
Malware Identification Using Cognitively-Inspired Inference

 Robert Thomson, Christian Lebiere and Stefano Bennati Paulo Shakarian, Eric Nunes

 Carnegie Mellon University Arizona State University

 5000 Forbes Avenue 699 S. Mill Avenue

 Pittsburgh, PA 15213 Tempe, AZ 85382

 412-268-6028

 (thomsonr, cl, sbennati @andrew.cmu.edu) (shak, eric.nunes @asu.edu)

Keywords:

Malware Analysis, Inference, Instance-Based Learning, Functional Modeling, Cognitive Architectures

ABSTRACT: Malware reverse-engineering is an important type of analysis in cybersecurity. Rapidly identifying the

tasks that a piece of malware is designed to perform is an important part of reverse engineering that is generally

manually performed as it relies heavily on human intuition This paper describes how the use of cognitively-inspired

inference can assist in automating some of malware task identification. Computational models derived from human-

inspired inference were able to reach relatively higher asymptotic performance faster than traditional machine learning

approaches such as decision trees and naïve Bayes classifiers. Using a real-world malware dataset, these cognitive

models identified sets of tasks with an unbiased F1 measure of 0.94. Even when trained on historical datasets of malware

samples from different families, the cognitive models still maintained the precision of decision tree and Bayes classifiers

while providing a significant improvement to recall.

1. Introduction

Malware reverse-engineering is an important task for

cyber-security. While large amounts of data can be sorted

and filtered using machine learning techniques, identifying

the tasks that a piece of malware is designed to perform is

manually performed as it relies heavily on human intuition

(Sikorski & Honig, 2012). The complexity of this task

increases substantially when you consider that malware is

constantly evolving, and that how each malware instance

is classified may be different based on each cyber-security

expert’s own particular background.

Malware classification occurs in two stages: the first is

determining whether a given binary is malicious

(Tamersoy, Roundy & Horng 2014; Firdausi, Lim, Erwin,

& Nugroho, 2010) and then classifying this malware by

family (Bayer, Comparette, Hlauschek, et al., 2011;

Kinable & Kostakis, 2011; Kong & Yan, 2013). Malware

family classification has suffered from two primary draw-

backs: (1) disagreement about malware family ground

truth as different analysts (e.g. Symantec and MacAfee)

cluster malware into families differently; and (2) previous

work has shown that some of these approaches mainly

succeed in “easy to classify” samples (Perdisci, 2012; Li,

Liu, Gai & Reiter, 2010), where “easy to classify” is a

family that is agreed upon by multiple malware firms. In

this paper, we look to infer the specific tasks a piece of

malware was designed to carry out. While we do assign

malware to a family, to avoid the two aforementioned

issues the family partition is done probabilistically and the

ground truth compared to the tasks each malware

performed rather than an assignment to a family.

The ability to stably and accurately sort substantial

information from the environment is a key element of

human cognition. It is generally accurate even with

incomplete evidence and limited feedback. It thus seems

beneficial to examine features of human cognition that

may guide our development of algorithms to sort through

the large amounts of data generated by malware analyses.

We argue that malware identification techniques can be

improved using cognitively-inspired inference. Cognitive

architectures such as ACT-R (Anderson, Bothell, Byrne,

et al., 2004) have previously been shown to effectively

model human cognition on a variety of decision-making

(Lebiere, Gonzalez, & Martin, 2007) and general

intelligences tasks (Lebiere, Gonzalez, & Warwick 2009),

including complex domains such as intelligence analysis

(Lebiere, Pirolli, Thomson, et al., 2013). Further, due to

the ability of these models to mimic human cognition, they

have been shown to perform well on reasoning tasks where

historical knowledge is sparse, limited, or dissimilar to the

current context (Taatgen, Lebiere, & Anderson, 2006).

An example of the efficiency gained through cognitive

inference is the cognitive model of backgammon that is

able to learn to perform at a highly skilled level after

playing a few hundred games, as opposed to tens-of-

thousands to millions of games for the equivalent machine

learning algorithms to reach a comparable performance

(Sanner et al., 2000). The key aspect of cognitive inference

that is leveraged to achieve this efficiency and capability

is the combination of symbolic problem decomposition

with statistical learning, made possible by the tight

integration of symbolic and subsymbolic representations

in cognitive architectures such as ACT-R.

In this paper we leverage the cognitively-inspired

inference mechanisms in ACT-R to identify the tasks

associated with a piece of malware. Using a real-world

malware dataset (Mandiant Corp, 2013), our cognitive

models identified sets of tasks with an unbiased F1

measure of 0.94 – significantly out-performing baseline

approaches including a decision-tree and naïve Bayes

classifier while using only highly scalable online learning.

