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ABSTRACT: This paper outlines similarities between sensemaking theory and the ACT-R cognitive architecture. We 

analyze a functional model that interprets geospatial imagery data implemented in the ACT-R cognitive architecture. 

We also discuss how the various cognitive mechanisms of the functional model fit within sensemaking theory, and 

finally how an analysis of these mechanisms may give rise to cognitive biases. 
 

1. Introduction 

When people make decisions, they must gather, 

elaborate, distill, and process (potentially) incomplete, 

incorrect, or contradictory information from the 

environment into actionable decisions. Sensemaking is a 

qualitative description of how information is gathered, 

structured, and used to generate and revise hypotheses 

(see Figure 1.1). Information flows through two 

interconnected processing loops: the foraging loop and 

the sensemaking loop (Pirolli & Card, 2005). 
 

 
Figure 1.1. An overview of sensemaking. Reproduced from 

Interactive Automation. Retrieved January 31, 2012, from 

http://dydan.rutgers.edu/PDDALab/dev/images/flow.png. 

Foraging describes how data is gathered, filtered, and 

aggregated into structured evidence. It is a form of 

(generally) bottom-up data collection. The stages in the 

foraging loop can be abstracted to a data gathering and 

implicit learning process that filters and assimilates 

information (Kahneman & Treisman, 1984). 

The sensemaking loop describes how hypotheses are 

generated, evaluated, and either revised or discarded. 

Hypotheses drive top-down processes such as guiding 

attention to relevant information through the application 

and interpretation of schemas. Schemas are knowledge 

structures that both organize data and shape how this data 

is interpreted. For instance, the schema for a house fire is 

different whether you are the homeowner, the firefighter, 

or the arson investigator (Klein, Moon, & Hoffman, 

2006). The concept of a frame, used by Klein, Phillips, 

Rall & Peluso (2006), is essentially equivalent to the 

sensemaking concept of a schema. In accordance with the 

fuller body of sensemaking literature, we prefer to use the 

term frame. 

In the sensemaking loop, hypotheses are either revised or 

discarded when conflicting data enters the system (e.g., 

when evidence contrary to a hypothesis is encountered). 

This generally results from a misclassification of data 

within a frame. The hypothesis (and frame) needs to be 

revised to fit the new data, or a new hypothesis has to be 

adopted. Cognitive processes such as insight learning and 

analogical reasoning are generally incorporated into 

explanations of the sensemaking loop. 

From a cognitive perspective, sensemaking can be broken 

into six main processes: learning a frame, recalling a 

frame, assessing the current frame, generating 

hypotheses, acquiring additional data, and reframing 

based on this evidence. We will focus on these six 

component sensemaking processes and how they can be 

mapped to mechanisms within the ACT-R cognitive 

architecture.  

ACT-R 6 is a computational implementation of a unified 

theory of cognition. It accounts for information 

processing in the mind via task-invariant mechanisms 

constrained by the biological limitations of the brain. 

While sensemaking theory abstracts away from brain 

processes, it makes commitments to the control and flow 

of information that are commensurable with ACT-R‟s 

functional perspective. For example, the processing loops 

in sensemaking can be instantiated in the production rules 

controlling the follow of control and information in ACT-

R. Furthermore, ACT-R is committed to localization of 

neural architecture, allowing for functional models to 

guide the development of neurally-inspired models. 

To describe the mapping of sensemaking onto ACT-R, 

we will describe two models of very different tasks from 

the IARPA-funded ICArUS-MINDS project. Its goal is to 

create a neurally plausible model of sensemaking that 



accounts for cognitive biases in the context of 

intelligence analysis.   

1.1 The ACT-R 6 Architecture 

ACT-R is a functional cognitive architecture used to 

model diverse cognitive phenomena. The ACT-R 

architecture includes long-term declarative memory, 

procedural memory, and perceptual-motor modules 

connected through limited-capacity buffers. When a 

retrieval request is made to declarative memory (DM), 

the most active matching chunk is returned, where 

activation is computed as the sum of base-level 

activation, spreading activation, mismatch penalty and 

stochastic noise.   

