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ABSTRACT: Malware reverse-engineering is an important type of analysis in cybersecurity.  Rapidly identifying the 

tasks that a piece of malware is designed to perform is an important part of reverse engineering that is generally 

manually performed as it relies heavily on human intuition This paper describes how the use of cognitively-inspired 

inference can assist in automating some of malware task identification. Computational models derived from human-

inspired inference were able to reach relatively higher asymptotic performance faster than traditional machine learning 

approaches such as decision trees and naïve Bayes classifiers. Using a real-world malware dataset, these cognitive 

models identified sets of tasks with an unbiased F1 measure of 0.94. Even when trained on historical datasets of malware 

samples from different families, the cognitive models still maintained the precision of decision tree and Bayes classifiers 

while providing a significant improvement to recall. 
 

1. Introduction 

Malware reverse-engineering is an important task for 

cyber-security. While large amounts of data can be sorted 

and filtered using machine learning techniques, identifying 

the tasks that a piece of malware is designed to perform is 

manually performed as it relies heavily on human intuition 

(Sikorski & Honig, 2012). The complexity of this task 

increases substantially when you consider that malware is 

constantly evolving, and that how each malware instance 

is classified may be different based on each cyber-security 

expert’s own particular background.  
 

Malware classification occurs in two stages: the first is 

determining whether a given binary is malicious 

(Tamersoy, Roundy & Horng 2014; Firdausi, Lim, Erwin, 

& Nugroho, 2010) and then classifying this malware by 

family (Bayer, Comparette, Hlauschek, et al., 2011; 

Kinable & Kostakis, 2011; Kong & Yan, 2013). Malware 

family classification has suffered from two primary draw-

backs: (1) disagreement about malware family ground 

truth as different analysts (e.g. Symantec and MacAfee) 

cluster malware into families differently; and (2) previous 

work has shown that some of these approaches mainly 

succeed in “easy to classify” samples (Perdisci, 2012; Li, 

Liu, Gai & Reiter, 2010), where “easy to classify” is a 

family that is agreed upon by multiple malware firms.  In 

this paper, we look to infer the specific tasks a piece of 

malware was designed to carry out. While we do assign 

malware to a family, to avoid the two aforementioned 

issues the family partition is done probabilistically and the 

ground truth compared to the tasks each malware 

performed rather than an assignment to a family. 

 

The ability to stably and accurately sort substantial 

information from the environment is a key element of 

human cognition. It is generally accurate even with 

incomplete evidence and limited feedback. It thus seems 

beneficial to examine features of human cognition that 

may guide our development of algorithms to sort through 

the large amounts of data generated by malware analyses.  
 

We argue that malware identification techniques can be 

improved using cognitively-inspired inference. Cognitive 

architectures such as ACT-R (Anderson, Bothell, Byrne, 

et al., 2004) have previously been shown to effectively 

model human cognition on a variety of decision-making 

(Lebiere, Gonzalez, & Martin, 2007) and general 

intelligences tasks (Lebiere, Gonzalez, & Warwick 2009), 

including complex domains such as intelligence analysis 

(Lebiere, Pirolli, Thomson, et al., 2013).  Further, due to 

the ability of these models to mimic human cognition, they 

have been shown to perform well on reasoning tasks where 

historical knowledge is sparse, limited, or dissimilar to the 

current context (Taatgen, Lebiere, & Anderson, 2006). 
 

An example of the efficiency gained through cognitive 

inference is the cognitive model of backgammon that is 

able to learn to perform at a highly skilled level after 

playing a few hundred games, as opposed to tens-of-

thousands to millions of games for the equivalent machine 

learning algorithms to reach a comparable performance 

(Sanner et al., 2000). The key aspect of cognitive inference 

that is leveraged to achieve this efficiency and capability 

is the combination of symbolic problem decomposition 

with statistical learning, made possible by the tight 

integration of symbolic and subsymbolic representations 

in cognitive architectures such as ACT-R. 
 