2. Cognitively-Inspired Inference

Machine learning algorithms like deep learning are

massively parallel and can cope with large amounts of

data; however they are limited because of their relatively

primitive semantics and thus are best suited for the initial

filtering and structuring of data. On the other end of the

spectrum, while human inference has memory and

attentional limitations, cognitive processes are powerful,

where adaptive heuristic strategies are adopted to

accomplish the tasks under strong time constraints using

limited means. An advantage of using a cognitively-

inspired model to describe inferential processes is that the

underling architecture provides the benefits of human-

inspired inference while allowing for more flexibility over

constraints such as human working memory.

There is a valid use of cognitive architectures for artificial

intelligence that makes use of basic cognitive mechanisms

while not necessarily making use of all constraints of the

architecture. Reitter & Lebiere (2010) introduced a

modeling methodology called accountable modeling that

recognizes that not every aspect of a cognitive model is

reflected in measurable performance. In that case, it is

arguably better to specifically state which aspects of the

model are not constrained by data, and rather than mock

up those aspects in plausible but impossible to validate

manner, simply treat them as unmodeled processes. This

approach results in simpler models with a clear link

between mechanisms used and results accounted for,

rather than being obscured by complex but irrelevant

machinery. For instance, while the models described in

this paper use activation dynamics well-justified against

human behavioral and neural data to account for features

such as temporal discounting, we do not directly model

working memory constraints to allow for more features of

malware and more instances to be present in memory.

3. The ACT-R Cognitive Architecture

We leveraged features of the declarative memory and

production system of the ACT-R architecture to complete

malware identification. These systems store and retrieve

information that correspond to declarative and procedural

knowledge, respectively. Declarative information is the

kind of knowledge that a person can attend to, reflect upon,

and usually articulate in some way. Conversely,

procedural knowledge consists of the skills we display in

our behavior, generally without conscious awareness.

Modules are encapsulated and may process information in

parallel within one another. However, there are two serial

bottlenecks in processing: only one production may be

executed at a time, and the contents of a module can only

be accessed through a buffer that can only contain one

chunk at a time.

3.1 Declarative Knowledge

Declarative knowledge is represented formally in terms of

chunks. Chunks have an explicit type, and consist of an

ordered list of slot-value pairs of information. Chunks are

retrieved from declarative memory by an activation

process: 𝑃𝑖 = (𝑒𝐴𝑖 𝑠⁄) (∑ 𝑒𝐴𝑗 𝑠⁄
𝑗)⁄ where Pi is the

probability that chunk i will be recalled, Ai is the activation

strength of chunk i, ∑Aj is the activation strength of all of

eligible chunks j, and s is momentary noise inducing

stochasticity by simulating background neural activation.

The activation of a given chunk i (Ai) is governed by its

summed base-level activation (Bi) reflecting its recency

and frequency of occurrence, spreading activation (Si)

reflecting the effects that buffer contents have on the

retrieval process, partial matching score (Pi) reflecting the

degree to which the chunk matches the retrieval request,

and finally a noise value (Ɛi) including both transient and

permanent noise: 𝐴𝑖 = 𝐵𝑖 + 𝑆𝑖 + 𝑃𝑖 + Ɛ𝑖. Sub-

symbolic activations approximate Bayesian inference by

framing activation as log-likelihoods, with base-level

activation (Bi) as the prior, the sum of spreading activation

and partial matching as the likelihood adjustment factor(s),

and the final chunk activation (Ai) as the posterior.

A chunk’s base-level activation is computed by summing

across the number of presentations n for chunk i the log of

the time tj since the jth presentation discounted by decay

rate d, with this an optional constant βi added to this value:

𝐵𝑖 = ln(∑ 𝑡𝑗
−𝑑𝑛

𝑗=1) + β
𝑖
. Base-level activation

corresponds to the Bayesian prior of a chunk’s activation.

A benefit of base-level activation is that it provides an

automated procedure for frequency-based strengthening as

well as temporal discounting.

The spread of activation (Si) is computed by the following

equation: 𝑆𝑖 = ∑ ∑ 𝑊𝑘𝑗𝑆𝑗𝑖𝑗𝑘 where elements k being

summed over are the set of buffers in the model, elements

j being summed over are the chunks which are in the slots

of the chunk in buffer k (these are referred to as the sources

of activation), Wkj is the amount of activation from sources

j in buffer k weighted by parameter W, and Sji is the

strength of activation from chunk j to i. Strengths of

association correspond to the Bayesian log-likelihood of

chunk i being relevant given context elements j. Sji is

therefore defined as log(P(i|j)/log(P(i)). These associations

are built up from experience, and they reflect how chunks

co-occur in cognitive processing. The spread of activation

from one cognitive structure to another is determined by

weighting values W on the associations among chunks,

which determine the rate of activation flow.