Spreading activation is a mechanism that propagates 

activation from the contents of buffers to declarative 

memory proportionally to their strength of association. 

Partial matching is a mechanism that allows for chunks in 

memory that do not perfectly match a retrieval request to 

be recalled if their activation overcomes a similarity-

based mismatch penalty. Blending is a mechanism similar 

to partial matching that allows for a memory retrieval that 

results in a new chunk being created that reflects the 

consensus of all chunks in memory proportional to their 

activation instead of the retrieval of an existing chunk.  

The flow of information is controlled in ACT-R by a 

production system, which operates on the contents of the 

buffers. Each production consists of if-then condition-

action pairs.  Conditions are typically criteria for buffer 

matches, while the actions are typically changes to the 

contents of buffers that might trigger operations in the 

associated modules. The production with the highest 

utility is selected to fire from among the eligible 

productions. Please see Anderson and Lebiere (1998) and 

Anderson et al. (2004) for a more complete account of 

the mechanisms implemented in the ACT-R architecture. 

2. Sensemaking and ACT-R 

ACT-R has previously been used to model several basic 

components of sensemaking such as evidence marshaling 

(Pirolli, Fu, Reeder & Card, 2002), and categorization 

(Anderson & Betz, 2001). The perceptual-motor modules 

and imaginal buffer in ACT-R are architectural analogues 

of the foraging processes in sensemaking theory. The 

visual buffer is used to store a low-level representation of 

visual stimuli in the environment.  The imaginal buffer 

can be used for the creation of new chunks which are 

then stored into declarative memory. 

In sensemaking, the foraging loop is a process of 

perceiving information from an external data source, 

placing it into a catch-all „shoebox‟, and then organizing 

this „raw‟ information into a series of structured evidence 

files. ACT-R‟s visual module and imaginal buffer have 

functionality that can be used to mirror these information-

gathering (i.e., foraging) steps in sensemaking theory. 

Specifically, the visual buffer „perceives‟ spatial and 

object information (from the visicon; ACT-R‟s 

representation of an external data source). This 

information is then harvested in a „raw‟ form into 

declarative memory, which is analogous to the „shoebox‟. 

Productions, however, can also aggregate this raw data 

and place it in the imaginal buffer, which then creates a 

new organized chunk in declarative memory for later 

retrieval (i.e., an evidence file). Based on the 

representational complexity of the task it may be 

necessary to aggregate perceptual information using the 

imaginal buffer. For instance, if the raw perceptual 

representation contains more information than is required 

for the task, a representation that focuses on the relevant 

features can be created.  Doing so would enhance 

architectural mechanisms such as spreading activation 

and improve the efficiency of the learning process. 

As previously discussed, the sensemaking loop contains 

six main cognitive processes: learning, recalling, and 

assessing a frame, generating hypotheses, acquiring 

additional data, and reframing. While these processes are 

represented as separate steps in the sensemaking loop, the 

cognitive processes subsuming their function are not 

necessarily distinct. In ACT-R, both frames and 

hypotheses can be represented as chunks. In general, the 

difference between frames and hypotheses is the kind of 

information stored in the chunks, which buffer holds the 

chunk (e.g., the goal buffer holding hypotheses, and the 

retrieval or imaginal buffers holding frames), and how 

productions manipulate the chunk structure.   

Framing (learning, recalling and assessing a frame) 

involves recalling information that was encoded in the 

foraging loop and then applying an organizational 

perspective to it. In ACT-R, a frame can be represented 

by a chunk or multiple related chunks holding rule-like 

information for the organizing and interpreting of data-

chunks (i.e., evidence files) into testable hypotheses. 

Based on task complexity, it may not be necessary to 

represent a frame as a series of related (generally 

hierarchically-organized) chunks if the expected output 

can be captured in a simple rule-like structure. 

In many sensemaking tasks, hypotheses take the form of 

either an estimate of a forced-choice response or the 

generation of likelihoods of the presence or absence of a 

given state of the environment. In ACT-R, a hypothesis 

can be represented as a chunk that contains the 

representation of a potential response. An initial 

hypothesis allows for the model to test against either an 

actual or theoretical outcome and guides the gathering of 

additional evidence that leads to reframing.   

