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ABSTRACT: This paper describes a general instance-based learning model of sensemaking in the context of
geospatial intelligence tasks. Building upon a model previously described in Lebiere, Pirolli, Thomson et al. (2013),
our model captures human performance across two tasks involving generating and updating likelihoods based on
simulated geospatial intelligence. The model predicted human performance in such cognitive functions as generating
and updating likelihoods based on incoming information, and in hypothesis/strategy selection and updating based on
likelihoods taken in the context of experiences learned from prior exemplar. We then describe an initial attempt at a
general instance-based model of decision-making capable of performing any task describable as a directed graph.

Introduction

In this paper, we describe a computational cognitive
model, developed in the ACT-R architecture, of several
core hypothesis-generation and updating processes
involving sensemaking in a simulated intelligence
analysis task (called TACTICS). Sensemaking, as in to
make sense of, implies an active process of constructing a
meaningful and functional representation of some aspects
of the world (a frame) with the goal of completing some
actionable outcome (i.e., making a decision).

The problem of biases in intelligence analysis is a
pressing concern, with failures in reasoning leading to
negative diplomatic repercussions and inefficient
operation of limited resources. One issue with treating
biased behavior as a failure in reasoning is that, under
naturalistic conditions, many heuristics that are the source
of biased behavior are in fact adaptive and effective. As
such, we argue that we study the misapplication of
rational intuitive heuristics to what is inherently an
artificial domain (i.e., intelligence analysis).

In our tasks, rational Bayesian optima are defined
over probability judgments, with cognitive biases defined
as being deviations from these optima. Heuristics are then
imputed from regularities in these deviations. As will be
discussed, participants tended to a adopt an averaging
heuristic when presented with two probabilities; that is,
they treated the probabilities like independent sources of
evidence and estimated the outcome to be as likely as the
arithmetic mean between the two sources.

The structure of this paper will be as follows. The
remainder of the introduction will provide overviews of
sensemaking and ACT-R, and a description of prior
research using an ACT-R instance-based learning model.
This unified model captured human behavior across a
series of six sensemaking tasks. We will then describe the
current TACTICS tasks, the current ACT-R model, and
provide quantitative fits to the human data. Finally, we
will describe a general-purpose ACT-R decision-making
model theoretically capable of performing any
sensemaking task describable as a directed graph.

The Data/Frame Theory of Sensemaking

According to Klein, Moon, & Hoffman (2006), a frame is
a limited capacity mental structure (3-4 datum) used to
both index existing data and to guide foraging for
additional data (e.g., the elaborating cycle; see Figure 1).
A frame reflects the compiled prior experiences of an
individual. Since we can only attend to a small portion of
the available information in our environment, we are
constantly in a process of gathering data to support our
current frame, while at the same time having our current
frame determining which data are noticed.
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Figure 1.The Data/Frame theory assumes that meaningful
mental representations called frames define what is
considered data and how this data is structured for mental
processing. Image reproduced from Klein et al., 2006.

Whereas frames define and shape existing evidence,
incoming data can also evoke changes to one’s currently
held frame. Hypotheses drive top-down processes such as
guiding attention to relevant information through the
application and interpretation of frames. For instance, the
frame for a house fire is different whether you are the
homeowner, the firefighter, or the arson investigator
(Klein et al., 2006).

Sensemaking can involve the elaboration of a frame
(e.g., filling in details), questioning a frame (e.g., due to
the detection of anomalies), or reframing (e.g., rejecting a



frame and replacing it with another). The Data/Frame
theory proposes that backward-looking processes are
involved in forming mental models that explain past
events, and forward-looking mental simulations are
involved in predicting how future events will unfold.

The ACT-R 6 Architecture

ACT-R 6 is a computational implementation of a unified
theory of cognition (Anderson, Bothell, Byrne, et al.,
2004). It accounts for information processing in the mind
via task-invariant mechanisms constrained by the
biological limitations of the brain (see Anderson, 2007
for an overview). While sensemaking theory abstracts
away from brain processes, it makes commitments to the
control and flow of information that are commensurable
with ACT-R’s functional perspective. For example, the
elaboration and reframing loops in sensemaking can be
instantiated in the production rules controlling the flow of
control and information in ACT-R. Furthermore, ACT-R
is committed to localization of neural architecture,
allowing for functional models to guide the development
of neurally-inspired models (e.g., Lebiere, Pirolli,
Thomson, et al., 2013).