Chunks are also compared to the desired retrieval pattern

using a partial matching mechanism (Pi) that subtracts

from the activation of a chunk i its degree of mismatch Mki

to the desired pattern k, additively for each component and

chunk value: 𝑃𝑖 = ∑ 𝑃𝑀𝑘𝑖𝑘 . Both the spreading

activation and partial matching mechanisms serve to

automate efficient contextual priming effects.

While the most active chunk is usually retrieved, a

blending process (i.e., a blended retrieval; see Lebiere,

1999; Wallach & Lebiere, 2003) can also be applied that

returns a derived output V reflecting the similarity Sij

between the values of the content of all chunks i and

compromise value j, weighted by their retrieval

probabilities Pi reflecting their activations and similarity

scores: 𝑉 = 𝑎𝑟𝑔𝑚𝑖𝑛 ∑ 𝑃𝑖(1 − 𝑆𝑖𝑗)𝑖
2
. This process

enables the generation of continuous values (e.g.,

probabilities) in a process akin to weighted interpolation.

3.2 Procedural Knowledge

Production rules are used to represent procedural

knowledge. They represent and apply cognitive skill in the

current context, including how to access and modify

information in buffers and transfer it to other modules.

Each production rule is a set of conditions and actions

which are analogous to IF-THEN rules. Conditions specify

structures that are matched in buffers, and correspond to

information from the external world or other internal

modules. Matching production rules effectively means: if

the conditions of a given production match the current

state then perform the following actions.

3.3 Instance-Based Learning

Instanced-based learning (IBL) is the theory that people

have a general-purpose mechanism whereby situation-

action-outcome observations are stored and retrieved from

memory. IBL offers constraints on explanation by

grounding implicit learning within the mechanisms of a

cognitive architecture. The dynamics of an instance’s sub-

symbolic activations (e.g., frequency and recency in the

base-level equation) provide a scientifically-justified

mechanism for determining which instances are likely to

be retrieved for a given situation, and also can explain why

they were retrieved and what factors came into play.

These instances are represented with slots containing the

conditions (contextual cues), the decision made (an

action), and the outcome of the decision (the utility of the

decision). Before sufficient task-relevant knowledge is

available, alternatives are evaluated using heuristics (e.g.,

random choice, loss-minimization, maximizing gain).

Once sufficient instances are learned, decision-makers

retrieve and generalize from these instances to evaluate

alternatives, make a decision, and execute the task. As for

learning, the generalization process is constrained by

mechanisms with the cognitive architecture, in this case

partial matching and blending.

The process of feedback involves updating the outcome

slot of the chunk according to the post-hoc generated

utility of the decision. Thus, when decision-makers are

confronted with similar situations while performing a task,

they gradually abandon general heuristics in favor of

improved instance-based decision-making processes

(Gonzalez & Lebiere, 2005). IBL methodology has been

used in a number of research applications including the

AFRL 711 HPW/ RHA’s model of Predator operators. It

can also be used to represent individual differences in

experience and capacity by providing and parameterizing

content from a single individual (e.g., Sanner et al., 2000;

Wallach & Lebiere, 2003).

4. Malware Identification Task

We created a dataset identified by the popular malware

report by Mandiant Inc. (2013). Dynamic malware

analysis was performed using the ANUBIS (2014)

sandbox. From the ANUBIS data, a total of 1740 malware

attributes were identified (see Table 1 for a select sample).

Table 1: Sample attributes from Anubis malware sandbox

ATTRIBUTES INTUITION

hasDynAttrib Has generic attribute in the analysis

usesDll(X) Malware uses a library X

regAct Conducts an activity in the registry

fileAct Conducts an activity on a certain file

proAct Malware initiates or terminates a process

We studied all families where there were at least 5 samples

successfully processed by ANUBIS, which provided 15

families and 137 samples (see Table 2).

Table 2. Samples of malware families.

 FAMILY NUMBER OF SAMPLES

BISCUIT 6

BOUNCER 5

COOKIEBAG 6

GOGGLES 5

GREENCAT 22

NEWSREELS 14

STARSYPOUND 21

TABMSGSQL 7

TARSIP-ECLIPSE 7

TARSIP-MOON 5

WEBC2-BOLID 5

WEBC2-CSON 8

WEBC2-GREENCAT 6

WEBC2-HEAD 9

WEBC2-YAHOO 11

Based on malware family description, we associated a set

of tasks with each malware family (that each malware in

that family was designed to perform). In total, 30 malware

tasks were identified for the given malwares (see Table 3).

On average, each family performed 9 tasks.

