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ABSTRACT: This paper describes a general instance-based learning model of sensemaking in the context of 

geospatial intelligence tasks. Building upon a model previously described in Lebiere, Pirolli, Thomson et al. (2013), 

our model captures human performance across two tasks involving generating and updating likelihoods based on 

simulated geospatial intelligence. The model predicted human performance in such cognitive functions as generating 

and updating likelihoods based on incoming information, and in hypothesis/strategy selection and updating based on 

likelihoods taken in the context of experiences learned from prior exemplar. We then describe an initial attempt at a 

general instance-based model of decision-making capable of performing any task describable as a directed graph.   
 

Introduction 

In this paper, we describe a computational cognitive 

model, developed in the ACT-R architecture, of several 

core hypothesis-generation and updating processes 

involving sensemaking in a simulated intelligence 

analysis task (called TACTICS). Sensemaking, as in to 

make sense of, implies an active process of constructing a 

meaningful and functional representation of some aspects 

of the world (a frame) with the goal of completing some 

actionable outcome (i.e., making a decision).  

The problem of biases in intelligence analysis is a 

pressing concern, with failures in reasoning leading to 

negative diplomatic repercussions and inefficient 

operation of limited resources. One issue with treating 

biased behavior as a failure in reasoning is that, under 

naturalistic conditions, many heuristics that are the source 

of biased behavior are in fact adaptive and effective. As 

such, we argue that we study the misapplication of 

rational intuitive heuristics to what is inherently an 

artificial domain (i.e., intelligence analysis). 

In our tasks, rational Bayesian optima are defined 

over probability judgments, with cognitive biases defined 

as being deviations from these optima. Heuristics are then 

imputed from regularities in these deviations. As will be 

discussed, participants tended to a adopt an averaging 

heuristic when presented with two probabilities; that is, 

they treated the probabilities like independent sources of 

evidence and estimated the outcome to be as likely as the 

arithmetic mean between the two sources.  

The structure of this paper will be as follows. The 

remainder of the introduction will provide overviews of 

sensemaking and ACT-R, and a description of prior 

research using an ACT-R instance-based learning model. 

This unified model captured human behavior across a 

series of six sensemaking tasks. We will then describe the 

current TACTICS tasks, the current ACT-R model, and 

provide quantitative fits to the human data. Finally, we 

will describe a general-purpose ACT-R decision-making 

model theoretically capable of performing any 

sensemaking task describable as a directed graph. 

The Data/Frame Theory of Sensemaking 

According to Klein, Moon, & Hoffman (2006), a frame is 

a limited capacity mental structure (3-4 datum) used to 

both index existing data and to guide foraging for 

additional data (e.g., the elaborating cycle; see Figure 1). 

A frame reflects the compiled prior experiences of an 

individual. Since we can only attend to a small portion of 

the available information in our environment, we are 

constantly in a process of gathering data to support our 

current frame, while at the same time having our current 

frame determining which data are noticed.  

 
Figure 1.The Data/Frame theory assumes that meaningful 

mental representations called frames define what is 

considered data and how this data is structured for mental 

processing. Image reproduced from Klein et al., 2006. 

 Whereas frames define and shape existing evidence, 

incoming data can also evoke changes to one’s currently 

held frame. Hypotheses drive top-down processes such as 

guiding attention to relevant information through the 

application and interpretation of frames. For instance, the 

frame for a house fire is different whether you are the 

homeowner, the firefighter, or the arson investigator 

(Klein et al., 2006).  

Sensemaking can involve the elaboration of a frame 

(e.g., filling in details), questioning a frame (e.g., due to 

the detection of anomalies), or reframing (e.g., rejecting a 



frame and replacing it with another). The Data/Frame 

theory proposes that backward-looking processes are 

involved in forming mental models that explain past 

events, and forward-looking mental simulations are 

involved in predicting how future events will unfold.  
 