Gathering more data and reframing occur through 

feedback on the accuracy of hypotheses and by intuiting 

regularities in new data gathered by the foraging loop. 

Top-down feedback occurs by comparing the current 

hypothesis against a normative (i.e., externally-driven) 

solution, and then either revising or discarding the current 

hypothesis and/or reframing the data. This reframing can 

occur by modifying the current frame. For instance, the 



model could change values (e.g., weights) associated with 

a given rule-like representation. An example would be 

increasing the likelihood of a given outcome based on the 

presence of a given feature. Reframing can also occur 

through utility learning, by reinforcing certain 

productions firing over others. For instance, penalizing 

productions that yield errors and reinforcing productions 

that test features which are diagnostic to the task. 

Reframing can apply to changing the hypothesis for the 

current data set as well as producing better hypotheses for 

future data sets. 

While early evidence initially shapes the adoption of a 

frame, this frame can then shape how future evidence is 

recalled through the base-level and spreading activation 

mechanisms in the ACT-R architecture. In base-level 

activation, chunks that have been recalled in the past 

(which also spreads to related chunks through spreading 

activation) have higher activation, which make the 

recalling of similar data-chunks more likely in the future.  

Before getting into more specifics regarding the 

functional and architectural analogues between the ACT-

R cognitive architecture and sensemaking theory, we 

describe two tasks that instantiate the process. 

3. The Tasks 

The following tasks are designed to study the role of 

cognitive biases in sensemaking in the context of 

intelligence analysis. A facility identification task 

examined the ability of human participants to learn to 

analyze simulated geospatial images and correctly 

discriminate facilities in unlabeled images. Six group 

identification tasks tested the ability of human 

participants to correctly identify which group was 

responsible for an attack based on evidence from layers 

of data in geospatial images, and the application of 

probabilistic rules associated with the data interpretations.  

The facility identification task was compared to both 

Bayesian normative solutions and human performance. 

The models of the group identification tasks were 

developed prior to gathering human data and serve as 

predictions of the kinds of biases humans may exhibit. 

3.1 The Facility Identification Task 

Participants were trained to identify four kinds of 

facilities in simulated geospatial images. Each image 

depicts a single facility (e.g., factory complex) composed 

of a set of discrete features (e.g., buildings). The three 

categories of features were: IMINT (image intelligence), 

representing buildings and other terrain such as roads and 

rivers; MASINT (measurement and signature 

intelligence), representing signals of radiation or 

chemical concentrations; and SIGINT (signals 

intelligence), representing communication transmissions.  

The statistical breakdown of features was not even: there 

were nine unique IMINT features, seven that represented 

buildings, and two that represented water features.  In 

contrast, there were only two kinds of MASINT features, 

while the SIGINT features were entirely homogeneous. 

In addition, each IMINT could appear at most one time in 

each image, whereas multiple instances of SIGINT and 

each MASINT could occur in each image. Additionally, 

each building (IMINT) could have attached to it zero or 

one piece of rooftop hardware. Each of the four facilities 

had different base rates for the occurrence of each of the 

possible features.  

The experiment was divided into two phases: a training 

phase and a testing phase. In the training phase 

participants were presented with 48 annotated examples 

of each facility (192 total examples), 16 at a time (in a 

four-by-four grid). In the testing phase the participants 

were presented with single unlabeled images 

sequentially. For each image, participants were required 

to report a probability distribution over the four possible 

facilities indicating the likelihood that the image 

contained each of the facilities. For more details on the 

facility identification task and comparisons with human 

data, see Rutledge-Taylor et al., (2011; forthcoming). 

3.2 The Group Identification Tasks 

The group identification tasks were a series of six tasks in 

which the participants‟ were to predict which of four 

groups was responsible for an attack. Each task was 

presented spatially in a 100 x 100 grid (representing 30 

square miles) on a computer screen. The critical feature 

in Tasks 1 to 3 was signals of activity (SIGACTs), which 

represented previous attacks by the groups.  The pattern 

of SIGACTs for each group was defined by a group 

center of activity and a dispersion value. SIGACTs were 

produced probabilistically according to these definitions. 