Table 3. List of malware tasks.

 TASK INTUITION

beacon() beacons back to adversary’s system

bruteForceSqlLogin() uses a brute-force technique

capturesKeystrokes() Captures keystrokes from the target

createModifyFiles() Designed to modify target’s files

createProc() Designed to create a new process

Download() Download files to the target

encryptedComms() Uses encrypted communication

enumFiles() Enumerate files on the target

enumUsers() Enumerate users on the target

exeArbitCmds() Execution of arbitrary commands

gatherSysInfo() Gathers system information

maintPersist() Maintains persistence on the target

openListenPort() Opens a listening port on the target

procEnum() Enumerates running processes

procTerm() Allows termination of processes

redirNwTraffic() Re-directs target’s network traffic

sendPwdInfo() Sends target password information

serviceEnum() Enumerates target’s services

servieManip() Manipulates target’s services

shell() Provides adversary remote shell

smartCardMonitor() Monitors target for smart card use

sqlQueryToAttacker() Conducts an SQL query

SSL() Uses SSL for communication

sysEnum() Enumerates systems on a network

takeScreenShots() Takes screen shots

uninstall() Includes an uninstall routine

updateMwCfg() Update the malware’s configuration

upload() Designed to upload files from target

usesHttp() Uses HTTP for communications

webC2() Uses a web-based C&C

upload Designed to upload files from target

4.1 Decision Tree

For baseline comparison to the cognitive models, we first

implemented a decision tree. This hierarchical recursive

partitioning algorithm is widely used for classification

problems. The decision tree finds the attribute that

maximizes information gain at each split. The total entropy

is the weighted (fraction of samples in each split) sum of

the two entropies. The attribute that minimizes this entropy

(in turn maximizing information gain) is the best split

attribute. We calculated the entropy for each split to

be: 𝐸 = ∑ −𝑝(𝑥) × log 𝑝(𝑥)𝑓 . Each node in the tree is

divided into two groups, one having the best split attribute

and the other which does not have that attribute. In order

to avoid over-fitting, the terminating criteria was set to less

than 5% of total samples (i.e., the node with less than 5%

of total samples is declared as a leaf node).

During the testing phase, for a new malware sample, we

start from the root of the trained tree and for each node we

see if the best split attribute is present in the test sample; if

yes we assign the sample to Group 1 otherwise we assign

it to Group 2. We continue this procedure iteratively until

we reach a leaf node. Since labels are not used during

training to build the tree, the leafs may or may not be pure,

thus generating a probability distribution over the malware

families. This family distribution is assigned to the test

samples. Tasks are then determined by summing up the

probability of the families associated with the task, with a

threshold set at 50%.

4.2 Naïve Bayes Classifier

Due to its similarity to ACT-R’s activation equation, we

decided to use a Naïve Bayes classifier as a secondary

baseline approach. Naïve Bayes is a probabilistic classifier

that uses Bayes theorem with an independent attribute

assumption. During training we compute the conditional

probabilities of a given attribute belonging to a particular

family. We also compute the prior probabilities for each

family i.e., the fraction of the training data belonging to

each family. More specifically, given a malware sample 𝑆

with a set of attributes (𝑎1, 𝑎2, … . . 𝑎𝑑), the probability that

the given sample belongs to family (𝑓) is calculated

as 𝑃 (
𝑓

𝑆
) =

𝑃(
𝑆

𝑓
)×𝑃(𝑓)

𝑃(𝑆)
. For a given sample the total

probability 𝑃(𝑆) doesn’t vary, so we can safely ignore it.

Naïve Bayes assumes that the attributes are statistically

independent hence the likelihood formula can be written

in the simplified form 𝑃 (
𝑓

𝑆
) = 𝑃(𝑓) × ∏ 𝑃 (

𝑎𝑖

𝑓
)𝑑

𝑖=1 . This

generates a distribution over families for a given sample.

During testing, the probability of a malware sample

belonging to a family is just the product of the individual

attribute belonging to that family and its prior probability.

The association of the test sample with each malware

family is computed, generating a distribution over

malware families and the tasks associated with the sample

are determined in a similar way to that of decision tree.

5. Cognitive Models

Two distinct models were created that leveraged separate

parts of the activation calculus. The models are built using

the inferential mechanisms of the ACT-R cognitive

architecture and learn to recognize malware samples based

upon a limited training schedule similar to the actual

experiences of a human analyst. Given a malware sample,

the model generates a probability distribution over a set of

malware families, then infers a set of likely malware

intents based upon that distribution. The models primarily

leverage the sub-symbolic mechanisms of the ACT-R

architecture, especially the activation calculus underlying

retrieval from declarative memory. Each sample is

represented by its set of static and dynamic attributes. The

model operates in two stages: first by family, then by

intent. To assign family, the model generates a probability

distribution over the set of possible malware families from

the activation in long-term memory of the chunks

representing instances of those families. To assign intent

in a second pass the model uses a similar process to

generate likely intents from a representation linking each

malware family to known intents. How they accomplish

these two stages, specifically which representations and

mechanisms are used, distinguish the two models.