The ACT-R architecture is organized as a set of
modules, each devoted to processing a particular kind of
information, which are integrated and coordinated
through a centralized production system module. Each
module is assumed to access and deposit information into
buffers associated with the module, and the central
production system can only respond to the contents of the
buffers, not the internal encapsulated processing of the
modules. For instance, the goal module stores and
retrieves information that represents the internal intention
and problem solving state of the system and provides
local coherence to behavior.

The declarative memory and production system
modules, respectively, store and retrieve information that
corresponds to declarative knowledge and procedural
knowledge.  Declarative knowledge is the kind of
knowledge that a person can attend to, reflect upon, and
usually articulate in some way. Procedural knowledge
consists of the skills we display in our behavior, generally
without conscious awareness. Declarative knowledge in
ACT-R is represented formally in terms of chunks. The
information in the declarative memory module
corresponds to personal episodic and semantic knowledge
that promotes long-term coherence in behavior. In this
sense a chunk is like a data frame, integrating information
available in a common context at a particular point in
time in a single representational structure.

Chunks are retrieved from long-term declarative
memory by an activation process. When a retrieval
request is made to declarative memory (DM), the most
active matching chunk is returned, where activation is
computed as the sum of base-level activation, spreading
activation, mismatch penalty and stochastic noise.

Each chunk has a base-level activation that reflects
its recency and frequency of occurrence. Activation
spreads from the current focus of attention, including

goals, through associations among chunks in declarative
memory. These associations are built up from experience,
and they reflect how chunks co-occur in cognitive
processing. The spread of activation from one cognitive
structure to another is determined by weighting values on
the associations among chunks.

Chunks are also compared to the desired retrieval
pattern using a partial matching mechanism that subtracts
from the activation of a chunk its degree of mismatch to
the desired pattern, additively for each component of the
pattern and corresponding chunk value. Finally, noise is
added to chunk activations to make retrieval probabilistic,
governed by a Boltzmann distribution.

While the most active chunk is usually retrieved, a
blending process (Lebiere, 1999) can also be applied that
returns a derived output reflecting the similarity between
the values of the content of all chunks, weighted by their
retrieval probabilities reflecting their activations and
partial-matching scores. This blending process will be
used extensively in the model since it provides a tractable
way to learn to perform decisions in continuous domains
such as probability space.

The flow of information is controlled in ACT-R by a
production system, which operates on the contents of the
buffers. Each production consists of if-then condition-
action pairs. Conditions are typically criteria for buffer
matches, while the actions are typically changes to the
contents of buffers that might trigger operations in the
associated modules. The production with the highest
utility is selected to fire from among the eligible
productions. Please see Anderson and Lebiere (1998) and
Anderson et al. (2004) for a more complete account of
the mechanisms implemented in the ACT-R architecture.

ACT-R and Instance-Based Learning
Instance-based learning theory (IBL; Gonzalez, Lerch, &
Lebiere, 2003; Taatgen, Lebiere, & Anderson, 2006) is
the claim that implicit expertise is gained through the
accumulation and recognition of experienced events or
instances. IBL was formulated within the principles and
mechanisms of cognition in ACT-R, and makes use of the
dynamics of chunk retrieval and blended retrievals.

The main claim of IBL is that implicit knowledge is
generated through the creation of instances. These
instances are represented in chunks with slots containing
the conditions (e.g., a set of contextual cues), the decision
made (e.g., an action), and the outcome of the decision
(e.g., the utility of the decision). Before there is sufficient
task-relevant knowledge, decision-makers implicitly
evaluate alternatives using heuristics (e.g., random
choice, minimize loss, maximize gain). Once a sufficient
number of instances are learned, decision-makers retrieve
and generalize from these instances to evaluate
alternatives, make a decision, and execute the task.