Task 1 consisted of 10 blocks of 10 trials.  A trial 

consisted of a single SIGACT, represented as a group 

letter, appearing on the display. On the 10
th

 trial of each 

block the group responsible was hidden, with the 

SIGACT represented as an empty square. Participants 

were required to assess the probabilities that each of the 

two groups was responsible for the attack, and then were 

asked to produce a forced choice response.   

Task 2 consisted of 10 blocks of 20 trials, similar to those 

in task 1. The difference was that there were four groups 

instead of two. In addition, participants were not required 

to produce a forced choice response after giving their 

probability estimates.  They were instead required to 

draw a circle for each group that defined the two-to-one 

ratio of the likelihood of an attack by the given group 

occurring inside versus outside their circle (e.g., their 

sphere of influence). 

Tasks 3 to 6 (see Figure 2.1) added the complexity of 

calculating distance along road networks. In task 3, 

participants were still required to find group centers from 

a series of SIGACTs, but distance between SIGACTs 

was now to be judged “as the cow walks” along a road 

network. As such, tasks 3 to 6 involved visual problem 



solving (e.g., path planning and curve tracing; Lefevre, 

Dell‟Acqua, Roelfsema, & Jolicoeur, 2011). Task 3 

consisted of 10 blocks of 20 trials.  Participants were 

required to produce a probability distribution for each 

group‟s likelihood of being responsible for the SIGACT 

on the last trial of each block. 

 

Figure 2.1. A sample screenshot of the group identification 

Task 3 model. The string of dots represents the road network, 

the letters represent individual SIGACTs, and the circle 

represents the model‟s focus of attention. 

In tasks 4, 5 and 6, intelligence data was presented in 

layers: HUMINT gave the center of activity for each 

group (the participants were not required to judge this 

from individual SIGACTs in tasks 4 to 6); IMINT 

showed which of the roads in the network were the major 

roads and which were the minor roads; MOVINT showed 

which roads had dense traffic versus sparse traffic; 

SIGINT revealed information about whether a group was 

producing chatter or not; and SOCINT showed the 

territorial boundaries for the groups on the map. 

Tasks 5 and 6 were very similar. In both tasks a road 

network with an anonymous SIGACT and the four group 

locations are presented.  The participants‟ task is to 

update the probability distribution over the four possible 

groups responsible for the SIGACT after each layer is 

revealed.  The basis for adjusting the probabilities is a set 

of rules that are provided to the participant.  Each rule 

specifies changes in the relative likelihoods that the 

groups are responsible based on a piece of layer data.  For 

example, if the SIGACT occurs on a major road, groups 

A and C are four times as likely to be responsible.  In 

both tasks the HUMINT layer is provided first, and so the 

initial probability distribution is based on the relative 

distances between the group centers and the SIGACT.  In 

task 5, the remaining layer are revealed, on at a time, in a 

random order.  In task 6, the participant chooses, one at a 

time, three of the remaining four layers.  

ACT-R models were produced for tasks 1, 2, 3, 5 and 6, 

prior to any human data being made available.  Task 4 

was not modeled as it was essentially a subset of task 5 

and will be omitted from further discussion. As the 

models were generated prior to the collection of human 

data, they are predictive of human performance and 

provide an opportunity to examine and predict the 

influence of cognitive biases and provide possible 

solutions to reduce their impact on human judgments. 

As of this submission, human data is still unavailable for 

the group identification tasks. The ACT-R model 

currently generates output probabilities for Tasks 2, 3, 

and 5 such that the highest group (of 4) is given a M = 

49.8% probability (with the three other groups equally 

distributed, M = 16.7%). This is approximately 30% 

lower than a fully-rational Bayesian model (M = 81.2%) 

and reflects uncertainty due to conservatism and 

anchoring effects in the generation of group centers and 

probability judgments, and stochastic elements within the 

distance perception and path planning functions. 

4. Sensemaking in the Identification Tasks 

In the facility and group identification tasks, ACT-R 

modeled sensemaking processes at different levels of 

abstraction due to the increased task complexity in the 

group identification tasks. For the facility identification 

task, an ACT-R model learned which facility features 

were the most diagnostic to be attended to in order to 

correctly classify the facility. The model oscillates 

between the foraging and sensemaking loops as it 

acquires evidence, changes frames, and updates its 

facility identity hypothesis. 