In this paper we leverage the cognitively-inspired 

inference mechanisms in ACT-R to identify the tasks 

associated with a piece of malware. Using a real-world 

malware dataset (Mandiant Corp, 2013), our cognitive 

models identified sets of tasks with an unbiased F1 

measure of 0.94 – significantly out-performing baseline 

approaches including a decision-tree and naïve Bayes 

classifier while using only highly scalable online learning.  



2.  Cognitively-Inspired Inference 

Machine learning algorithms like deep learning are 

massively parallel and can cope with large amounts of 

data; however they are limited because of their relatively 

primitive semantics and thus are best suited for the initial 

filtering and structuring of data. On the other end of the 

spectrum, while human inference has memory and 

attentional limitations, cognitive processes are powerful, 

where adaptive heuristic strategies are adopted to 

accomplish the tasks under strong time constraints using 

limited means. An advantage of using a cognitively-

inspired model to describe inferential processes is that the 

underling architecture provides the benefits of human-

inspired inference while allowing for more flexibility over 

constraints such as human working memory. 
 

There is a valid use of cognitive architectures for artificial 

intelligence that makes use of basic cognitive mechanisms 

while not necessarily making use of all constraints of the 

architecture.  Reitter & Lebiere (2010) introduced a 

modeling methodology called accountable modeling that 

recognizes that not every aspect of a cognitive model is 

reflected in measurable performance. In that case, it is 

arguably better to specifically state which aspects of the 

model are not constrained by data, and rather than mock 

up those aspects in plausible but impossible to validate 

manner, simply treat them as unmodeled processes. This 

approach results in simpler models with a clear link 

between mechanisms used and results accounted for, 

rather than being obscured by complex but irrelevant 

machinery. For instance, while the models described in 

this paper use activation dynamics well-justified against 

human behavioral and neural data to account for features 

such as temporal discounting, we do not directly model 

working memory constraints to allow for more features of 

malware and more instances to be present in memory. 

3. The ACT-R Cognitive Architecture 

We leveraged features of the declarative memory and 

production system of the ACT-R architecture to complete 

malware identification. These systems store and retrieve 

information that correspond to declarative and procedural 

knowledge, respectively. Declarative information is the 

kind of knowledge that a person can attend to, reflect upon, 

and usually articulate in some way. Conversely, 

procedural knowledge consists of the skills we display in 

our behavior, generally without conscious awareness. 

Modules are encapsulated and may process information in 

parallel within one another. However, there are two serial 

bottlenecks in processing: only one production may be 

executed at a time, and the contents of a module can only 

be accessed through a buffer that can only contain one 

chunk at a time. 

3.1  Declarative Knowledge 

Declarative knowledge is represented formally in terms of 

chunks. Chunks have an explicit type, and consist of an 

ordered list of slot-value pairs of information. Chunks are 

retrieved from declarative memory by an activation 

process: 𝑃𝑖 = (𝑒𝐴𝑖 𝑠⁄ ) (∑ 𝑒𝐴𝑗 𝑠⁄
𝑗 )⁄  where Pi is the 

probability that chunk i will be recalled, Ai is the activation 

strength of chunk i, ∑Aj is the activation strength of all of 

eligible chunks j, and s is momentary noise inducing 

stochasticity by simulating background neural activation.  
 

The activation of a given chunk i (Ai) is governed by its 

summed base-level activation (Bi) reflecting its recency 

and frequency of occurrence, spreading activation (Si) 

reflecting the effects that buffer contents have on the 

retrieval process, partial matching score (Pi) reflecting the 

degree to which the chunk matches the retrieval request, 

and finally a noise value (Ɛi) including both transient and 

permanent noise: 𝐴𝑖 =  𝐵𝑖 +  𝑆𝑖 +  𝑃𝑖 +  Ɛ𝑖. Sub-

symbolic activations approximate Bayesian inference by 

framing activation as log-likelihoods, with base-level 

activation (Bi) as the prior, the sum of spreading activation 

and partial matching as the likelihood adjustment factor(s), 

and the final chunk activation (Ai) as the posterior.  
 