The ACT-R 6 Architecture 

ACT-R 6 is a computational implementation of a unified 

theory of cognition (Anderson, Bothell, Byrne, et al., 

2004). It accounts for information processing in the mind 

via task-invariant mechanisms constrained by the 

biological limitations of the brain (see Anderson, 2007 

for an overview). While sensemaking theory abstracts 

away from brain processes, it makes commitments to the 

control and flow of information that are commensurable 

with ACT-R’s functional perspective. For example, the 

elaboration and reframing loops in sensemaking can be 

instantiated in the production rules controlling the flow of 

control and information in ACT-R. Furthermore, ACT-R 

is committed to localization of neural architecture, 

allowing for functional models to guide the development 

of neurally-inspired models (e.g., Lebiere, Pirolli, 

Thomson, et al., 2013). 

The ACT-R architecture is organized as a set of 

modules, each devoted to processing a particular kind of 

information, which are integrated and coordinated 

through a centralized production system module. Each 

module is assumed to access and deposit information into 

buffers associated with the module, and the central 

production system can only respond to the contents of the 

buffers, not the internal encapsulated processing of the 

modules. For instance, the goal module stores and 

retrieves information that represents the internal intention 

and problem solving state of the system and provides 

local coherence to behavior. 

The declarative memory and production system 

modules, respectively, store and retrieve information that 

corresponds to declarative knowledge and procedural 

knowledge.  Declarative knowledge is the kind of 

knowledge that a person can attend to, reflect upon, and 

usually articulate in some way. Procedural knowledge 

consists of the skills we display in our behavior, generally 

without conscious awareness. Declarative knowledge in 

ACT-R is represented formally in terms of chunks. The 

information in the declarative memory module 

corresponds to personal episodic and semantic knowledge 

that promotes long-term coherence in behavior. In this 

sense a chunk is like a data frame, integrating information 

available in a common context at a particular point in 

time in a single representational structure.  

Chunks are retrieved from long-term declarative 

memory by an activation process. When a retrieval 

request is made to declarative memory (DM), the most 

active matching chunk is returned, where activation is 

computed as the sum of base-level activation, spreading 

activation, mismatch penalty and stochastic noise.   

Each chunk has a base-level activation that reflects 

its recency and frequency of occurrence. Activation 

spreads from the current focus of attention, including 

goals, through associations among chunks in declarative 

memory. These associations are built up from experience, 

and they reflect how chunks co-occur in cognitive 

processing. The spread of activation from one cognitive 

structure to another is determined by weighting values on 

the associations among chunks.   

Chunks are also compared to the desired retrieval 

pattern using a partial matching mechanism that subtracts 

from the activation of a chunk its degree of mismatch to 

the desired pattern, additively for each component of the 

pattern and corresponding chunk value.  Finally, noise is 

added to chunk activations to make retrieval probabilistic, 

governed by a Boltzmann distribution.  

While the most active chunk is usually retrieved, a 

blending process (Lebiere, 1999) can also be applied that 

returns a derived output reflecting the similarity between 

the values of the content of all chunks, weighted by their 

retrieval probabilities reflecting their activations and 

partial-matching scores.  This blending process will be 

used extensively in the model since it provides a tractable 

way to learn to perform decisions in continuous domains 

such as probability space. 

The flow of information is controlled in ACT-R by a 

production system, which operates on the contents of the 

buffers. Each production consists of if-then condition-

action pairs.  Conditions are typically criteria for buffer 

matches, while the actions are typically changes to the 

contents of buffers that might trigger operations in the 

associated modules. The production with the highest 

utility is selected to fire from among the eligible 

productions. Please see Anderson and Lebiere (1998) and 

Anderson et al. (2004) for a more complete account of 

the mechanisms implemented in the ACT-R architecture. 
 

ACT-R and Instance-Based Learning 
Instance-based learning theory (IBL; Gonzalez, Lerch, & 

Lebiere, 2003; Taatgen, Lebiere, & Anderson, 2006) is 

the claim that implicit expertise is gained through the 

accumulation and recognition of experienced events or 

instances. IBL was formulated within the principles and 

mechanisms of cognition in ACT-R, and makes use of the 

dynamics of chunk retrieval and blended retrievals. 

The main claim of IBL is that implicit knowledge is 

generated through the creation of instances. These 

instances are represented in chunks with slots containing 

the conditions (e.g., a set of contextual cues), the decision 

made (e.g., an action), and the outcome of the decision 

(e.g., the utility of the decision). Before there is sufficient 

task-relevant knowledge, decision-makers implicitly 

evaluate alternatives using heuristics (e.g., random 

choice, minimize loss, maximize gain). Once a sufficient 

number of instances are learned, decision-makers retrieve 

and generalize from these instances to evaluate 

alternatives, make a decision, and execute the task.  