 

Figure 4.1. The ACT-R analogue to sensemaking. 

As described in Figure 4.1, the foraging loop is the 

sequence of productions (represented as the arrows) 

which select new features from the environment (e.g., 

sensorimotor modules) and organize them in the imaginal 

buffer. In ACT-R, there is little distinction between the 

shoebox and evidence file, as similar productions 

determine which features are attended and harvested into 

declarative memory. The shoebox holds an initial 



selection of features extracted from the sensorimotor 

modules, which are then harvested into declarative 

memory via the imaginal module. Evidence files include 

a similar feature extraction from either the shoebox 

(memory) or environment (sensorimotor modules), but 

also have productions which may re-encode features from 

the shoebox and extract higher-order feature relations 

based on the currently-held frame/schema.  

The sensemaking loop is the sequence of productions that 

retrieves a schema (e.g., a facility frame chunk) and 

generates a hypothesis for what facility is present (or 

group responsible) in a given task. In the facility 

identification task, the model oscillates between the two 

loops, seeking out more evidence and updating its 

hypothesis until a threshold for the expected utility (e.g., 

information gain) of making a decision is surpassed.  

The facility identification task is an example of a case 

when a single chunk is sufficient for storing all relevant 

evidence in a frame. The frame was a single-chunk 

representation of the set of features to be attended to. 

Knowledge of the probabilities of the various features 

being present in a given instance was implicit in the set of 

chunks and their activations. The facility identification 

task is thus best described as a category-learning task as 

each frame can be interpreted as a category exemplar. 

In the group identification tasks, the model encodes 

visual information in the foraging loop hierarchically. For 

instance, a chunk representing a road segment included a 

slot for road identification and two slots that each hold 

intersection-chunks, which in turn had slots for co-

ordinate pair chunks containing x and y coordinates as 

slots. In addition, in tasks 5 and 6 there were several rule-

like chunks (each corresponding to a layer) that specified 

how new evidence impacted the probability of a given 

hypothesis.  Thus the current frame held by the model 

was represented by the current INT layer in the retrieval 

buffer, which would be used to update the current 

hypothesis (i.e., probability distribution).  

4.1 Sensemaking in the Facility Identification Task 

The ACT-R model of the facility identification tasks 

implements an adaptive foraging loop. The feature 

selection process is composed of two distinct phases.  In 

the training phase the model studies a set of images for 

the purpose of learning which features are associated with 

each facility. In the learning phase the model must 

identify the facilities in images, and with feedback learn 

the optimal utilities for the various feature selector and 

decision instigation productions. 

Learning frames was accomplished during the task‟s 

training phase. ACT-R modeled variants instantiating 

both rule-based and exemplar-based category learning. In 

this phase the model acquires examples of facilities and 

commits them to memory. In this case a frame is an 

abstraction of the accumulated exemplars that is realized 

during category assignment. The frame for a particular 

facility is thus the implicit knowledge that the model 

possesses about the probabilities of the various features 

being present in an instance. This is functionally similar 

to a rule with the implicit probabilities for each feature 

representing a set of conjunctions updating the likelihood 

of a given facility based on the presence or absence of a 

given feature.
1
 The currently-held hypothesis is the 

probability that the current image depicts a given facility 

(and is provided to the model in the training phase). 

Due to the feedback received during the training phase, 

the ACT-R model is constantly reframing by determining 

the utility of which features are the most diagnostic of the 

facilities. Feature selection is the process of deciding 

which features present in an image ought to be attended 

to, and which should not. Part of sensemaking theory is 

the ability to aggregate and distill information to 

maximize the availability of information within the 

context of working memory limitations. Feature 

selection, in part, addresses the issue of the working 

memory capacity for information.  

