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Abstract 

In this paper, we describe an extension of the theory of short-
term memory decay for the ACT-R cognitive architecture. By 
including a short-term decay for elements recently cleared 
from active memory, we have extended the functionality of 
spreading activation as a source of implicit contextual 
information for the model. In ACT-R models of serial 
memory and decision-making, contextual information has 
generally been modeled using either explicit markers (e.g., 
positional indices) or fixed-length windows of prior elements 
(e.g., a lag-based representation). While markers and fixed-
length windows do capture some patterns of human errors, 
they are inflexible, are set by the modeler and not the model, 
and are not psychologically-plausible representations of 
contextual information. In conjunction with our associative 
learning mechanism (Thomson & Lebiere, 2013), we show 
how buffer decay can provide more flexible and implicit 
contextual information which explains refraction, positional 
confusion errors, and repetition facilitation and inhibition. 
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Introduction 

Over the last 50 years there has been a substantial body of 

literature describing how contextual information interacts 

with memory encoding and recall. More specifically, when 

the context changes between encoding and retrieval time, 

recall is relatively reduced compared to when retrieval 

occurs in the same context as encoding. Beginning with 

Godden and Baddeley’s (1975; 1980) seminal work on 

context-dependent recall in natural environments (see also 

Smith & Vela, 2001), research has shown both internal-state 

(e.g., physiological) and external-cue (e.g., environmental) 

dependence on recall (Eich, 1980). For instance, Godden 

and Baddeley found that when deep sea divers learned a list 

underwater, they experienced reduced list recall when 

recalling this list on the surface as compared to recall while 

underwater again. Other examples of context-dependence 

include mood-dependence (Eich, Macaulay, & Ryan, 1994), 

language-dependence (Marian & Neisser, 2000), and 

motivation-dependence (Delgado, Stenger, & Fiez, 2004). 

While context is a complex real-world phenomenon, it is 

much more constrained in a cognitive architecture such as 

ACT-R, where the information flow between a model and 

the environment is abstracted to a set of symbolic elements 

(see Anderson, Bothell, Byrne, et al., 2004). In this sense 

context is limited to the information available in the buffer 

system and the spread of activation from those items 

currently in working memory. Before delving more deeply 

into the role of contextual information in ACT-R we will 

present a brief overview of ACT-R and describe how 

context has previously been modeled in tasks involving 

serial memory and decision-making. 

An Overview of the ACT-R Architecture 

ACT-R is a cognitive architecture defined as a set of 

modules which are integrated and coordinated through a 

centralized production system (see Figure 1). Modules 

access information from buffers, while the production 

system only responds to the contents of the buffers and not 

the internal processing of the modules themselves. The set 

of buffers therefore implicitly constitute the working 

memory of the architecture. The declarative memory and 

production system modules store and retrieve information 

that corresponds to declarative and procedural knowledge, 

respectively. Declarative knowledge is the kind of 

knowledge that a person can attend to, reflect upon, and 

usually articulate in some way, while procedural knowledge 

consists of the skills we display in our behavior, generally 

without conscious awareness.  

 
Figure 1. An overview of ACT-R’s modules and their dependent 

buffers. 
 

Declarative knowledge in ACT-R is represented formally 

in terms of chunks, which corresponds to the episodic and 

semantic knowledge that promotes long-term coherence in 

behavior. Chunks have an explicit type, and consist of a set 

of slot-value pairs of information. Chunks are retrieved from 

declarative memory (DM) by an activation process. When a 

retrieval request is made the most active matching chunk is 

returned, where activation is computed as the sum of base-

level activation, spreading activation, mismatch penalty and 

stochastic noise. Base-level activation reflects a chunk’s 

recency and frequency of occurrence. Activation spreads 

from the current focus of attention through associations 

among chunks in declarative memory. These associations 

are built up from experience, and reflect how chunks co-

occur in cognitive processing. Chunks are also compared to 



the desired retrieval pattern using a partial matching 

mechanism that subtracts from the activation of a chunk its 

degree of mismatch, additive for each component of the 

pattern and corresponding chunk value. Finally, noise is 

added to chunk activations to make retrieval a probabilistic 

process governed by a Boltzmann (softmax) distribution.  