A rule-based model leverages the Bayesian memory

activation mechanisms. Its representation is relatively

compact, involving a single chunk for each family whose

associations abstract the various instances belonging to

that category, but whose associations need to be computed

and do not involve temporal discounting and other

adaptive features (see Thomson & Lebiere, 2013). The

instance-based model is based on more direct, incremental

learning that accumulates malware instances in memory

and leverages neurally-plausible pattern matching

processes such as partial matching and blending (Lebiere

et al., 2013) but is less parsimonious with storage and thus

has potential scalability issues for large data sets.

5.1 Rule-Based Model

This ACT-R model is not strictly rule-based because it

does not in any way include a rule that determines its

judgment, e.g., in the way that the decision tree is a

representation of a hierarchical decision procedure that

repeatedly partitions the attribute space in subcategories.

Rather, this model is called rule-based because each family

is represented as a single chunk, and the subsymbolic

information associated with that chunk, specifically the

base-level and strengths of associations, constitute an

implicit definition of belonging to that family. Those

parameters can be learned incrementally, or they can be set

to reflect the aggregate statistics of an entire training

corpus. We followed the latter procedure. Specifically,

the base-level associated with family chunk f, representing

the a priori probability of a malware sample belonging to

that family, is set to the log of the Bayesian prior ln(p(f)).

Similarly, the strength of association from malware

attribute a to family f is set to the log-likelihood ratio

ln(p(a|f)/p(a)). These strengths of association are

multiplied by the attentional focus Wa associated with

each attribute to determine the total activation flowing

from the set of attributes associated with the current

malware to the family chunk. Together, base-level and

spreading activation determine the total activation of the

family chunk f, in turn determining the probability

associated with that family through the Boltzmann

(softmax) distribution. As for the baseline models, intent

probabilities are then determined by summing up the

probabilities of families associated with that intent, with

the same threshold of 50% determining a positive intent

identification.

5.2 Instance-Based Model

This model follows the instance-based learning theory

(IBL; Gonzalez, Lerch, and Lebiere, 2003) that is

particularly relevant to modeling naturalistic decision

making in complex dynamic situations. The instance-

based approach is an iterative learning method that reflects

the cognitive process of accumulating experiences and

using them to make decisions. In this case a chunk is

created for each malware instance rather than each

malware family. Thus it is a straightforward instance of

online learning where each new experience results in a

new memory chunk. Each chunk represents the set of

attributes together with the family identification. The

base-level activation of each chunk is learned by to the

mechanism described in the introduction. The power law

decay makes it sensitive to the recency of presentation,

allowing both for old malware instances to quickly decay

away as well as for new ones to rapidly reach prominence.

If the same instance (i.e., same attributes and family) is

presented multiple times, the base-level will also reflect

the frequency of presentation. Strengths of associations

are not used: rather the effect of context, as represented by

the set of attributes of the current malware, will be

reflected through the partial matching mechanism. The

match score of a chunk to the current context will reflect

the similarity between the attribute sets of the current

malware sample and each instance in memory, as

measured by the dot product between the respective

attribute vectors. The retrieval process then extracts from

the chunk its family identification. The blending

mechanism computes a probability distribution over all

possible family values, reflecting the activation of each

instance. Thus the same factors as in the rule-based model

are reflected in the computation, specifically the frequency

of each malware and overlap in attribute space, but using

distinct architectural mechanisms.

The second part of the process, going from probability

distribution over families to intents, is entirely different.

Instead of simply summing up the probabilities of each

families associated with a given intent, the instance-based

learning approach is also applied for this second step. This

time, the instances learn to associate the probability

distribution over families computed for the given malware

with its actual intents. Given a new malware instance, a

retrieval process matches its family probability

distribution against those of previous instances, and

extracts the probability of each intent using the same

blending process used for generating the family

probabilities. Intents reaching the 50% threshold are again

selected. The key aspect of this process is that it is now

sensitive to the entire probability distribution over families

rather than simply a sum of its values.

6. Results

We compared both the instance-based and rule-based

models against both the decision tree and naïve Bayes

classifiers for both leave-one-out cross-validation and

leave-one-family-out cross-validation. In the leave-one-

out cross-validation, for each of the 137 malware samples,

we trained 136 samples and tested on the remaining one.