The process of feedback involves updating the
outcome slot of the chunk according to the post-hoc
generated utility of the decision. Thus, when decision-
makers are confronted with similar situations while
performing a task, they gradually abandon general



heuristics in favor of improved instance-based decision-
making processes (Gonzalez & Lebiere, 2005).

IBL offers constraints on explanation by grounding
implicit learning within the mechanisms of a cognitive
architecture. For instance, the dynamics of an instance’s
sub-symbolic activations (e.g., frequency and recency in
the base-level activation equation) provide a
scientifically-justified mechanism for determining which
instances are likely to be retrieved for a given situation,
and also can explain why they were retrieved and what
factors came into play. This provides a much more
rigorous explanation of intuitive decision-making than
case-studies and introspection of experts.

Models related to decision-making and problem-
solving models in ACT-R over the past 10 years have
seen increasing use of IBL (whether explicitly referred-to
as such or otherwise; e.g., Kennedy & Patterson, 2012) to
learn intuitive knowledge structures. This is unsurprising
given that ACT-R’s declarative memory module and
chunk structure is an excellent match for the storage and
retrieval of instances, which effectively guides people to
some form of IBL. In other words, the design and
constraints of the architecture lead people to adopt an
IBL-like approach by using the architecture in the most
direct and intuitive way.

IBL methodology has been used in a number of
research applications including the AFRL 711 HPW/
RHA’s model of Predator operators. It can also be used to
represent individual differences in experience and
capacity by providing and parameterizing content from a
single individual (e.g., Sanner et al., 2000; Wallach &
Lebiere, 2003).

Rather than provide an overview of many examples,
we would like to focus on an in-depth analysis of a single
ACT-R model of sensemaking that uses IBL to perform
multiple complex geospatial intelligence tasks and
provides both an explanation of biases and a close fit to
human data (see Lebiere et al., 2013, for a more complete
description of the tasks and quantitative model fits).

The ICArUS Challenge Tasks Model

The ICArUS Challenge Tasks were a series of six
complex simulated geospatial intelligence tasks, and was
composed of three sequential components. The first was
focused on learning statistical patterns of events and then
generating  probability  distributions of  category
membership based on the spatial location and frequency
of these events (e.g. how likely does a given event belong
to each of the categories). The second required the
application of probabilistic decision rules in order to
generate and revise probability distributions of category
membership (e.g., if a given feature is present at an event,
then that event is twice as likely to belong to category A).
The third involves making decisions about the allocation
of resources based on the judged probabilities of the
causes of perceived events, and was effectively a
metacognitive measure of confidence in one’s judgment.
For more detail, please see Lebiere et al., (2013) and
Thomson et al., (2012).

The model perceived events and stored them in
declarative memory as instances. In all tasks, probability
adjustment and resource allocation were performed using
a common instance-based learning mechanism, with
experience from earlier tasks accumulated in memory for
use in later tasks. To leverage the IBL approach for
probability adjustment, the model’s memory was
populated with a range of facts consisting of triplets: an
initial probability, an adjustment factor, and the resulting
probability. These triplets correspond roughly to the
notion of a decision frame.

The adjustment factor was set by the explicit rules of
the task (e.g., an event in a category boundary is twice as
likely to belong to that category). The model was then
seeded with a set of chunks that correspond to a range of
initial probabilities and an adjustment factor together
with the posterior probability that would result from
multiplying the initial probability by the adjustment
factor, then normalizing. When the model is asked to
estimate the resulting probability for a given prior and
multiplying factor, it simply performed a blended
retrieval specifying prior and factor, and outputted the
posterior probability that represented the blended
consensus of the seeded chunks.

Resource allocation was also performed in all tasks
using the same instance-based approach, with results
from earlier tasks fundamentally affecting choices in later
tasks. Representation of a trial instance consisted of three
parts: a decision context (in this case, the probability of
the leading category), the decision itself (i.e., the resource
allocation to the leading category), and the outcome of
the decision (i.e., the payoff resulting from the match of
that allocation to the ground truth of the identity of the
responsible category). The remaining resources were
divided amongst the remaining categories in proportion
to their assigned probabilities. This unified mechanism
has no explicit strategy, but instead learns to allocate
resources according to the outcome of prior decisions.