While the most active chunk is usually retrieved, a 

blending process (Lebiere, 1999) can also be applied that 

returns a derived output reflecting the similarity between the 

values of the contents of all chunks, weighted by their 

retrieval probabilities reflecting their activations. This 

blending process is used intensively in models of decision-

making since it provides a tractable way to generalize 

decisions in continuous domains such as probability space. 

The flow of information is controlled in ACT-R by a 

production system, which operates on the contents of the 

buffers. Each production consists of if-then condition-action 

pairs.  Conditions are typically criteria for buffer matches, 

while the actions are typically changes to the contents of 

buffers that might trigger operations in the associated 

modules. The production with the highest utility is selected 

to fire from among the eligible productions. Please see 

Anderson and Lebiere (1998) and Anderson et al. (2004) for 

a more complete account of ACT-R mechanisms.  

Before proceeding it is important to review the process of 

spreading activation in detail, as it is the primary mechanism 

for capturing implicit contextual information in ACT-R. 

Spreading Activation in ACT-R 

The standard mechanism for spreading activation in ACT-R 

is derived from the fan effect (Anderson & Reder, 1999). 

The fan effect is an interference-based account of memory, 

where a chunk j has its spread of activation (Sji) diluted 

based on the number of contexts in which it has been 

experienced: 

                     

Smax is a maximum spread of association from chunk j to i, 

and fanji is the number of times chunk j is a slot value in all 

chunks in memory. The Sji term is also multiplied by the 

weight of buffer k from where it is a source of activation, 

divided by the number of chunks in that buffer: 

   ∑∑      
  

 

The total spread of activation is summed across all the 

chunks in all the buffers. 

There are some limitations to the current implementation 

of spreading activation. First, the maximum amount of 

spread is set by the smax parameter as opposed to being 

learned from the environment. In Thomson and Lebiere 

(2013), we describe an associative learning mechanism 

where the strengths of association are learned from 

statistical regularities in the environment. Second, there is 

only a limited context window available when using 

spreading activation because activation only spreads from 

chunks currently in buffers. In ACT-R, once a chunk is 

cleared from a buffer (i.e., removed from working memory) 

then all the residual activation of the chunk is also removed. 

As such, there is no decay of Sji from the buffer, and thus 

context can only be spread to temporally abutting buffer 

contents (e.g., it only spreads proximal contextual 

information). These limitations restrict the kinds of 

contextual information which ACT-R can use. 

Prior Models Applying Context in Serial Recall  

In serial memory recall, relevant contextual information 

includes elements recently perceived and/or recalled in the 

current list, and elements that have been recalled in similar 

positions of similar lists. The activation that spreads from 

contextual elements to recall candidates is described as 

either priming or interference based on whether it facilitates 

or inhibits correct recall. Patterns of errors due to contextual 

information – e.g., proactive and retroactive interference – 

include transposition errors (switching the position of two 

elements), omission errors (skipping an element), and 

intrusion errors (adding an extra element). In addition, there 

are context-specific effects of repetition, namely repetition 

facilitation when repeated items are close together, and 

repetition inhibition when items are farther apart.  

Three related theories of memory include chaining theory 

(Ebbinghaus, 1964), positional theory (Conrad, 1965), and 

ordinal theory (Estes, 1972). Chaining theory assumes that 

order information is expressed by pairwise associations 

between items in memory. A limitation of chaining models 

is that high item-similarity and repetition cause much higher 

than expected confusion errors during recall (Henson, 1996)  

Positional theory assumes that successive items are stored in 

ordered slots (e.g.,  bins), and that these slots are implicit 

mechanisms which cue retrieval of item information. 

Positional theory, however, cannot explain context-driven 

human behavior such as positional confusion and repetition 

inhibition. Ordinal theory assumes that the position of a list 

item is stored as a relative value along a continuous property 

based on the history (c.f., prior context) of the items, or in 

short, that position is derived from the context of items. An 

advantage of ordinal theory is that no explicit positional 

information needs to be encoded for successful recall. 