The process of feedback involves updating the 

outcome slot of the chunk according to the post-hoc 

generated utility of the decision. Thus, when decision-

makers are confronted with similar situations while 

performing a task, they gradually abandon general 



heuristics in favor of improved instance-based decision-

making processes (Gonzalez & Lebiere, 2005).  

IBL offers constraints on explanation by grounding 

implicit learning within the mechanisms of a cognitive 

architecture. For instance, the dynamics of an instance’s 

sub-symbolic activations (e.g., frequency and recency in 

the base-level activation equation) provide a 

scientifically-justified mechanism for determining which 

instances are likely to be retrieved for a given situation, 

and also can explain why they were retrieved and what 

factors came into play. This provides a much more 

rigorous explanation of intuitive decision-making than 

case-studies and introspection of experts. 

Models related to decision-making and problem-

solving models in ACT-R over the past 10 years have 

seen increasing use of IBL (whether explicitly referred-to 

as such or otherwise; e.g., Kennedy & Patterson, 2012) to 

learn intuitive knowledge structures. This is unsurprising 

given that ACT-R’s declarative memory module and 

chunk structure is an excellent match for the storage and 

retrieval of instances, which effectively guides people to 

some form of IBL. In other words, the design and 

constraints of the architecture lead people to adopt an 

IBL-like approach by using the architecture in the most 

direct and intuitive way.  

IBL methodology has been used in a number of 

research applications including the AFRL 711 HPW/ 

RHA’s model of Predator operators. It can also be used to 

represent individual differences in experience and 

capacity by providing and parameterizing content from a 

single individual (e.g., Sanner et al., 2000; Wallach & 

Lebiere, 2003). 

Rather than provide an overview of many examples, 

we would like to focus on an in-depth analysis of a single 

ACT-R model of sensemaking that uses IBL to perform 

multiple complex geospatial intelligence tasks and 

provides both an explanation of biases and a close fit to 

human data (see Lebiere et al., 2013, for a more complete 

description of the tasks and quantitative model fits).  
 

The ICArUS Challenge Tasks Model 

The ICArUS Challenge Tasks were a series of six 

complex simulated geospatial intelligence tasks, and was 

composed of three sequential components. The first was 

focused on learning statistical patterns of events and then 

generating probability distributions of category 

membership based on the spatial location and frequency 

of these events (e.g. how likely does a given event belong 

to each of the categories). The second required the 

application of probabilistic decision rules in order to 

generate and revise probability distributions of category 

membership (e.g., if a given feature is present at an event, 

then that event is twice as likely to belong to category A). 

The third involves making decisions about the allocation 

of resources based on the judged probabilities of the 

causes of perceived events, and was effectively a 

metacognitive measure of confidence in one’s judgment. 

For more detail, please see Lebiere et al., (2013) and 

Thomson et al., (2012). 

The model perceived events and stored them in 

declarative memory as instances. In all tasks, probability 

adjustment and resource allocation were performed using 

a common instance-based learning mechanism, with 

experience from earlier tasks accumulated in memory for 

use in later tasks. To leverage the IBL approach for 

probability adjustment, the model’s memory was 

populated with a range of facts consisting of triplets: an 

initial probability, an adjustment factor, and the resulting 

probability. These triplets correspond roughly to the 

notion of a decision frame.  

The adjustment factor was set by the explicit rules of 

the task (e.g., an event in a category boundary is twice as 

likely to belong to that category). The model was then 

seeded with a set of chunks that correspond to a range of 

initial probabilities and an adjustment factor together 

with the posterior probability that would result from 

multiplying the initial probability by the adjustment 

factor, then normalizing. When the model is asked to 

estimate the resulting probability for a given prior and 

multiplying factor, it simply performed a blended 

retrieval specifying prior and factor, and outputted the 

posterior probability that represented the blended 

consensus of the seeded chunks. 