The integrated ACT-R model performed all 6 tasks
using the same knowledge constructs (production rules
and chunks, other than those it learns as part of executing
the task) and parameters. The model was run the same
number of times as participants in the dataset (45) with
the average model response compared to the average
human performance. The natural variability in the model
(stochastic elements influencing instance-based learning)
approximates some of the individual differences of the
human participants. The average fit to human data across
tasks was excellent, r> = .756; with the model predicting
trial by trial variability in almost all trials. In addition,
when comparing the model against humans in terms of
biased behavior (using a negentropy measure), the model
predicted not only the existence, but also the magnitude
of four biases (confirmation, anchoring and adjustment,
probability matching, and base-rate neglect), r* = .645.
The model was then compared against a second human
dataset using a different exam and performed similarly,
justifying the overall fit to human performance.



The TACTICS Tasks

The TACTICS tasks are designed to study the role of
cognitive biases in sensemaking in the context of
intelligence analysis. They are the successor to the
ICArUS challenge tasks, extending intelligence analysis
to the realm of adversarial multi-choice paradigms. The
general flow of a trial is as follows: gather intelligence
from the display and make a probability judgment of the
likelihood that a group (red) will attack, then gather more
intelligence and revise your judgment. At the end of the
trial, make a final probability (of attack) and determine
(based on likelihood of victory and payoff) whether to
meet the attack or to divert the attack away. An example
of the display is presented in Figure 2.
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Figure 2.An example of the mission display in the

TACTICS tasks. The left panel is a legend, and the right

shows probabilities and is where responses are entered.
An overview of the intelligence and steps used in the

tasks is provided in Table 1.

Table 1. Overview of Intelligence and steps in Task 1.

Score on the Mssion: Se

Symbol Meaning

P probability that Blue will defeat Red (i.e.,
Blue’s Vulnerability) provided by OSINT

U Utility/payoff at stake in a showdown (i.e., the
Opportunity), provided by IMINT

Pc probability that Red has the capability to
attack, P, provided by HUMINT

Po probability that Red has the propensity to
attack, P,, given the capability to attack

Poc probability that Red has the propensity and
capability to attack, P,

P, probability of Red attack as signaled by Red
Signals Intelligence (SIGINT), P,

Pipc probability of Red attack, per activity,
propensity, and capability

D divert, an action by Blue

In task 1, participants are initially provided with
OSINT (P) and IMINT (U), and are required to generate
a propensity (Pp) of attack by looking up red’s initial
probability of attack in a BLUEBOOK (see Figure 3).
Then, red’s capability of attacking (P.) is revealed (O-
100%) and participants are instructed to generate the joint
probability P,. based on propensity and capability.

Participants then are shown SIGINT (signal intelligence)
which shows the presence or absence of chatter at the
possible attack location. Based on the grid shown in
Figure 3 (right), participants enter the likelihood of P.
Participants are then instructed to calculate the joint
probability of P, and P, ¢, which is the final probability of
red attack, Pypc. Finally, based on Py, the participant
must choose whether to divert the attack or meet the
attack for a showdown, with the payoffs based on U.

BLUEBOOK (Pp) SIGINT (Pt)
Probability of Red Attack Probability of Signal

P>25% | 20% | 30% senal= 1 go% | 20%
Chatter
P<25% 40% 50% Signal= 40% 80%
Silence
U=2o0r3 U=4or5
Attack Not Attack
+U (-U)
Not Divert or 0 (o)
-U (+U)
Divert 0(0) -1(+1)

Figure 3. Sample Bluebook (Py), SIGINT (Py), and payoff
grid provided to participants. In the payoff matrix, values
in red pertain to red decisions and gains or losses.

In task 2, there is an additional step. Participants are
instructed that there are two potential red strategies,
passive and aggressive, each with their own Bluebook.
Starting in trial 2, participants must choose which
strategy they believe red is using. They are instructed that
red’s strategy does not shift during the task. Both tasks
run for 10 trials, and 30 participants completed the tasks.