In the canonical ACT-R model of list memory (Anderson, 

Bothell, Lebiere, & Matessa, 1998), the model used a 

variation on chaining and positional theories to capture 

contextual information by explicitly encoding absolute 

serial position in the chunk representation: 
 

   (item-one  

      ISA      item 

      name     “1” 

      parent   group1 

      position first  
 

This model was most similar to position theory by explicitly 

encoding positions as a slot in the chunk. It also, however, 

has similarities to chaining theory as the flow of production 

firings attempt to recall chunks by incrementing by position, 

e.g., by recalling a chunk with position first then recalling a 

chunk with position second, and so on. The effect of context 

in this model was limited to positional confusion, which was 

accomplished by explicitly setting similarities between 



position chunks. Errors of omission and intrusion are due to 

the base-level activation of the item chunks (i.e., their 

recency and frequency of use).  

While successfully fitting overall accuracy and positional 

confusion (which was to be expected as it was hand-coded), 

explicitly representing context using positional information 

was not psychologically-plausible nor did it take advantage 

of more implicit mechanisms such as spreading activation. 

This explicit representation was necessary, however, because 

of the limitations of spreading activation not providing the 

necessary implicit structures to plausibly capture the effects 

of context on retrievals. 

Prior Models Applying Context in Decision-Making 

Most models of decision-making in ACT-R use a variant of 

instance-based learning theory (IBL; Gonzalez, Lerch, & 

Lebiere, 2003). The main claim of IBL is that knowledge is 

generated through the creation of instances. These instances 

are represented in chunks with slots containing the 

conditions (e.g., a set of contextual cues), the decision made 

(e.g., an action), and the outcome of the decision (e.g., the 

utility of the decision). When including more than a 

representation of the current features available to the model, 

contextual cues – similar to models of serial memory – are 

represented explicitly as either a sequence or history of 

previous choices, bringing in a temporal aspect to context as 

well. Instances store this history as a fixed window of prior 

decisions – usually the two most recent decisions. By 

storing these prior decision instances as part of their initial 

context, the models can then match against them using the 

current context. This generates the most likely expected 

outcome. The model then selects the best outcome based on 

the dynamics of chunk retrieval and blended retrievals. 

Specific examples using a lag-based context 

representation include a model of how batters predict 

baseball pitch speed (Lebiere, Gray, Salvucci & West, 

2003), a model of sequence learning (Lebiere & Wallach, 

2001), and a model of playing Paper Rock Scissors (West & 

Lebiere, 2001). While the previous models do not all use 

spreading activation to further support contextual effects in 

decision-making, it has been applied in an instance-based 

model of sequential diagnostic reasoning (Mehlhorn, 

Taatgen, Lebiere, & Krems, 2011). In this model, activation 

spreads from the set of symptoms to possible diagnoses, 

with context-based interference due to fan effects (i.e., the 

set of diagnoses to which a given symptom is associated). 

There are some issues with using explicit fixed-length 

context windows and the current ACT-R implementation of 

spreading activation as the basis for generating contextual 

information. Fixed-length windows are representationally 

rigid and cannot account for the dynamic chunking that 

occurs during sequence learning, such as the kind of 

hierarchically-organized pattern-matching that occurs in 

chess mastery (Chase & Simon, 1973). They have proven 

effective in the previously-mentioned examples simply 

because they are the right level of abstraction to capture the 

limited range of human behaviors on abstract decision-

making tasks such as repeated binary choice. 

On the other hand, spreading activation is a more implicit 

mechanism that should capture many of context-driven 

effects (e.g., priming and interference). The current 

implementation of spreading activation, however, has some 

limitations that we have previously discussed. In particular, 

activations are not learned but are a fixed about set by a 

parameter and reduced by the log of the fan, that is, by the 

number of elements that contain the source chunk as a slot 

value. In addition, spreading activation becomes unstable 

with a fairly small amount of symbolic overlap, resulting in 

models which have many instances having the spread of 

activation become inhibitory. With a default spread (i.e., the 

smax parameter) of 2 (Lebiere, 1999), a chunk can appear as 

a value in 7 chunks before becoming inhibitory. This may 

be reasonable for modeling a single psychology experiment, 

but in a complex decision-making task a model using IBL 

will have its Sji become inhibitory for most instance chunks. 