This procedure was repeated for all samples and the results

were averaged. Similarly, in the leave-one-family-out we

trained on 14 families and tested on the 15th.

Pairwise t-tests (t(136)) for the leave-one-out cross-

validation showed that instance-based > rule-based >

decision tree > naïve Bayes model (all p < .01; see Figure

1). The instance-based model outperforms baseline

approaches in detecting 9 of 15 families with an average

F1 difference greater than 0.3 with at least 99% confidence

(t(136) = 4, p = .01), while neither the decision tree nor

naïve Bayes methods significantly outperformed the

instance-based model on any family. We argue that

instance-based model is superior because it uses the full

pattern of the probability distribution over families rather

than just a sum (as in the rule-based model).

Similarly, pairwise t-tests for the leave one-family out

cross-validation found that instance-based ~ rule-based >

decision-tree ~ naïve Bayes (p < .01; see Figure 2).

The results of these analyses indicate that the cognitively-

inspired models performed quantitatively better than the

baseline machine learning approaches. Also, in the leave-

one-out analyses, the iterative nature of the instance-based

cognitive model allowed for it to reach near-asymptotic

performance (and its best when compared against base-

line approaches) after only 40% of the training instances.

We also investigated which features of families may cause

the cognitive models to exhibit superior performance over

baseline approaches. Figure 3 presents a similarity matrix

between malware families. Similarity was computed by

generating the Kullback-Leibler Divergence of intents’

ground truth between families, averaged over all instances

of a family. KLD is a non-symmetric measure of the

difference between probability distributions. It is

important to note that a family is not always maximally

similar to itself: each cell contains the average of the

similarities between each pair of malware in that family.

By examining the family-wise performance for leave one

out cross validation (see Figure 1) we determined that the

decision tree has difficulty predicting malware tasks from

BISCUIT, WEBC2-CSON, WEBC2-GREENCAT,

TABMSGSQL, COOKIEBAG and BOUNCER. As seen

in Figure 3, these families have similarity values to each

other, leading to substantial confusion within the decision

tree. For instance, BISCUIT (top row) is highly similar to

7 other families. It is thus likely that the decision tree will

confuse one of the other families for BISCUIT, and

potentially vice versa. In essence, the decision tree is a

purely symbolic reasoned and will only work accurately if

the categories are linearly separate in the dimensions of its

representation (i.e., malware features). It fails in these

families because there is no logical condition that can be

designed to separate them.

The Naïve Bayes model does not fall prey to the same

family confusability as the decision tree as it is an

inherently statistical algorithm. Instead, from Figure 1 we

determined that Naïve Bayes had difficulty predicting

malware tasks from WEBC2-YAHOO, NEWSREELS,

BOUNCER and STARSPOUND. These families are not

as similar (as seen in Figure 3), so these families are in

some sense uncorrelated. Naïve Bayes has one core

assumption, namely that family attributes are statistically-

independent. This assumption is incorrect for the given

Figure 3. Leave one family out cross-validation.

Figure 2. Leave one out cross-validation. Figure 1. Similarity matrix for all 15 malware families.

malware analyses. The families that the Naïve Bayes

algorithm has difficulty judging, while not highly

correlated, share a relatively large percentage of their

attributes with all families when compared against other

families from which it can correctly classify.

7. Discussion

We presented two models using cognitively-inspired

inference scaled beyond traditional memory limitations in

order to rapidly identify malware samples. When

compared against baseline machine learning algorithms

such as decision trees and Naïve Bayes, our cognitive

models were better able to classify malware samples

across all 15 sample families. The baseline machine

learning algorithms each exhibited difficulties with several

families that our cognitive models did not. This is because

each is fundamentally limited to the feature set chosen by

the modeler, a problem common to machine learning.

By leveraging the temporal dynamics (e.g., recency and

frequency) of the cognitively-inspired base-level equation,

we were better able to classify highly-similar families than

the decision tree. In addition, while the base-level equation

can be explained in Bayesian terms and generally

reproduces behavior consistent with Bayesian reasoning,

in the case of the instance-based model, it is not limited to

assumptions of statistical independence. Instead, the

instance-based model acts as a universal approximator that

does not depend on any kind of linear separation: the more

instances that the model perceives, the more accurately it

will interpolate between them in a multidimensional space.

It is interesting that the rule-based model performs

substantially better than the Naïve Bayes model because

the spreading activation equations has the same

independence assumption between sources as does the

Naïve Bayes algorithm. We argue that the base-level

learning component and weighting of the spreading

activation equation that compensates, providing the

benefits of both a decision-tree and Naïve Bayes classifier

without all the drawbacks. For instance, the weight of the

spreading activation is effectively forced to be 1 in the

Naïve Bayes classifier. By varying this weight, the ACT-

R model is capable of determining the relative importance

between the prior and posterior likelihoods.