It is presumed that the participants are unlikely to be able 

to attend to every available feature in every image due to 

various cognitive constraints.  The normative probability 

that a feature should be selected is based on its utility in 

facility identification. The ACT-R model uses utility 

learning to develop implicit preferences for attending to 

some features over others. Utility learning provides 

rewards (or penalties) to productions based on their 

outcome. A positive reward is instigated after a facility is 

correctly identified, while a negative reward is instigated 

after an incorrect identification. 

The productions of interest during utility learning are 

divided into two categories: feature selector productions 

and decision instigation productions.  Each feature 

selector production is specific to a single IMINT feature 

and a specific intermediate hypothesis about what facility 

is represented in the given sector.  This allows for the 

utilities of selecting features to be hypothesis-specific and 

represents the interplay between frames and hypotheses 

in the sensemaking loop.  

Each decision instigation production is eligible to fire 

after a specific number of features have been selected.  

Once a decision instigation production has fired, a facility 

identification event occurs.  If the identification is 

correct, the decision instigation production and all the 

feature selection productions that lead to the decision are 

rewarded.  If the identification is incorrect, the same 

productions are penalized. 

In the learning phase, the model alternates between 

updating the model‟s current hypothesis of what facility 

is present and selecting a new feature (or electing to stop 

encoding features).  When selecting a feature, all of the 

                                                 
1 In another paper (Rutledge-Taylor, Lebiere, Thomson, Staszewski & 

Anderson, forthcoming) we discuss similarities in performance between 
rule and exemplar-based models on this task. 



feature selector productions that are eligible to fire 

compete. The production with the highest utility will fire, 

and the feature associated with the production will be 

added to the selected features stored in the imaginal 

buffer. This is analogous to acquiring additional data.  

The decision to stop encoding features is governed by a 

set of decision instigation productions that compete 

against the feature selection productions. The decision 

instigation productions receive utility rewards and 

punishments, as do the feature selection productions 

(similar to the training phase). The model stops encoding 

features when the relevant decision instigation production 

fires instead of any of the eligible feature selection 

productions. This evolving production competition allows 

the model to learn the rational number of features to 

encode and represents the model‟s reframing based on 

whether the hypothesis was supported or contradicted. 

When updating the current hypothesis (stored in the goal 

buffer), the facility is identified by recalling the facility 

frame from declarative memory that best matches the 

features selected so far.  The value for the facility ID in 

the recalled frame is used to update the hypothesis 

maintained in the goal buffer. When the model stops 

encoding new features, the current hypothesis is output as 

the model‟s final categorization decision for the image. It 

is possible that, based on new features (reframing), the 

hypothesis may be updated (new probabilities) or rejected 

(by choosing a new facility type). 

In summary, the process of feature selection in the 

facility identification task mirrors the sensemaking 

process. The foraging loop is analogous to the sequence 

of productions that selects new features from the 

available pool and organizes them in the imaginal buffer. 

The sensemaking loop is analogous to the sequence of 

productions that retrieves a facility frame chunk from 

DM and generates a hypothesis for what facility is 

present in the given image.  The model oscillates between 

the two loops, seeking out more evidence and updating its 

hypothesis until the expected utility of making a decision 

is greater than that of collecting more data. 

4.2 Sensemaking in the Group Identification Tasks 

Unlike the facility identification task, the group 

identification tasks do not have a training phase and the 

rules for adjusting probabilities are explicitly provided to 

participants (and the model). The model thus has less 

opportunity for learning due to feedback (based on 

revising hypotheses). Instead, the group identification 

tasks require more general spatial judgments (such as 

path planning) and the application of multiple rules that 

do not fit the traditional definition of frame as a singular 

structure or representation in the sensemaking literature. 

In the facility identification task it was also practical (and 

fit within the spirit of working memory limitations) to 

represent the relatively small set of features in a single 

chunk. In the group identification tasks it was neither 

practical nor cognitively plausible to represent the full set 

of spatial information within a single chunk in DM. 

Instead, chunks of spatial information are represented 

hierarchically. For instance, a group center (in task 3) is 

located on a road segment, which is made up of a location 

(co-ordinate pair) along a road segment. Road segments 

are defined by their endpoints (intersections) and general 

length and shape, which are also linked to locations.   