Prior Attempts to Capture Context Effects 

In ACT-R 4, strengths of association (Sji) were learned by 

the model by experiencing environmental context using a 

form of associative learning (Schooler & Anderson, 1993). 

Spreading activation denoted the log-likelihood that chunk 

Ni was relevant given context Cj: 

      (
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Spread was computed as the log-likelihood of the number of 

times a chunk was in context (i.e., in the goal buffer) over 

times the chunk was retrieved in total. This function was 

deprecated due to “catastrophic” instabilities in the 

mechanism. When Cj is usually not in the context when Ni is 

needed  (     ) is much smaller than  (  ̅   ), thus the Sji 

become negative as the log-likelihood approaches 0. This 

issue is due to the global context term Cj which alters the Sji 

whenever a chunk is added and/or production fires, and is 

magnified by the asymmetrical log-likelihood calculation 

which penalizes the context ratio in long-running models. 

To reconcile the difficulties in previous implementations 

of associative learning, Thomson and Lebiere (2013) derived 

a Hebbian-inspired associative learning rule influenced by 

spike-timing dependent plasticity (STDP; Caporale & Dan, 

2008) and Rescorla-Wagner  (1972) models of classical 

conditioning. Unlike traditional Hebbian implementations 

which simply increment associations so long as both pre-

synaptic and post-synaptic neurons fire within a temporal 

window, in STPD if the pre-synaptic neuron fires before the 

post-synaptic then the association is strengthened, while if 

the post-synaptic neuron fires before the pre-synaptic then 

the association is inhibited. We assume that the set of 

chunks in all buffers when a retrieval request is initiated is 

loosely analogous to pre-synaptic neuronal firings, and the 

set of chunks in the buffers when the retrieval request is 

completed is loosely analogous to post-synaptic firings.  

Associations are created and updated when the set of 

context chunks C (and its slots) are associated to a 

successfully requested chunk N (and its slots) according to a 

variant of the Rescorla-Wagner learning rule: 
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where α is an interference rate that determines how much 

the prior Sji is squashed, σ is a learning rate equivalent to the 

smax parameter, βj is the weight of the buffer containing j 

and is equivalent to Wkj, and ωi is the number of valid slots 

in the requested chunk. The σ value is positive for chunks 

that were in buffers at the time the request was initiated 

(hebbian learning) and negative for chunks that were in 

buffers at the time the request was completed (anti-hebbian 

learning). Also, associations do not decay over time. 

This equation summarizes the set of Sji as the sum of 

positively associating the chunks in buffers when a request 

is initiated with the successfully requested chunk, and 

negatively associating chunks in buffers when the request is 

completed with the successfully requested chunk. The 

successfully requested chunk is included in the request-

completed context, causing the chunk to become negatively 

associated with itself, leading to a natural refractory firing 

period analogous to base-level inhibition (Lebiere & Best, 

2009). This avoids the kind of self-activation feedback loops 

that lead to model instability. 

To provide an example, assume source j has just made a 

positive association with target I and has a prior Sji value of 

3, the default α squashing value of .2, learning rate σ value 

of 1, and buffer weight βj of 1, then the new Sji would be: 

    (          )        

Due to the influence of the interference rate on the prior Sji, 

there was a modest .4 increase in the association strength.  

This mechanism is bounded, stable, and symmetrical. 

Compared to the Anderson et al., (1998) model of serial 

memory previously discussed, it was able to predict human 

accuracy without any parameter adjustment, r
2
 = 977, and 

also without the need for any explicit contextual information 

to be encoded in the chunk structure:  
 

   (item-one  

      ISA      item 

      name     “1” 
 

While this mechanism captured human accuracy, the 

associations that were formed were essentially still a fixed 

lag-1 window (albeit being learned automatically and 

implicit) since there was no residual spreading activation of 

a chunk once it was cleared from a buffer. Thus, the model 

was only able to capture very proximal associations (± 1 

position). As such, it did not capture the more distal 

positional confusion or repetition facilitation and inhibition. 