Furthermore, our models were able to reach peak

performance when compared against baseline machine

learning models after only 40% of stimuli were presented.

This is not to argue that cognitively-inspired models are a

panacea for malware identification or a clear improvement

over machine learning techniques. While our models were

able to learn with fewer samples, the processing overhead

of situating our models within a cognitive architecture

means that they do not necessarily operate faster than

machine learning techniques, especially when scaled to

larger datasets. That criticism aside, we have elsewhere

argued that cognitive models work best when used to

supplement human-in-the-loop operations whereby these

models take input initially processed by machine learning

algorithms (such as deep learning) to do some dimension

reduction and provide the cognitive model with loosely

structured data from which it may draw inferences

(Thomson, Lebiere, & Bennati, 2014). Also, due to the

rapid learning across sparse datasets, the ACT-R model

has been used to provide top-down feedback to deep

learning algorithms (Vinokurov et al., 2011).

Our work substantially differs from malware family

classification as we look to infer the tasks a malware was

created to perform directly whereas malware family

classification is mainly used to help guide an analyst into

identifying tasks by first identifying a family. It is

noteworthy that we were able to train our classifiers on

data of malware of different families than the malware we

are attempting to classify and were still able to obtain a set

of tasks with over 60% recall on the best-performing

cognitive models. Further, as a side-effect, we created a

probability distribution over malware families as part of an

intermediate step – though the ultimate inference of

malware tasks is independent of how the historical

malware families are classified by family. This suggests

that at this point machine learning, cognitive models and

human experts provide complementary strengths that

should be leveraged for the challenging problems facing

us in the cyber security domain.

8. Acknowledgement

This work was sponsored by the Intelligence Advanced

Research Projects Activity via DOI contract number

D10PC20021. The views and conclusions contained

herein are those of the authors and should not be

interpreted as necessarily representing the official policies

or endorsements, either expressed or implied, of IARPA,

DOI, or the U.S. Government.

9. References

Anderson, J. R., Bothell, D., Byrne, M. D., Douglass, S.,

Lebiere, C., & Qin, Y. 2004. An integrated theory of

mind. Psychological Review, 11(4), 1036-1060.

Bayer, U., Comparetti, P.M., Hlauschek, C., Krügel, C.,

Kirda, E. 2009. Scalable, behavior- based malware

clustering. In NDSS.

Chase, W. G., & Simon, H. A. 1973. Perception in Chess.

Cognitive Psychology, 4, 55-61.

Firdausi, I; Lim, C.; Erwin, A; & Nugroho, AS. 2010.

Analysis of Machine learning Techniques Used in

Behavior-Based Malware Detection. In Proceedings of

Second Annual Conference of Advances in Computing,

Control and Telecommunication Technologies. 201-203.

Gonzalez, C., Lerch, J. F., & Lebiere, C. 2003. Instance-based

learning in dynamic decision making. Cognitive Science,

27, 591-635.

Jilk, D. J., Lebiere, C., O’Reilly, R. C., & Anderson, J. R.

2008. SAL: An explicitly pluralistic cognitive

architecture. Journal of Experimental and Theoretical

Artificial Intelligence, 20(3), 197-218.

Kinable, J., Kostakis, O. 2011. Malware classification based

on call graph clustering. J. Comput. Virol. 7(4), 233–245.

DOI 10.1007/s11416-011-0151-y.

Kong, D., & Yan, G. 2013. Discriminant malware distance

learning on structural information for automated

malware classification. In: Proceedings of the 19th ACM

SIGKDD international conference on Knowledge

discovery and data mining, 1357–1365. ACM, New

York, NY, USA. DOI 10.1145/2487575.2488219.

Lebiere, C. 1999. The dynamics of cognition: An ACT-R

model of cognitive arithmetic. Kognitionswissenschaft. 8

(1), 5-19.

Lebiere, C., Gonzalez, C., & Martin, M. 2007. Instance-based

decision making model of repeated binary choice.

In Proceedings of the 8th International Conference on

Cognitive Modeling. Ann Arbor, Michigan, USA.

Lebiere, C., Gonzalez, C., & Warwick, W. 2009. A

Comparative Approach to Understanding General

Intelligence: Predicting Cognitive Performance in an

Open-ended Dynamic Task. In Proceedings of the

Second Artificial General Intelligence Conference (AGI-

09). Amsterdam-Paris: Atlantis Press.

Lebiere, C., Pirolli, P., Thomson, R., Paik, J., Rutledge-

Taylor, M., Staszewski, J., & Anderson, J. R. 2013. A

functional model of sensemaking in a neurocognitive

architecture. Computational Intelligence &

Neuroscience.