A chunk’s base-level activation is computed by summing 

across the number of presentations n for chunk i the log of 

the time tj since the jth presentation discounted by decay 

rate d, with this an optional constant βi added to this value: 

𝐵𝑖 = ln(∑ 𝑡𝑗
−𝑑𝑛

𝑗=1 ) + β
𝑖
. Base-level activation 

corresponds to the Bayesian prior of a chunk’s activation. 

A benefit of base-level activation is that it provides an 

automated procedure for frequency-based strengthening as 

well as temporal discounting. 
 

The spread of activation (Si) is computed by the following 

equation: 𝑆𝑖 = ∑ ∑ 𝑊𝑘𝑗𝑆𝑗𝑖𝑗𝑘  where elements k being 

summed over are the set of buffers in the model, elements 

j being summed over are the chunks which are in the slots 

of the chunk in buffer k (these are referred to as the sources 

of activation), Wkj is the amount of activation from sources 

j in buffer k weighted by parameter W, and Sji is the 

strength of activation from chunk j to i.  Strengths of 

association correspond to the Bayesian log-likelihood of 

chunk i being relevant given context elements j. Sji is 

therefore defined as log(P(i|j)/log(P(i)). These associations 

are built up from experience, and they reflect how chunks 

co-occur in cognitive processing. The spread of activation 

from one cognitive structure to another is determined by 

weighting values W on the associations among chunks, 

which determine the rate of activation flow.  
 

Chunks are also compared to the desired retrieval pattern 

using a partial matching mechanism (Pi) that subtracts 

from the activation of a chunk i its degree of mismatch Mki 

to the desired pattern k, additively for each component and 

chunk value: 𝑃𝑖 =  ∑ 𝑃𝑀𝑘𝑖𝑘 . Both the spreading 

activation and partial matching mechanisms serve to 

automate efficient contextual priming effects.  

 



While the most active chunk is usually retrieved, a 

blending process (i.e., a blended retrieval; see Lebiere, 

1999; Wallach & Lebiere, 2003) can also be applied that 

returns a derived output V reflecting the similarity Sij 

between the values of the content of all chunks i and 

compromise value j, weighted by their retrieval 

probabilities Pi reflecting their activations and similarity 

scores: 𝑉 =  𝑎𝑟𝑔𝑚𝑖𝑛 ∑ 𝑃𝑖(1 − 𝑆𝑖𝑗)𝑖
2
. This process 

enables the generation of continuous values (e.g., 

probabilities) in a process akin to weighted interpolation.  

3.2  Procedural Knowledge 

Production rules are used to represent procedural 

knowledge. They represent and apply cognitive skill in the 

current context, including how to access and modify 

information in buffers and transfer it to other modules. 

Each production rule is a set of conditions and actions 

which are analogous to IF-THEN rules. Conditions specify 

structures that are matched in buffers, and correspond to 

information from the external world or other internal 

modules. Matching production rules effectively means: if 

the conditions of a given production match the current 

state then perform the following actions.  

3.3  Instance-Based Learning 

Instanced-based learning (IBL) is the theory that people 

have a general-purpose mechanism whereby situation-

action-outcome observations are stored and retrieved from 

memory. IBL offers constraints on explanation by 

grounding implicit learning within the mechanisms of a 

cognitive architecture. The dynamics of an instance’s sub-

symbolic activations (e.g., frequency and recency in the 

base-level equation) provide a scientifically-justified 

mechanism for determining which instances are likely to 

be retrieved for a given situation, and also can explain why 

they were retrieved and what factors came into play. 
 