What was needed was a way to flexibly (and implicitly) 

expand the context window, or in other words, what was 

needed was a mechanism to handle buffer decay.  

A Buffer Decay Mechanism for ACT-R 

The buffer decay module adds a short-term decay to the 

activation of chunks recently cleared from buffers. At the 

present, chunks still in buffers do not decay, as they are still 

in active memory. This short-term decay is used by the 

associative learning module and spreading activation to 

learn and spread associations whose strength is mediated 

according to the remaining short-term activation. When a 

chunk’s short-term activation falls below a given threshold 

then the residual activation of the chunk is considered to 

have fully decayed from memory. A final point is that each 

time a chunk is cleared from memory it is given a separate 

decaying short-term activation. Thus, repetition is treated as 

two separate traces, each with an individual decay activation. 

In this paper we present two possibilities for decay 

functions, both of which are based on the existing base-level 

decay equations standard in ACT-R. This is only a first-pass 

using existing (and well-justified) activation equations, and 

may not reflect the best decay profile after further 

justification against human performance. The first function 

we present is a fixed decay rate, and works similar to the 

optimized base-level learning equation. The second is a 

dynamically-generated decay rate, and sets decay based on 

the length of time that the chunk remained in the buffer 

before being cleared. This dynamically-generated decay rate 

simulates the effect of encoding and elaboration theorized to 

take place while the chunk remains in the buffer over time. 

Fixed-Strength Decay 
As previously mentioned, short-term decay is derived from 

the optimized base-level learning equation Bi: 

            ⁄             

where n is the number of presentations of chunk i, L is the 

time since the creation of chunk i, and d is the decay-rate 

obtained from the :bll parameter. Since the number of 

presentations n of chunk i will always be 1, we can simplify 

the short-term decay equation Di to:  

                
where d is the decay rate, and L is the time since the chunk 

has been cleared from the buffer. 

Classic memory literature has argued that the effective 

duration of short-term memory without the ability to 

rehearse is between 8-18 seconds (Peterson & Peterson, 

1959; Waugh & Norman, 1965). As seen in Figure 2, this 

corresponds to a d between .3 and .5 (which is the default 

range of acceptable values in ACT-R).
 

With a d of .3 it 

takes 27 seconds for the chunk to fully decay (however its 

influence is negligible after 18-20 seconds), with a d of .4 it 

takes 11 seconds for the chunk to decay, and with a d of .5 it 

takes 6 seconds for the chunk to decay.  

 
Figure 2. Activations based on different base-level decay rates. 



Dynamically-Generated Decay Strength 

The process of encoding, consolidation, and elaboration of 

information is not an all-or-nothing process, yet it is 

abstracted to such in ACT-R where a chunk and its contents 

are either available in a buffer or they are not. Some 

researchers (e.g., Nyamsuren, 2012) have attempted to 

model perceptual encoding, where slots from chunks in the 

visual buffer become available probabilistically based on 

attentional constraints. We instead approach the processes 

of consolation and elaboration by basing the short-term 

decay rate based on the length of time a chunk was present 

in a buffer. While the core of the decay function remains the 

same as the fixed-rate decay, dynamically-generated decay 

strength uses an exponential function to replace the d short-

term decay parameter in the decay function: 

  (
      

    
) 

which is substituted into the short-term decay equation: 

     (
      

    
)         

where t is the time the chunk was in the buffer, L is the time 

since the chunk has been cleared, and α is a parameter to 

control the asymptotic decay rate (i.e., the slowest possible 

decay rate). Table 1 shows the decay rate based on the time 

a chunk remains in a buffer for three values of α.   