Resource allocation was also performed in all tasks 

using the same instance-based approach, with results 

from earlier tasks fundamentally affecting choices in later 

tasks. Representation of a trial instance consisted of three 

parts: a decision context (in this case, the probability of 

the leading category), the decision itself (i.e., the resource 

allocation to the leading category), and the outcome of 

the decision (i.e., the payoff resulting from the match of 

that allocation to the ground truth of the identity of the 

responsible category). The remaining resources were 

divided amongst the remaining categories in proportion 

to their assigned probabilities. This unified mechanism 

has no explicit strategy, but instead learns to allocate 

resources according to the outcome of prior decisions.  

The integrated ACT-R model performed all 6 tasks 

using the same knowledge constructs (production rules 

and chunks, other than those it learns as part of executing 

the task) and parameters. The model was run the same 

number of times as participants in the dataset (45) with 

the average model response compared to the average 

human performance. The natural variability in the model 

(stochastic elements influencing instance-based learning) 

approximates some of the individual differences of the 

human participants. The average fit to human data across 

tasks was excellent, r
2
 = .756; with the model predicting 

trial by trial variability in almost all trials. In addition, 

when comparing the model against humans in terms of 

biased behavior (using a negentropy measure), the model 

predicted not only the existence, but also the magnitude 

of four biases (confirmation, anchoring and adjustment, 

probability matching, and base-rate neglect), r
2
 = .645. 

The model was then compared against a second human 

dataset using a different exam and performed similarly, 

justifying the overall fit to human performance. 
 



The TACTICS Tasks 
The TACTICS tasks are designed to study the role of 

cognitive biases in sensemaking in the context of 

intelligence analysis. They are the successor to the 

ICArUS challenge tasks, extending intelligence analysis 

to the realm of adversarial multi-choice paradigms. The 

general flow of a trial is as follows: gather intelligence 

from the display and make a probability judgment of the 

likelihood that a group (red) will attack, then gather more 

intelligence and revise your judgment. At the end of the 

trial, make a final probability (of attack) and determine 

(based on likelihood of victory and payoff) whether to 

meet the attack or to divert the attack away. An example 

of the display is presented in Figure 2.  

 
Figure 2.An example of the mission display in the 

TACTICS tasks. The left panel is a legend, and the right 

shows probabilities and is where responses are entered. 

An overview of the intelligence and steps used in the 

tasks is provided in Table 1. 
 

Table 1. Overview of Intelligence and steps in Task 1. 

Symbol Meaning 

P probability that Blue will defeat Red (i.e., 

Blue’s Vulnerability) provided by OSINT  

U Utility/payoff at stake in a showdown (i.e., the 

Opportunity), provided by IMINT  

Pc probability that Red has the capability to 

attack, Pc, provided by HUMINT 

Pp probability that Red has the propensity to 

attack, Pp, given the capability to attack 

Pp,c probability that Red has the propensity and 

capability to attack, Pp,c  

Pt probability of Red attack as signaled by Red 

Signals Intelligence (SIGINT), Pt  

Pt,p,c probability of Red attack, per activity, 

propensity, and capability 

D divert, an action by Blue 

 

In task 1, participants are initially provided with 

OSINT (P) and IMINT (U), and are required to generate 

a propensity (Pp) of attack by looking up red’s initial 

probability of attack in a BLUEBOOK (see Figure 3). 

Then, red’s capability of attacking (Pc) is revealed (0-

100%) and participants are instructed to generate the joint 

probability Pp,c based on propensity and capability. 

Participants then are shown SIGINT (signal intelligence) 

which shows the presence or absence of chatter at the 

possible attack location. Based on the grid shown in 

Figure 3 (right), participants enter the likelihood of Pt. 

Participants are then instructed to calculate the joint 

probability of Pt and Pp,c, which is the final probability of 

red attack, Pt,p,c. Finally, based on Pt,p,c, the participant 

must choose whether to divert the attack or meet the 

attack for a showdown, with the payoffs based on U.  

 
Figure 3. Sample Bluebook (Pp), SIGINT (Pt), and payoff 

grid provided to participants. In the payoff matrix, values 

in red pertain to red decisions and gains or losses. 

In task 2, there is an additional step. Participants are 

instructed that there are two potential red strategies, 

passive and aggressive, each with their own Bluebook. 

Starting in trial 2, participants must choose which 

strategy they believe red is using. They are instructed that 

red’s strategy does not shift during the task. Both tasks 

run for 10 trials, and 30 participants completed the tasks. 
 