These instances are represented with slots containing the 

conditions (contextual cues), the decision made (an 

action), and the outcome of the decision (the utility of the 

decision). Before sufficient task-relevant knowledge is 

available, alternatives are evaluated using heuristics (e.g., 

random choice, loss-minimization, maximizing gain). 

Once sufficient instances are learned, decision-makers 

retrieve and generalize from these instances to evaluate 

alternatives, make a decision, and execute the task. As for 

learning, the generalization process is constrained by 

mechanisms with the cognitive architecture, in this case 

partial matching and blending. 
 

The process of feedback involves updating the outcome 

slot of the chunk according to the post-hoc generated 

utility of the decision. Thus, when decision-makers are 

confronted with similar situations while performing a task, 

they gradually abandon general heuristics in favor of 

improved instance-based decision-making processes 

(Gonzalez & Lebiere, 2005). IBL methodology has been 

used in a number of research applications including the 

AFRL 711 HPW/ RHA’s model of Predator operators. It 

can also be used to represent individual differences in 

experience and capacity by providing and parameterizing 

content from a single individual (e.g., Sanner et al., 2000; 

Wallach & Lebiere, 2003). 

4. Malware Identification Task 

We created a dataset identified by the popular malware 

report by Mandiant Inc. (2013). Dynamic malware 

analysis was performed using the ANUBIS (2014) 

sandbox. From the ANUBIS data, a total of 1740 malware 

attributes were identified (see Table 1 for a select sample). 
 

Table 1: Sample attributes from Anubis malware sandbox 

ATTRIBUTES          INTUITION 

hasDynAttrib Has generic attribute in the analysis 

usesDll(X) Malware uses a library X 

regAct Conducts an activity in the registry 

fileAct Conducts an activity on a certain file 

proAct Malware initiates or terminates a process 
 

 

We studied all families where there were at least 5 samples 

successfully processed by ANUBIS, which provided 15 

families and 137 samples (see Table 2). 

 
 

Table 2. Samples of malware families. 

    FAMILY NUMBER OF SAMPLES 

BISCUIT 6 

BOUNCER 5 

COOKIEBAG 6 

GOGGLES 5 

GREENCAT 22 

NEWSREELS 14 

STARSYPOUND 21 

TABMSGSQL 7 

TARSIP-ECLIPSE 7 

TARSIP-MOON 5 

WEBC2-BOLID 5 

WEBC2-CSON 8 

WEBC2-GREENCAT 6 

WEBC2-HEAD 9 

WEBC2-YAHOO 11 
 

Based on malware family description, we associated a set 

of tasks with each malware family (that each malware in 

that family was designed to perform). In total, 30 malware 

tasks were identified for the given malwares (see Table 3). 

On average, each family performed 9 tasks. 
 

Table 3. List of malware tasks. 