Table 1. d values based on time in buffer. 

time (s) d, α = .3 d, α = .4 d, α = .5 

0.05 0.962 0.965 0.967 

0.10 0.927 0.932 0.937 

0.20 0.861 0.871 0.879 

0.50 0.697 0.719 0.738 

1.0 0.514 0.548 0.579 

1.5 0.402 0.445 0.482 

2.0 0.335 0.382 0.424 

2.5 0.294 0.344 0.388 

3.0 0.269 0.321 0.367 

3.5 0.254 0.307 0.353 

4.0 0.245 0.299 0.346 

5.0 0.236 0.291 0.338 
 

When a chunk remains in a buffer for only 50 ms (i.e., the 

length of a single production) then it has a base-level decay 

rate greater than .9, which approximates the complete decay 

of its residual spreading activation in 2 seconds. This is 

coincidentally the time-course of visuospatial and auditory 

short-term memory. However, once a chunk has been in a 

buffer for longer than 2 to 3 seconds then it is near its 

asymptotic decay rate, which reflects the chunk being fully-

consolidated into memory. Thus, the residual spreading 

activation from the chunk’s strength of association will 

remain maximally influential on later requests. 

A consequence of adopting this dynamically-generated 

decay rate is that rehearsal strategy and the time-course of 

production firings become much more important. For 

instance, it is possible to quickly retrieve chunks and clear 

them from a buffer, which results in chunks with potentially 

higher base-level activations, but with more rapid short-term 

term decay, resulting in a sparser context from which to 

learn (i.e., having a smaller context window). This strategy 

is analogous to the effect of cramming while studying as it 

reflects rapidly encoding data without making elaborating 

links to the surrounding context. Crammers will also have 

high proximal proactive interference from items recently 

cleared. Another phenotype are elaborators who let chunks 

remain in buffers for a longer time (up to several seconds), 

which would result in potentially lower base-level activation 

but a richer context (i.e., a broader context window) from 

which to learn associations and spread activation from.  

Associative Learning from Buffer Decay 

Learning associations from decaying chunks uses the same 

formula described previously with an extra decay term: 

 {       }{      }  (   
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where Dj is the remaining short-term activation from source 

j when the chunk is currently decaying. If the chunk is still 

in a buffer then Dj is automatically set to a value of 1. 

Applications of Buffer Decay 

When buffer decay is used in conjunction with associative 

learning, several emergent contextual effects become 

apparent. Imagine beginning to recall the sequence A-B-C 

one letter at a time. Over time, what influence would the 

prior context (chunks A, B, and C) exhibit on subsequent 

attempts to recall chunk C again? Figure 3 shows the effect 

of having multiple decaying chunks (A, B, and C) in the 

context (the dotted lines) and their summed activation (the 

solid line) over time. Based on the fixed-decay function, the 

solid line shows a net inhibitory effect for several hundred 

milliseconds followed by a period of priming, and finally a 

period of inhibition decaying to a neutral state of activation 

once all the contextual elements have decayed. These states, 

respectively, correspond to the time-course of refraction, 

repetition facilitation (priming), and repetition inhibition. 

 
Figure 3. Activations based on recent context using associative 

learning and buffer decay. The interval between presented each 

chunk was 1.75 seconds, and the d was set to .35. The association 

strength from B to C was set to 1, the association strength from A 

to C was set to .5, and C auto-associated -1 to itself. 
 

While the net effect of this contextual spread is only 

marginal, it represents a change in accuracy of several 



percent and is in the rough order of magnitude found in the 

literature (Henson, 1996). This effect also represents only an 

initial implementation of the buffer decay equation, and 

represents an emergent behavior based on the implicit 

strengths of association and the temporal dynamics (e.g., 

presentations rate) of the task environment. 

Of greater interest, this profile of inhibition followed by 

priming followed by inhibition is not set in stone. Changes 

in either the strengths of association (from prior experience) 

or the task environment (e.g., faster presentation rates) could 

result in a longer net priming period or a long net inhibitory 

period. The story becomes even more interesting when 

considering the dynamically-generated decay rate. 

Dynamically-generated decay provides a mechanism for 

additional individual differences by determining short-term 

decay rates based on the how long the model consolidates 

each chunk (i.e., how long it remained in a buffer).  

Conclusion  

In this paper we have presented an initial mechanism for 

buffer decay in ACT-R which, in conjunction with our 

associative learning mechanism, provides a unified 

mechanism for flexible, implicit, and behaviorally-plausible 

context-based learning. This mechanism explains such 

context-based memory effects such as refraction, positional 

confusion errors, and repetition facilitation and inhibition. 
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