The TACTICS Model
The current model builds on the ICArUS Challenge
Tasks integrated model using a common instance-based
learning approach in probability adjustment and resource
allocation. The components dealing with the unique
aspects of TACTICS, specifically the adversarial multi-
choice paradigm, build on a series of models of similar
tasks that have been built in ACT-R and validated against
human data. Those models include two distinct
paradigms: forced-choice tasks with probabilistic payoffs,
and adversarial game-playing with discrete options. A
recent experimental study that manipulated information
conditions on a spectrum across the two paradigms
indicated the potential for unifying these two paradigms.
The first paradigm, forced-choice tasks with
probability payoffs, has been modeled and applied to a
number of data sets, most prominently by winning the
Technion Prediction Tournament. This competition
required models to predict subject choices for a range of
payoff distributions for which data had been withheld
(Erev et al., 2010). The model worked by representing the



association between each option and its numerical payoff
in DM. The model then generates its expectation for each
option through a blended retrieval, the same mechanism
used for probability revision and resource allocation in
the ICArUS Challenge Tasks model. The option with the
highest expected payoff is chosen.

The second paradigm, adversarial game playing with
discrete options, has also been modeled and applied to a
number of different games involving simultaneous
decisions including paper-rock-scissors (West & Lebiere,
2001) and baseball (Lebiere et al., 2003). The model
represents each choice made by the opponent in its given
context. That context often includes the sequence of
previous choices, bringing in the temporal aspects that
will be the focus of additional TACTICS tasks. The
model works by storing those decisions in their initial
context, then matching against them using the current
context. This generates the most likely expected move by
the opponent. The player then selects the best move at its
disposal to counter that expected move. Our current
TACTICS model aims to unify these two paradigms.

The second approach will be used to generate
expectations of an attack by the Red player. This will be
performed by representing in a single frame the various
layers of information to be considered and the outcome
for the Red attack in a 0-1 encoding, with 0 meaning no
attack and 1 meaning an attack took place. Blended
retrieval can then be used to interpolate between those
two outcomes, weighing similarity between the current
information layers and the past instances stored, and then
generating the probability of attack by Red in the current
situation. The first approach can then be used to generate
the expectation of each move’s payoff for the model by
combining the probability of Red attack with each model
choice to vyield an expected payoff, using frames
associating each player’s choice with the resulting
outcome. This approach, together with the re-used
Challenge task functionality, can be used to generate all
the responses required in the TACTICS tasks.

We will now describe the model structure (see
Figure 4) and implementation of each step.

~ Blending | Lookup

Figure 4. Overview of model structure for TACTICS.

To determine the likely opponent strategy (the first
step in task 2), the model uses subsymbolic activation as
an estimate of the relative probability of the Bluebook
options. Specifically, each Bluebook is represented as a
chunk containing its name (e.g., passive or aggressive).
Additionally, each option is represented by a set of four
chunks separately binding the option name with each
propensity value. For each option, the base-level
activation for the corresponding chunk provides support
for accumulation of evidence through its frequency
summation term and for change detection through its
power law decay-based recency. Prediction of the
opponent strategy is accomplished by retrieving the most
active option chunk. Credit assignment is performed by
reinforcing the option most likely to have been
responsible for the observed outcome. In this case, that
means the obvious heuristic of reinforcing the chunk
whose probability is closest to the outcome, i.e., passive
if no attack occurs and aggressive if an attack occurs.

To compute P, the model represents the identity of
the player (neutral in task 1, passive and aggressive in
task 2), the OSINT value, the IMINT value, and P,. We
train the model directly from the matrix provided in the
task instructions, with one chunk for each matrix cell. We
defined the OSINT values in the matrix as 0.2 and 0.3 for
values less than and greater than 0.25, respectively, and
the IMINT values as 2 and 5, respectively. This approach
provides similar results to a categorical approach, but in a
simpler way with fewer degrees of freedom.

The representation of P, includes the value of P,
generated previously, P, received as a real value [0, 1],
and Pyc. The model is trained directly from averaging
examples using a coarse increment of 20% from 0-100%.