The TACTICS Model 
The current model builds on the ICArUS Challenge 

Tasks integrated model using a common instance-based 

learning approach in probability adjustment and resource 

allocation. The components dealing with the unique 

aspects of TACTICS, specifically the adversarial multi-

choice paradigm, build on a series of models of similar 

tasks that have been built in ACT-R and validated against 

human data. Those models include two distinct 

paradigms: forced-choice tasks with probabilistic payoffs, 

and adversarial game-playing with discrete options. A 

recent experimental study that manipulated information 

conditions on a spectrum across the two paradigms 

indicated the potential for unifying these two paradigms.  

The first paradigm, forced-choice tasks with 

probability payoffs, has been modeled and applied to a 

number of data sets, most prominently by winning the 

Technion Prediction Tournament. This competition 

required models to predict subject choices for a range of 

payoff distributions for which data had been withheld 

(Erev et al., 2010). The model worked by representing the 



association between each option and its numerical payoff 

in DM. The model then generates its expectation for each 

option through a blended retrieval, the same mechanism 

used for probability revision and resource allocation in 

the ICArUS Challenge Tasks model. The option with the 

highest expected payoff is chosen. 

The second paradigm, adversarial game playing with 

discrete options, has also been modeled and applied to a 

number of different games involving simultaneous 

decisions including paper-rock-scissors (West & Lebiere, 

2001) and baseball (Lebiere et al., 2003). The model 

represents each choice made by the opponent in its given 

context. That context often includes the sequence of 

previous choices, bringing in the temporal aspects that 

will be the focus of additional TACTICS tasks. The 

model works by storing those decisions in their initial 

context, then matching against them using the current 

context. This generates the most likely expected move by 

the opponent. The player then selects the best move at its 

disposal to counter that expected move. Our current 

TACTICS model aims to unify these two paradigms.  

The second approach will be used to generate 

expectations of an attack by the Red player. This will be 

performed by representing in a single frame the various 

layers of information to be considered and the outcome 

for the Red attack in a 0-1 encoding, with 0 meaning no 

attack and 1 meaning an attack took place. Blended 

retrieval can then be used to interpolate between those 

two outcomes, weighing similarity between the current 

information layers and the past instances stored, and then 

generating the probability of attack by Red in the current 

situation. The first approach can then be used to generate 

the expectation of each move’s payoff for the model by 

combining the probability of Red attack with each model 

choice to yield an expected payoff, using frames 

associating each player’s choice with the resulting 

outcome. This approach, together with the re-used 

Challenge task functionality, can be used to generate all 

the responses required in the TACTICS tasks.  

We will now describe the model structure (see 

Figure 4) and implementation of each step. 

 
Figure 4. Overview of model structure for TACTICS. 

To determine the likely opponent strategy (the first 

step in task 2), the model uses subsymbolic activation as 

an estimate of the relative probability of the Bluebook 

options. Specifically, each Bluebook is represented as a 

chunk containing its name (e.g., passive or aggressive).  

Additionally, each option is represented by a set of four 

chunks separately binding the option name with each 

propensity value.  For each option, the base-level 

activation for the corresponding chunk provides support 

for accumulation of evidence through its frequency 

summation term and for change detection through its 

power law decay-based recency. Prediction of the 

opponent strategy is accomplished by retrieving the most 

active option chunk. Credit assignment is performed by 

reinforcing the option most likely to have been 

responsible for the observed outcome.  In this case, that 

means the obvious heuristic of reinforcing the chunk 

whose probability is closest to the outcome, i.e., passive 

if no attack occurs and aggressive if an attack occurs. 

To compute Pp, the model represents the identity of 

the player (neutral in task 1, passive and aggressive in 

task 2), the OSINT value, the IMINT value, and Pp. We 

train the model directly from the matrix provided in the 

task instructions, with one chunk for each matrix cell. We 

defined the OSINT values in the matrix as 0.2 and 0.3 for 

values less than and greater than 0.25, respectively, and 

the IMINT values as 2 and 5, respectively.  This approach 

provides similar results to a categorical approach, but in a 

simpler way with fewer degrees of freedom.   

The representation of Pp,c includes the value of Pp 

generated previously, Pc received as a real value [0, 1], 

and Pp,c. The model is trained directly from averaging 

examples using a coarse increment of 20% from 0-100%.  