    TASK                     INTUITION 

beacon() beacons back to adversary’s system 

bruteForceSqlLogin() uses a brute-force technique 

capturesKeystrokes() Captures keystrokes from the target 

createModifyFiles() Designed to modify target’s files 

createProc() Designed to create a new process  

Download() Download files to the target 



encryptedComms() Uses encrypted communication 

enumFiles() Enumerate files on the target 

enumUsers() Enumerate users on the target 

exeArbitCmds() Execution of arbitrary commands  

gatherSysInfo() Gathers system information  

maintPersist() Maintains persistence on the target 

openListenPort() Opens a listening port on the target 

procEnum() Enumerates running processes 

procTerm() Allows termination of processes  

redirNwTraffic() Re-directs target’s network traffic 

sendPwdInfo() Sends target password information 

serviceEnum() Enumerates target’s  services  

servieManip() Manipulates target’s services 

shell() Provides adversary remote shell 

smartCardMonitor() Monitors target for smart card use 

sqlQueryToAttacker() Conducts an SQL query  

SSL() Uses SSL for communication 

sysEnum() Enumerates systems on a network 

takeScreenShots() Takes screen shots 

uninstall() Includes an uninstall routine 

updateMwCfg() Update the malware’s configuration 

upload() Designed to upload files from target 

usesHttp() Uses HTTP for communications 

webC2() Uses a web-based C&C 

upload Designed to upload files from target 

4.1  Decision Tree 

For baseline comparison to the cognitive models, we first 

implemented a decision tree. This hierarchical recursive 

partitioning algorithm is widely used for classification 

problems. The decision tree finds the attribute that 

maximizes information gain at each split. The total entropy 

is the weighted (fraction of samples in each split) sum of 

the two entropies. The attribute that minimizes this entropy 

(in turn maximizing information gain) is the best split 

attribute. We calculated the entropy for each split to 

be: 𝐸 =  ∑ −𝑝(𝑥) × log 𝑝(𝑥)𝑓 . Each node in the tree is 

divided into two groups, one having the best split attribute 

and the other which does not have that attribute. In order 

to avoid over-fitting, the terminating criteria was set to less 

than 5% of total samples (i.e., the node with less than 5% 

of total samples is declared as a leaf node).  
 

During the testing phase, for a new malware sample, we 

start from the root of the trained tree and for each node we 

see if the best split attribute is present in the test sample; if 

yes we assign the sample to Group 1 otherwise we assign 

it to Group 2. We continue this procedure iteratively until 

we reach a leaf node. Since labels are not used during 

training to build the tree, the leafs may or may not be pure, 

thus generating a probability distribution over the malware 

families. This family distribution is assigned to the test 

samples. Tasks are then determined by summing up the 

probability of the families associated with the task, with a 

threshold set at 50%. 

4.2  Naïve Bayes Classifier 

Due to its similarity to ACT-R’s activation equation, we 

decided to use a Naïve Bayes classifier as a secondary 

baseline approach. Naïve Bayes is a probabilistic classifier 

that uses Bayes theorem with an independent attribute 

assumption. During training we compute the conditional 

probabilities of a given attribute belonging to a particular 

family. We also compute the prior probabilities for each 

family i.e., the fraction of the training data belonging to 

each family. More specifically, given a malware sample 𝑆 

with a set of attributes (𝑎1, 𝑎2, … . . 𝑎𝑑), the probability that 

the given sample belongs to family (𝑓) is calculated 

as 𝑃 (
𝑓

𝑆
) =

𝑃(
𝑆

𝑓
)×𝑃(𝑓)

𝑃(𝑆)
. For a given sample the total 

probability 𝑃(𝑆) doesn’t vary, so we can safely ignore it. 

Naïve Bayes assumes that the attributes are statistically 

independent hence the likelihood formula can be written 

in the simplified form 𝑃 (
𝑓

𝑆
) =  𝑃(𝑓) × ∏ 𝑃 (

𝑎𝑖

𝑓
)𝑑

𝑖=1 . This 

generates a distribution over families for a given sample. 

 

During testing, the probability of a malware sample 

belonging to a family is just the product of the individual 

attribute belonging to that family and its prior probability. 

The association of the test sample with each malware 

family is computed, generating a distribution over 

malware families and the tasks associated with the sample 

are determined in a similar way to that of decision tree. 

5. Cognitive Models 

Two distinct models were created that leveraged separate 

parts of the activation calculus. The models are built using 

the inferential mechanisms of the ACT-R cognitive 

architecture and learn to recognize malware samples based 

upon a limited training schedule similar to the actual 

experiences of a human analyst. Given a malware sample, 

the model generates a probability distribution over a set of 

malware families, then infers a set of likely malware 

intents based upon that distribution. The models primarily 

leverage the sub-symbolic mechanisms of the ACT-R 

architecture, especially the activation calculus underlying 

retrieval from declarative memory. Each sample is 

represented by its set of static and dynamic attributes. The 

model operates in two stages: first by family, then by 

intent. To assign family, the model generates a probability 

distribution over the set of possible malware families from 

the activation in long-term memory of the chunks 

representing instances of those families. To assign intent 

in a second pass the model uses a similar process to 

generate likely intents from a representation linking each 

malware family to known intents.  How they accomplish 

these two stages, specifically which representations and 

mechanisms are used, distinguish the two models.   