The representation of P, is currently a representation
of SIGINT (as symbolic sigint/no-sigint chunks standing
for chatter or silence, respectively), a representation of an
attack (as symbolic attack/no-attack chunks), and P;.
Training occurs directly from instructions, with each
chunk representing one cell of the conditional probability
matrix given to the participants, as similar to the
Bluebook matrix (see Figure 3). The model performs a
blended retrieval for P,, specifying the current value of
SIGINT and a positive attack value (i.e., attack). This
represents a common confusion between opposite
conditional probabilities: the model is asked to produce
the conditional probability of attack given SIGINT, and
accesses the closest thing it has, i.e., the conditional
probability of SIGINT given attack.

The generation of P, estimates is handled
identically to Py, only now the factors include P, Py,
and Py, . Training and representations are all identical to
Py and could indeed be handled using the same chunk
types, although they currently use separate chunk types.

For all of these functions, new chunks representing
the problem solutions are learned at each trial and
complement the initial instructions or background
knowledge. Base-level learning is turned on and set to its
usual decay value of 0.5 to capture effects of recency and



frequency. This plays a particularly significant role in the
generation of Py, as well as the identification of the red
strategy (passive or aggressive) in Mission 2.

A modeling choice was whether to generate a divert
decision directly from Py, ¢, P, and U; or to break it down
into two simpler stages. The first stage involves
generating an expectation of whether red will attack or
not based on Py, (and past feedback), while the second
stage involves deciding whether to divert or not based on
the attack expectation and factors P and U (and past
feedback). The advantage of this two-stage retrieval is to
make the simpler decisions easier to apply than the
complex calculation of expectations from Py, P, and U;
and faster to learn by breaking down the representational
space into two distinct parts of lower dimensionality

A major issue in modeling was dealing effectively
with delayed feedback. The information about an attack
from Red and the resulting payoff was available long
after many intermediate decisions leading to the divert
decision being made. We included the attack and payoff
information in the divert decision chunk, making them
available to estimate outcomes for each course of action.
Propagating that feedback information to the immediately
preceding step of generating an attack expectation is
fairly easy by keeping that chunk in a buffer such as the
imaginal buffer, assuming that subjects maintain that
information for a short amount of time.

TACTICS Model Fits

The TACTICS model fit the preliminary human dataset
quite well, with an average performance similar to that of
the ICArUS Challenge Tasks model. The following
graphs (Figure 6) show the fits to human data for each
decision stage. Due to the limited number of trials,
instead of reporting regression fits, we adopted an RMSD
ratio to determine the degree to which the model captures
participants’ trial-by-trial deviation from rational behavior:

1 - (RMSD Human-Model / RMSD Human-Rational)

The average RMSD ratio across decision points in the
two tasks (Pp, Ppc Pipc) was .735, which is consistent
with the fits reported in the ICArUS task.

There are two interesting phenomena. The first is
fact that participants, on average, tended to switch
strategy in trials 7-8, despite having ample evidence
(trials 1-5 were all attacks from red, but trials 6-7 were no
attack) that red was an aggressive player, and they were
instructed that red did not change strategy during the task.
Our model implicitly captured this behavior using only
the sub-symbolic activation resulting from reinforcing the
aggressive strategy when there was an attack, and
reinforcing the passive strategy when there was no attack.
The model was not altered or trained in any way to
capture human’s strategy selection.

The other interesting phenomenon was the pervasive

averaging heuristic that occurred, despite task
instructions leading participants to generate joint
probabilities. In essence, participants were treating

subsequent layers of information as independent when
task instructions were to treat the layers as dependent.

Red Strategy: Aggresive = 1;Passive =0

i rational
W actr

humans

w rational
W actr

humans

Pp,c-Task 2

i rational
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i rational
W actr
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Figure 5. Average model fits to participants for Task 2.



While it was possible that participants were simply
misunderstanding task instructions, the pervasiveness of
the averaging heuristic (29 of 30 participants exhibited it
consistently) indicated that participants were biased to
treat sequential probabilities as independent, which may
have been due to the complexity of the task environment.