Lebiere, C, Bothell, D., Morrison, D., Oltramari, A., Martin,

M., Romero, O., Thomson, R., & Vinokurov, J. 2015.

Strong Cogsci: Guidance from cognitive science on the

design of a test of Artificial Intelligence. Proceedings of

the Beyond the Turing Test Workshop, AAAI-2015.

Li, P., Liu, L., Gao, D., & Reiter, M. K. 2010. On Challenges

in Evaluating Malware Clustering. Proceedings of the

13th International Symposium on Intrusion Detection,

Ottawa, Canada.

Mandiant. 2013. APT1: Exposing One of China's Cyber

Espionage Units. Mandiant Corp. URL:

http://intelreport.mandiant.com/ retrieved 1/21/2014.

Miller, G. A. 1956. "The magical number seven, plus or

minus two: Some limits on our capacity for processing

information. Psychological Review, 63 (2), 81–97.

Perdisci, P., & ManChon, U. 2012. VAMO: Towards a Fully

Automated Malware Clustering Validity Analysis. In

Proceedings of the 28th Annual Computer Security

Applications Conference.

Reitter, D., & Lebiere, C. (2010). Accountable Modeling in

ACT-UP, a Scalable, Rapid-Prototyping ACT-R

Implementation. In Proceedings of the 2010

International Conference on Cognitive Modeling.

Sanner, S., Anderson, J. R., Lebiere, C., & Lovett, M. 2000.

Achieving efficient and cognitively plausible learning in

backgammon. In Proceedings of the Seventeenth

International Conference on Machine Learning, 823-

830. San Francisco: Morgan Kaufmann.

Sikorski, M., Honig, A. 2012. Practical Malware Analysis:

The Hands-On Guide to Dissecting Malicious Software.

No Starch Press, San Francisco, CA, USA.

Taatgen, N., Lebiere, C. & Anderson, J.R. 2006. Modeling

paradigms in ACT-R. In Sun, R. (Ed) Cognition and

Multi-Agent Interaction: From Cognitive Modeling to

Social Simulation. NY, NY: Cambridge Press.

Tamersoy, A., Roundy, K. A., & Horng, D. P. 2014. Guilt By

Association: Large Scale Malware Detection by Mining

File-Relation Graphs". In ACM SIGKDD Conference on

Knowledge Discovery and Data Mining (KDD)

2014. New York City, NY.

Thomson, R. Lebiere, C., & Bennati, S. 2014. Human, Model,

and Machine: A Complementary Approach to Big

Data. In Association for Computing

Machinery Proceedings of the IARPA Workshop on

Human Centered Big Data Research. Raleigh,

NC. doi:10.1145/2609876.2609883

Thomson, R. & Lebiere, C. 2013. Constraining Bayesian

Inference with Cognitive Architectures: An Updated

Associative Learning Mechanism in ACT-R.

In Proceedings of the 35th Annual Conference of

the Cognitive Science Society. Berlin, Germany.

Vinokurov, Y., Lebiere, C., Herd, S. A., & O'Reilly, R. C.

2011. A Metacognitive Classifier Using a Hybrid ACT-

R/Leabra Architecture. Lifelong Learning, AAAI

Workshops.

Wallach, D. & Lebiere, C. 2003. Conscious and unconscious

knowledge: Mapping to the symbolic and subsymbolic

levels of a hybrid architecture. In Jimenez, L. (Ed.)

Attention and Implicit Learning. Amsterdam,

Netherlands: John Benjamin Publishing.

Author Biographies

ROBERT THOMSON is research faculty at Carnegie

Mellon University in Pittsburgh, PA and works with the

Naval Research Laboratory in Washington, DC. His main

research interests are learning theories and the structure of

memory, particularly their application to computational

cognitive architectures and robotics.

CHRISTIAN LEBIERE is research faculty in the

Psychology Department at Carnegie Mellon University.

His main research interests are computational cognitive

architectures and their applications to psychology,

artificial intelligence, human-computer interaction,

decision-making, intelligent agents, and cognitive robotics.

PAULO SHAKARIAN Paulo Shakarian is an Assistant

Professor at Arizona State University. His research areas

include artificial intelligence, social network analysis, and

cyber security. He has written two books, including

Elsevier's "Introduction to Cyber-Warfare" and his social

network analysis software is used by the Chicago Police.

STEFANO BENNATI is a researcher at Carnegie Mellon

University in Pittsburgh, PA.

ERIC NUNES is a Ph.D. student at Arizona State

University in Tempe, AZ.

http://en.wikipedia.org/wiki/George_Armitage_Miller

