous cognitive 

phenomena. A major contribution of this mechanism is its 

balance between hebbian and anti-hebbian learning, which 

provides stability and benefits over prior implementations. 

Future Work 

The current associative learning algorithm is still under 

development, with several points to focus on. Currently, 

slots are equally weighted and a set increment of 1 unit of 

association is spread by default. It may be possible to 

determine the strength of association increment based in 

part on retrieval time, which would be more consistent with 

both neural and behavioral data. However, in ACT-R 

retrieval time is totally determined by the base-level 

activation of the retrieved chunk. Thus, this would reduce 

associative learning for highly activated chunks, which is 

not necessarily a desirable outcome. Furthermore, while not 

applicable to all requests, the mismatch penalty between the 

request specification and the actual chunk recalled may be 

used to mediate the degree of learning. Finally, existing 

models of list memory and sequence learning need to be re-

envisioned in terms of the new associative learning 

algorithm to determine the best parameters to set by default. 
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