 The representation of Pt is currently a representation 

of SIGINT (as symbolic sigint/no-sigint chunks standing 

for chatter or silence, respectively), a representation of an 

attack (as symbolic attack/no-attack chunks), and Pt. 

Training occurs directly from instructions, with each 

chunk representing one cell of the conditional probability 

matrix given to the participants, as similar to the 

Bluebook matrix (see Figure 3).  The model performs a 

blended retrieval for Pt, specifying the current value of 

SIGINT and a positive attack value (i.e., attack). This 

represents a common confusion between opposite 

conditional probabilities: the model is asked to produce 

the conditional probability of attack given SIGINT, and 

accesses the closest thing it has, i.e., the conditional 

probability of SIGINT given attack. 

The generation of Pt,p,c estimates is handled 

identically to Pp,c, only now the factors include Pp,c, Pt, 

and Pt,p,c. Training and representations are all identical to 

Pp,c, and could indeed be handled using the same chunk 

types, although they currently use separate chunk types. 

For all of these functions, new chunks representing 

the problem solutions are learned at each trial and 

complement the initial instructions or background 

knowledge. Base-level learning is turned on and set to its 

usual decay value of 0.5 to capture effects of recency and 



frequency.  This plays a particularly significant role in the 

generation of Pt, as well as the identification of the red 

strategy (passive or aggressive) in Mission 2. 

A modeling choice was whether to generate a divert 

decision directly from Pt,p,c, P, and U; or to break it down 

into two simpler stages. The first stage involves 

generating an expectation of whether red will attack or 

not based on Pt,p,c (and past feedback), while the second 

stage involves deciding whether to divert or not based on 

the attack expectation and factors P and U (and past 

feedback). The advantage of this two-stage retrieval is to 

make the simpler decisions easier to apply than the 

complex calculation of expectations from Pt,p,c, P, and U; 

and faster to learn by breaking down the representational 

space into two distinct parts of lower dimensionality 

A major issue in modeling was dealing effectively 

with delayed feedback.  The information about an attack 

from Red and the resulting payoff was available long 

after many intermediate decisions leading to the divert 

decision being made. We included the attack and payoff 

information in the divert decision chunk, making them 

available to estimate outcomes for each course of action.  

Propagating that feedback information to the immediately 

preceding step of generating an attack expectation is 

fairly easy by keeping that chunk in a buffer such as the 

imaginal buffer, assuming that subjects maintain that 

information for a short amount of time.  
 

TACTICS Model Fits 
The TACTICS model fit the preliminary human dataset 

quite well, with an average performance similar to that of 

the ICArUS Challenge Tasks model. The following 

graphs (Figure 6) show the fits to human data for each 

decision stage. Due to the limited number of trials, 

instead of reporting regression fits, we adopted an RMSD 

ratio to determine the degree to which the model captures 

participants’ trial-by-trial deviation from rational behavior:  

1 – (RMSD Human-Model / RMSD Human-Rational) 

The average RMSD ratio across decision points in the 

two tasks (Pp, Pp,c, Pt,p,c) was .735, which is consistent 

with the fits reported in the ICArUS task.  

There are two interesting phenomena. The first is 

fact that participants, on average, tended to switch 

strategy in trials 7-8, despite having ample evidence 

(trials 1-5 were all attacks from red, but trials 6-7 were no 

attack) that red was an aggressive player, and they were 

instructed that red did not change strategy during the task. 

Our model implicitly captured this behavior using only 

the sub-symbolic activation resulting from reinforcing the 

aggressive strategy when there was an attack, and 

reinforcing the passive strategy when there was no attack.  

The model was not altered or trained in any way to 

capture human’s strategy selection. 

The other interesting phenomenon was the pervasive 

averaging heuristic that occurred, despite task 

instructions leading participants to generate joint 

probabilities. In essence, participants were treating 

subsequent layers of information as independent when 

task instructions were to treat the layers as dependent.  

 

 

 

 
Figure 5. Average model fits to participants for Task 2. 



While it was possible that participants were simply 

misunderstanding task instructions, the pervasiveness of 

the averaging heuristic (29 of 30 participants exhibited it 

consistently) indicated that participants were biased to 

treat sequential probabilities as independent, which may 

have been due to the complexity of the task environment. 