 



A rule-based model leverages the Bayesian memory 

activation mechanisms. Its representation is relatively 

compact, involving a single chunk for each family whose 

associations abstract the various instances belonging to 

that category, but whose associations need to be computed 

and do not involve temporal discounting and other 

adaptive features (see Thomson & Lebiere, 2013). The 

instance-based model is based on more direct, incremental 

learning that accumulates malware instances in memory 

and leverages neurally-plausible pattern matching 

processes such as partial matching and blending (Lebiere 

et al., 2013) but is less parsimonious with storage and thus 

has potential scalability issues for large data sets. 

5.1  Rule-Based Model 

This ACT-R model is not strictly rule-based because it 

does not in any way include a rule that determines its 

judgment, e.g., in the way that the decision tree is a 

representation of a hierarchical decision procedure that 

repeatedly partitions the attribute space in subcategories.  

Rather, this model is called rule-based because each family 

is represented as a single chunk, and the subsymbolic 

information associated with that chunk, specifically the 

base-level and strengths of associations, constitute an 

implicit definition of belonging to that family.   Those 

parameters can be learned incrementally, or they can be set 

to reflect the aggregate statistics of an entire training 

corpus.  We followed the latter procedure.  Specifically, 

the base-level associated with family chunk f, representing 

the a priori probability of a malware sample belonging to 

that family, is set to the log of the Bayesian prior ln(p(f)).   
 

Similarly, the strength of association from malware 

attribute a to family f is set to the log-likelihood ratio 

ln(p(a|f)/p(a)).  These strengths of association are 

multiplied by the attentional focus Wa associated with 

each attribute to determine the total activation flowing 

from the set of attributes associated with the current 

malware to the family chunk. Together, base-level and 

spreading activation determine the total activation of the 

family chunk f, in turn determining the probability 

associated with that family through the Boltzmann 

(softmax) distribution.  As for the baseline models, intent 

probabilities are then determined by summing up the 

probabilities of families associated with that intent, with 

the same threshold of 50% determining a positive intent 

identification. 

5.2  Instance-Based Model 

This model follows the instance-based learning theory 

(IBL; Gonzalez, Lerch, and Lebiere, 2003) that is 

particularly relevant to modeling naturalistic decision 

making in complex dynamic situations. The instance-

based approach is an iterative learning method that reflects 

the cognitive process of accumulating experiences and 

using them to make decisions. In this case a chunk is 

created for each malware instance rather than each 

malware family.  Thus it is a straightforward instance of 

online learning where each new experience results in a 

new memory chunk.  Each chunk represents the set of 

attributes together with the family identification.  The 

base-level activation of each chunk is learned by to the 

mechanism described in the introduction.  The power law 

decay makes it sensitive to the recency of presentation, 

allowing both for old malware instances to quickly decay 

away as well as for new ones to rapidly reach prominence.   
 

If the same instance (i.e., same attributes and family) is 

presented multiple times, the base-level will also reflect 

the frequency of presentation.  Strengths of associations 

are not used: rather the effect of context, as represented by 

the set of attributes of the current malware, will be 

reflected through the partial matching mechanism.  The 

match score of a chunk to the current context will reflect 

the similarity between the attribute sets of the current 

malware sample and each instance in memory, as 

measured by the dot product between the respective 

attribute vectors.  The retrieval process then extracts from 

the chunk its family identification.  The blending 

mechanism computes a probability distribution over all 

possible family values, reflecting the activation of each 

instance.  Thus the same factors as in the rule-based model 

are reflected in the computation, specifically the frequency 

of each malware and overlap in attribute space, but using 

distinct architectural mechanisms. 
 