The basic unit of evidence in tasks 1 to 3 is a SIGACT, 

which corresponds most closely with evidence files in the 

foraging loop. SIGACTs are perceived by the visual 

module, their location and group identity placed in the 

imaginal buffer, and at the end of each block, an estimate 

of each group center (and two-to-one boundary in task 2) 

is performed. This group center and boundary estimate is 

a kind of spatial frame (insofar as it predominantly 

contains spatial information). In the model, the group 

center is calculated for each group in a separate chunk, 

thus the current frame of the model incorporates four 

chunks (one for each group center). Using these spatial 

frames, a hypothesis (i.e., the set of probabilities) is 

generated and compared against the provided feedback. 

The model has only a limited ability to reframe because it 

only receives feedback (i.e., ground truth, not probability 

distribution) at the end of each block. As such, reframing 

occurs when the model updates the group center estimate 

(in the subsequent block) with the identity and location of 

the target SIGACT from the previous block. 

In tasks 3 to 6, distance (for the purpose of generating 

group centers from SIGACTs and between each group 

center and a target SIGACT) was not calculated using a 

„crow-flies‟ estimate, but instead by estimating the length 

of the path along the road network. Due to the complexity 

of the road network, more than one path could be chosen. 

As such, the path-planning processes within the model 

could be seen as their own self-contained sensemaking 

process (implemented as a non-deterministic hill-

climber). Foraging involved the perception of the 

possible paths at each intersection, framing involved the 

storage of the path, hypothesis testing involved mentally 

traversing a candidate road segment, and reframing 

occurred when the model needed to backtrack to a 

previous segment (due to hitting a dead-end or detecting 

that it had gone in a loop). The hypothesis included the 

currently-held distance estimate, and was revised when a 

new candidate road intersection was added to the path.   

Tasks 5 and 6 use a more general model of hypothesis 

testing and reframing due to application of multiple 

layers of INTs. The spatial frames (from task 3) mapping 

group centers to a target SIGACT now represent a single 

layer (the HUMINT layer). There is little foraging to be 

done because the rules and group centers are provided as 

input to the model. Sensemaking is even more prevalent 

in task 6 because participants are able to choose their next 

INT layer (in task 5, three layers are provided in a 

random order). The model uses utility learning (similar to 

facility identification) to reward the model when it 



chooses a layer that leads to a correct probability 

distribution. 

A frame is generated when the first layer of information 

(HUMINT) is applied to existing group centers. Using 

this frame, an initial hypothesis is generated (i.e., the 

initial probabilities for each group). Reframing occurs 

when an additional layer (SOCINT, SIGINT, MOVINT, 

or IMINT) is applied, which then revises the current 

hypothesis. Acquiring additional information occurs 

externally to the participant (and model) in task 5 because 

the layers are presented randomly; however the 

participant (and model) may reframe based on this 

additional evidence. In task 6, however, the model 

reframes by choosing a layer based on the current 

hypothesis. For instance, the model might select SOCINT 

when the probability distribution is flat, MOVINT or 

IMINT when trying to dissociate two alternatives, and 

SIGINT when the distribution is steep. The current 

hypothesis is revised when the next INT layer is applied 

(i.e., when the rule is applied which in turn revises the 

probabilities), and the layers that lead to correct 

classifications are rewarded.  

In summary, the closest equivalent to a single frame in 

the group identification tasks is an organized 

representation of the input (i.e., the group centers in 

Tasks 1 to 3; the HUMINT, SOCINT, SIGINT, 

MOVINT and IMINT layers in Tasks 4 to 6). This 

definition of a frame preserves the meaning of the 

sensemaking processes described in the facility 

identification task.  

More specifically, learning a frame corresponds to the 

accumulation of evidence supporting the hypothesis of a 

group being responsible for a SIGACT. This involves the 

accumulation of group centers estimates (in tasks 1 to 3), 

the dispersion of attacks (task 2), and generating initial 

probabilities based on rules (Tasks 4 to 6). Importantly, 

the model assumes that some spatial and mathematical 

mapping chunks already exist in memory, and reflect 

general experience/competencies. 