While the current model, which was extended from
the ICArUS Challenge Tasks, similarly captures human
behavior, the model still has some complexities which
limit its adoption as a more general model of
sensemaking. To this point, we wish to preview efforts to
generalize the instance-based learning framework in a
simple general model of sensemaking.

General Sensemaking Model

ACT-R has recently been used to model a task that
involved parsing a series of decision-trees (Lebiere
Jentsch & Ososky, 2013) across several task scenarios.
This model was extended to include a base of seven
productions (see Figure 6) which was able to parse any
information that may be described in a decision-tree form
(i.e., an acyclic directed graph). That said, there is
nothing about the control of these productions which
precludes cyclic behavior, meaning that the model can
theoretically perform any decision whose steps can be
broken down into a directed graph.

Start-Trial

Switch-New
Decision

1

Make/Recrd
Decision

[

Retrieve
Decision

Store-Factor
Update Dcsn

Figure 6. Example of 7 productions capable of general
sensemaking processes.

This general model commits to general decision
logic and thus can theoretically capture more behavior
than a task-specific model. Also, because the model is
designed in a cognitive architecture, it is more robust than
typical decision trees. This is due to the fact that the
model is able to learn from experience and is able to
generalize to non-binary and cyclic outputs.

The model takes a series of instructions, called
decision-factors, and accesses (i.e., retrieves) factor-
values — which are the atomic components of decisions —
for the current situation until it is instructed to make a
decision. This instruction may be external (i.e., task from
instruction) or when a given threshold is reached. At that
time, a decision chunk is retrieved either via standard
retrievals with partial matching, or by blended retrievals
through instance-based learning. The decision is also
stored in a factor-value chunk for use in later decision-

making steps. With the decision retrieved, the model
moves onto the next decision in the chain.

There are three chunk types used in the model. The
first is the decision-factor chunk type, which has three
slots: type, factor, and index. The type slot determines the
type of the decision, the factor slot determines the current
factor to be processed, and the index slot records the prior
factor that was retrieved (to chain decision-factors
together). Decision-factor chunks act as a means of
chaining through the elements that go into a decision
choosing a factor from a decision-factor chunk, retrieving
the factor value (either through sensory input or from
memory), and updating the current decision goal.

The second chunk type is the factor chunk, which
also has three slots: scenario, name, and value. The
scenario slot holds the name of the current trial, the name
slot holds the kind of factor (e.g., vulnerability), and the
value slot holds the value of the factor (e.g., yes/no or
numeric). The final chunk type is an intermediate-
decision chunk which stores the factor chunks from the
decision (e.g., slots for vulnerability and opportunity and
propensity in the propensity intermediate-decision
chunk). These intermediate-decision chunks are
effectively frames, with learning across frames occurring
due to the blended retrieval mechanism of ACT-R which
implements the same instance-based learning theory from
the ICArUS Challenge Tasks.

The final chunk type is an intermediate-decision
chunk which stores the factor chunks from the decision
(e.g., slots for wvulnerability and opportunity and
propensity in the propensity intermediate-decision
chunk). The different variants of intermediate-decision
chunks do not need to be pre-specified, but may be
derived from experience using special P* productions. P*
productions allow for slot names to be variabilized, and
when the model is provided with a variabilized slot name
that does not occur in the specification of the chunk-type,
it extends the chunk-type with an extra slot. These
intermediate-decision chunks are effectively frames, with
learning across frames occurring due to the blended
retrieval mechanism of ACT-R which implements the
same instance-based learning theory found in ICArUS
and TACTICS. Thus a fundamental new capability of the
general sensemaking model is the ability to not only learn
new frames but also to learn new frame types from
experience.

While the sequence of decision chains has to be
provided as input to the model, they are derived from task
instructions. The benefit of the general sensemaking
model is that it can process any arbitrary set of
instructions using the same core productions. The model
does not need to be changed in any way to tackle a new
task but rather just needs a new set of instructions, just as
human subjects do. In addition, it is possible to perform
foraging behavior by having a pre-decision trigger that
determines a value (such as expected information gain;
EIG) that must reach a given threshold before moving
onto the generation or revision of a decision.
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