The second part of the process, going from probability 

distribution over families to intents, is entirely different.  

Instead of simply summing up the probabilities of each 

families associated with a given intent, the instance-based 

learning approach is also applied for this second step.  This 

time, the instances learn to associate the probability 

distribution over families computed for the given malware 

with its actual intents.  Given a new malware instance, a 

retrieval process matches its family probability 

distribution against those of previous instances, and 

extracts the probability of each intent using the same 

blending process used for generating the family 

probabilities.  Intents reaching the 50% threshold are again 

selected.  The key aspect of this process is that it is now 

sensitive to the entire probability distribution over families 

rather than simply a sum of its values. 

6. Results 

We compared both the instance-based and rule-based 

models against both the decision tree and naïve Bayes 

classifiers for both leave-one-out cross-validation and 

leave-one-family-out cross-validation. In the leave-one-

out cross-validation, for each of the 137 malware samples, 

we trained 136 samples and tested on the remaining one. 

This procedure was repeated for all samples and the results 



were averaged. Similarly, in the leave-one-family-out we 

trained on 14 families and tested on the 15th.  
 

Pairwise t-tests (t(136)) for the leave-one-out cross-

validation showed that instance-based > rule-based > 

decision tree > naïve Bayes model (all p < .01; see Figure 

1). The instance-based model outperforms baseline 

approaches in detecting 9 of 15 families with an average 

F1 difference greater than 0.3 with at least 99% confidence 

(t(136) = 4, p = .01), while neither the decision tree nor 

naïve Bayes methods significantly outperformed the 

instance-based model on any family. We argue that 

instance-based model is superior because it uses the full 

pattern of the probability distribution over families rather 

than just a sum (as in the rule-based model). 

 

Similarly, pairwise t-tests for the leave one-family out 

cross-validation found that instance-based ~ rule-based > 

decision-tree ~ naïve Bayes (p < .01; see Figure 2). 

The results of these analyses indicate that the cognitively-

inspired models performed quantitatively better than the 

baseline machine learning approaches. Also, in the leave-

one-out analyses, the iterative nature of the instance-based 

cognitive model allowed for it to reach near-asymptotic 

performance (and its best when compared against base-

line approaches) after only 40% of the training instances.  
 

We also investigated which features of families may cause 

the cognitive models to exhibit superior performance over 

baseline approaches. Figure 3 presents a similarity matrix 

between malware families. Similarity was computed by 

generating the Kullback-Leibler Divergence of intents’ 

ground truth between families, averaged over all instances 

of a family. KLD is a non-symmetric measure of the 

difference between probability distributions. It is 

important to note that a family is not always maximally 

similar to itself: each cell contains the average of the 

similarities between each pair of malware in that family.  
 

By examining the family-wise performance for leave one 

out cross validation (see Figure 1) we determined that the 

decision tree has difficulty predicting malware tasks from 

BISCUIT, WEBC2-CSON, WEBC2-GREENCAT, 

TABMSGSQL, COOKIEBAG and BOUNCER. As seen 

in Figure 3, these families have similarity values to each 

other, leading to substantial confusion within the decision 

tree. For instance, BISCUIT (top row) is highly similar to 

7 other families. It is thus likely that the decision tree will 

confuse one of the other families for BISCUIT, and 

potentially vice versa. In essence, the decision tree is a 

purely symbolic reasoned and will only work accurately if 

the categories are linearly separate in the dimensions of its 

representation (i.e., malware features). It fails in these 

families because there is no logical condition that can be 

designed to separate them. 
 

The Naïve Bayes model does not fall prey to the same 

family confusability as the decision tree as it is an 

inherently statistical algorithm. Instead, from Figure 1 we 

determined that Naïve Bayes had difficulty predicting 

malware tasks from WEBC2-YAHOO, NEWSREELS, 

BOUNCER and STARSPOUND. These families are not 

as similar (as seen in Figure 3), so these families are in 

some sense uncorrelated. Naïve Bayes has one core 

assumption, namely that family attributes are statistically-

independent. This assumption is incorrect for the given 

Figure 3. Leave one family out cross-validation. 