Generating a hypothesis corresponds to the initial 

probability distribution assigned to each group. The 

probabilities are an evaluation of how probable it is that a 

particular group was responsible for a target SIGACT, 

based on how well the features of the SIGACT (e.g., 

location) match the characteristics of each group's frame. 

Reframing occurs whenever feedback occurs and when a 

new INT layer is applied. 

4.3 Modeling Biases in Sensemaking 

In sensemaking, biases are usually identified as heuristics 

in data gathering within the foraging loop and in frame 

(re-)encoding in the sensemaking loop (e.g., availability 

heuristic; Klein, Moon, & Hoffman, 2006). Under this 

interpretation, biases result mainly from architectural 

constraints (e.g., working memory, attention). Biases, 

however, may also occur in the sensemaking process due 

to the nature of the task and how the limitations of human 

memory and attention degrade performance in systematic 

ways. When modeling human performance, how the 

computational model is constructed will influence how 

biases are reflected in the model. For instance, the bias 

may be an emergent property of the architecture, or it 

may be due to the specific strategies of the model itself.  

Thus, in cognitive modeling biases may arise from a 

combination of task demands, architectural limitations 

(e.g., one item per buffer in ACT-R), and modeler 

preferences. For instance, confirmation bias (an overly 

certain belief in the leading hypothesis) may be due to an 

explicit strategy coded by the model to always focus on 

the group with the highest probability (e.g., choose the 

SIGINT rule for that group) or it may be implicit in the 

architecture of the model (e.g., spreading activation from 

contextual cues increasing the probability of some 

features being recalled). This was a factor in the feature 

selection model of the facility identification task. By 

maintaining a chunk representing the current facility 

hypothesis in a slot of the goal buffer, the model was 

biased towards maintaining that hypothesis because 

exemplars in DM of the same facility would receive a 

boost in activation via spreading activation and thus make 

a greater contribution to updating the current hypothesis.  

It may also be possible to equate model-level biases with 

biases resulting from explicit human strategies 

(Gigerenzer & Gaissmaier, 2011). 

Base-rate neglect is another example of a bias which can 

be a result from either the task, implicit (i.e., 

architectural), or strategic levels. At the task level, higher 

levels of complexity can cause base-rate neglect due to 

the sheer volume of stimuli to store and subsequently 

recall. To reduce both memory load and processing time, 

some features need to be abstracted. Similarly, at the 

implicit level, working memory is generally seen to have 

a capacity of 7 +/- 2 chunks of information available 

(Miller, 1956). Once this memory capacity is exceeded, 

some information needs to be either abstracted or 

discarded. Finally, at the strategic level, there are coding 

choices that may be made based on an analysis of task 

difficulty and an awareness of architectural constraints. 

For instance, when grouping many dots presented 

sequentially on a display it may be an explicit strategy to 

ignore base-rate and focus on grouping elements together.  

The goal of cognitive modeling should primarily be to 

account for biases due to the interplay between the task 

and architectural levels.  Those biases should be 

considered emergent properties of the model. Explicit 

strategies would be represented in the model as design 

choices in terms of the specific productions and chunk 

types utilized. Explicit reasoning strategies may influence 

performance (and often reflect architectural limitations), 

but should not be relied upon as the mechanism to 

instantiate biases (especially biases considered to be due 

to automatic processes).  



5. Discussion 

The advantage of standardizing sensemaking processes 

with ACT-R is that it provides a common framework for 

model comparison in extant sensemaking tasks and 

possible model re-use between tasks. A limitation of 

cognitive modeling is that models can rarely be 

generalized or re-used to adapt to a different task. By 

standardizing the elements of sensemaking with ACT-R, 

we are providing a roadmap to generate a general 

cognitive model of sensemaking, capable of making 

predictions regarding human performance (as opposed to 

fitting to extant human data). A generalized model of 

sensemaking is under development, which is based on the 

principles described in this document.
 
 

In summary, the present paper has provided a possible 

framework and some suggestions for how to encode 

stimuli and represent hypotheses in ACT-R that would 

instantiate sensemaking processes. While it was beyond 

the purview of this discussion to provide a more in-depth 

link between the individual sensemaking elements and 

the ACT-R architecture, it does provide a framework for 

a general cognitive model of sensemaking.   
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