While the current model, which was extended from 

the ICArUS Challenge Tasks, similarly captures human 

behavior, the model still has some complexities which 

limit its adoption as a more general model of 

sensemaking. To this point, we wish to preview efforts to 

generalize the instance-based learning framework in a 

simple general model of sensemaking. 
 

General Sensemaking Model 

ACT-R has recently been used to model a task that 

involved parsing a series of decision-trees (Lebiere 

Jentsch & Ososky, 2013) across several task scenarios. 

This model was extended to include a base of seven 

productions (see Figure 6) which was able to parse any 

information that may be described in a decision-tree form 

(i.e., an acyclic directed graph). That said, there is 

nothing about the control of these productions which 

precludes cyclic behavior, meaning that the model can 

theoretically perform any decision whose steps can be 

broken down into a directed graph.  

 

Figure 6. Example of 7 productions capable of general 

sensemaking processes. 
This general model commits to general decision 

logic and thus can theoretically capture more behavior 

than a task-specific model. Also, because the model is 

designed in a cognitive architecture, it is more robust than 

typical decision trees. This is due to the fact that the 

model is able to learn from experience and is able to 

generalize to non-binary and cyclic outputs. 

The model takes a series of instructions, called 

decision-factors, and accesses (i.e., retrieves) factor-

values – which are the atomic components of decisions – 

for the current situation until it is instructed to make a 

decision. This instruction may be external (i.e., task from 

instruction) or when a given threshold is reached. At that 

time, a decision chunk is retrieved either via standard 

retrievals with partial matching, or by blended retrievals 

through instance-based learning. The decision is also 

stored in a factor-value chunk for use in later decision-

making steps. With the decision retrieved, the model 

moves onto the next decision in the chain.  

There are three chunk types used in the model. The 

first is the decision-factor chunk type, which has three 

slots: type, factor, and index. The type slot determines the 

type of the decision, the factor slot determines the current 

factor to be processed, and the index slot records the prior 

factor that was retrieved (to chain decision-factors 

together). Decision-factor chunks act as a means of 

chaining through the elements that go into a decision 

choosing a factor from a decision-factor chunk, retrieving 

the factor value (either through sensory input or from 

memory), and updating the current decision goal.  

The second chunk type is the factor chunk, which 

also has three slots: scenario, name, and value. The 

scenario slot holds the name of the current trial, the name 

slot holds the kind of factor (e.g., vulnerability), and the 

value slot holds the value of the factor (e.g., yes/no or 

numeric). The final chunk type is an intermediate-

decision chunk which stores the factor chunks from the 

decision (e.g., slots for vulnerability and opportunity and 

propensity in the propensity intermediate-decision 

chunk). These intermediate-decision chunks are 

effectively frames, with learning across frames occurring 

due to the blended retrieval mechanism of ACT-R which 

implements the same instance-based learning theory from 

the ICArUS Challenge Tasks.   

The final chunk type is an intermediate-decision 

chunk which stores the factor chunks from the decision 

(e.g., slots for vulnerability and opportunity and 

propensity in the propensity intermediate-decision 

chunk). The different variants of intermediate-decision 

chunks do not need to be pre-specified, but may be 

derived from experience using special P* productions. P* 

productions allow for slot names to be variabilized, and 

when the model is provided with a variabilized slot name 

that does not occur in the specification of the chunk-type, 

it extends the chunk-type with an extra slot. These 

intermediate-decision chunks are effectively frames, with 

learning across frames occurring due to the blended 

retrieval mechanism of ACT-R which implements the 

same instance-based learning theory found in ICArUS 

and TACTICS. Thus a fundamental new capability of the 

general sensemaking model is the ability to not only learn 

new frames but also to learn new frame types from 

experience. 

While the sequence of decision chains has to be 

provided as input to the model, they are derived from task 

instructions. The benefit of the general sensemaking 

model is that it can process any arbitrary set of 

instructions using the same core productions.  The model 

does not need to be changed in any way to tackle a new 

task but rather just needs a new set of instructions, just as 

human subjects do. In addition, it is possible to perform 

foraging behavior by having a pre-decision trigger that 

determines a value (such as expected information gain; 

EIG) that must reach a given threshold before moving 

onto the generation or revision of a decision.  
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