Figure 2. Leave one out cross-validation. Figure 1. Similarity matrix for all 15 malware families.  



malware analyses. The families that the Naïve Bayes 

algorithm has difficulty judging, while not highly 

correlated, share a relatively large percentage of their 

attributes with all families when compared against other 

families from which it can correctly classify.   

7. Discussion 

We presented two models using cognitively-inspired 

inference scaled beyond traditional memory limitations in 

order to rapidly identify malware samples. When 

compared against baseline machine learning algorithms 

such as decision trees and Naïve Bayes, our cognitive 

models were better able to classify malware samples 

across all 15 sample families. The baseline machine 

learning algorithms each exhibited difficulties with several 

families that our cognitive models did not. This is because 

each is fundamentally limited to the feature set chosen by 

the modeler, a problem common to machine learning.  
 

By leveraging the temporal dynamics (e.g., recency and 

frequency) of the cognitively-inspired base-level equation, 

we were better able to classify highly-similar families than 

the decision tree. In addition, while the base-level equation 

can be explained in Bayesian terms and generally 

reproduces behavior consistent with Bayesian reasoning, 

in the case of the instance-based model, it is not limited to 

assumptions of statistical independence. Instead, the 

instance-based model acts as a universal approximator that 

does not depend on any kind of linear separation: the more 

instances that the model perceives, the more accurately it 

will interpolate between them in a multidimensional space. 
 

It is interesting that the rule-based model performs 

substantially better than the Naïve Bayes model because 

the spreading activation equations has the same 

independence assumption between sources as does the 

Naïve Bayes algorithm. We argue that the base-level 

learning component and weighting of the spreading 

activation equation that compensates, providing the 

benefits of both a decision-tree and Naïve Bayes classifier 

without all the drawbacks. For instance, the weight of the 

spreading activation is effectively forced to be 1 in the 

Naïve Bayes classifier. By varying this weight, the ACT-

R model is capable of determining the relative importance 

between the prior and posterior likelihoods. 
 

Furthermore, our models were able to reach peak 

performance when compared against baseline machine 

learning models after only 40% of stimuli were presented. 

This is not to argue that cognitively-inspired models are a 

panacea for malware identification or a clear improvement 

over machine learning techniques. While our models were 

able to learn with fewer samples, the processing overhead 

of situating our models within a cognitive architecture 

means that they do not necessarily operate faster than 

machine learning techniques, especially when scaled to 

larger datasets. That criticism aside, we have elsewhere 

argued that cognitive models work best when used to 

supplement human-in-the-loop operations whereby these 

models take input initially processed by machine learning 

algorithms (such as deep learning) to do some dimension 

reduction and provide the cognitive model with loosely 

structured data from which it may draw inferences 

(Thomson, Lebiere, & Bennati, 2014). Also, due to the 

rapid learning across sparse datasets, the ACT-R model 

has been used to provide top-down feedback to deep 

learning algorithms (Vinokurov et al., 2011).  
 

Our work substantially differs from malware family 

classification as we look to infer the tasks a malware was 

created to perform directly whereas malware family 

classification is mainly used to help guide an analyst into 

identifying tasks by first identifying a family. It is 

noteworthy that we were able to train our classifiers on 

data of malware of different families than the malware we 

are attempting to classify and were still able to obtain a set 

of tasks with over 60% recall on the best-performing 

cognitive models. Further, as a side-effect, we created a 

probability distribution over malware families as part of an 

intermediate step – though the ultimate inference of 

malware tasks is independent of how the historical 

malware families are classified by family.  This suggests 

that at this point machine learning, cognitive models and 

human experts provide complementary strengths that 

should be leveraged for the challenging problems facing 

us in the cyber security domain. 
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