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ABSTRACT: We developed an ACT-R model of sensemaking in geospatial intelligence tasks based on two widely used
learning processes in ACT-R: instance-based learning and reinforcement learning. This map-based task requires users
to select (make visible) layers that visualize different types of intelligence, and to revise probability estimates about
which groups might commit a future attack. The model (a) evaluates the gains to be made by selecting layers during the
simulation, (b) selects layers based on the evaluation of all layers, and (c) adjusts probability estimates of the threats
posed by all groups based on new evidence. The model exhibits layer-selection patterns that are comparable to
participants (N = 45) studied on this task and both model and people deviate from a rational model based on greedy
maximization of expected information gain. The model also exhibits an anchoring bias in updating belief probabilities
based on revealed evidence, which corresponds to the average participant.

1. Introduction

Sensemaking (Klein, Moon, & Hoffman, 2006a, 2006b;
Pirolli & Card, 2005; Russell, Stefik, Pirolli, & Card,
1993) is a concept that has been used to define a set of
activities and tasks in which there is an active seeking and
processing of information to achieve understanding about
some state of affairs in the world. Various kinds of
complex tasks in intelligence analysis and situation
awareness have been frequently used as examples of
sensemaking (Klein et al., 2006a, 2006b; Pirolli & Card,
2005). According to Pirolli and Card (2005), the overall
process of sensemaking can be organized into two major
loops of activities, a foraging loop and a sensemaking
loop. The foraging loop involves seeking, searching and
filtering information, and reading and extracting
information into representation called a schema. The
sensemaking loop involves iterative development of
schemas to make best fit with the evidence.

A recent study (Thomson, Lebiere, Rutledge-Taylor,
Stazewski, & Anderson, 2012) showed that the ACT-R
cognitive architecture can capture several basic

components of sensemaking theory by presenting how the
various cognitive mechanisms of an ACT-R model
applied to a geospatial intelligence task can be used to in
sensemaking theory. Here we present an ACT-R model of
that geospatial intelligence task that requires foraging for
information and compare it to human performance data
collected in a controlled study.

2. The Geospatial Intelligence Task

The IARPA ICArUS program provides a series of six
challenge tasks to drive the development of integrated
neurocognitive models of sensemaking. Participants
performed Tasks 1 through 6 with resting period between
the tasks. The final task, Task 6 (Figure 2.1 (d)) requires
reasoning based on a set of rules (PROBS rules) that
relate observed evidence to the likelihood of attack by
four different groups.

A layered geospatial map is presented on a computer
screen with different layers presenting different forms of
intelligence (INTs). There are five types of INTs (see
Table 2.1) that include HUMINT (human intelligence),



Probabilities have been initialized from HUMINT reports. Select the INT layer you would like to see and dlick Next to continue.

/%”UL -

"\Lm ” H

1.2 3 4 1 2 3 4

1.2 3 4

mNT

SIGINT

RRAE
z >

Grou
SoCINT

initial probabilities (from HUMINT),
16%  61% 4% 19%

® ® AA  B® C D

Exam: Pilot Exam _Participant: TEST Phase: Mission 6(6/7)  Trial: 1/10, Part: 1/13

(a) Task Environment

Nt Attend a Problem

with Initial Probabilities

Estimate Probabilities
based on HUMINT

Estimate
based on SOCINT

SOCINT Layer Provided Troop

(b) Task 4

4 Iterations I I ‘ ‘ - I
/ K/ A B A B
Attend a Problem Layer Provided with Estimate Probabilities .
with Initial Probabilities random order based on provided Layer Troop Allocation
(c) Task 5
S X
A .
- A= 3 Iterations. I I t ‘ —> I
; / ‘ / A B A B

Attend a Problem Estimate Probabilities

Select a Layer based on selected Layer

Troop Allocation

(d) Task 6

Figure 2.1 The task environment (a) and a series of geospatial intelligence tasks (b, ¢, and d). Task 4 (b) begins with
estimating probability of attack for four different locations based on distances between the attack location and the
insurgent group. A SOCINT layer was provided, then participants were asked to update probabilities of four different
locations again base on SOCINT rule. In Task 5 (c¢) and Task 6 (d), participants initially were provided HUMINT
information. Based on the provided/selected layer, participants were asked to update probability of each group. After
end of each trial, participants were asked to allocate resources (troops) base on their probability estimation.

IMINT (image intelligence), MOVINT (movement
intelligence), SIGINT (signal intelligence), and SOCINT
(socio-cultural intelligence).

Participants performed two similar tasks (Task 4 and 5,
see Figure 2.1) before the Task 6. Task 4 begins with four
different possible attack locations and a given insurgent
group center. Participants were asked to report the
probability of attack at each location based on the
distance between the insurgent group center and each
location. After reporting probabilities, participants were
given a SOCINT layer that indicates the group in whose
region the attack had happened. Participants were asked
to report probabilities again based on the SOCINT
evidence and the SOCINT PROBS rule for reasoning
about that evidence (Table 2.1).

Tasks 5 and 6 are very similar. Both tasks begin with an
attack location and four possible insurgent groups with
their attack probabilities (HUMINT). In Task 5, the
remaining four types of INTs were provided, one at a time
in a random order. In Task 6, participants were asked to
choose a particular INT (layer), up to a total of three INT
layers, one at a time, in any order. Each INT layer
provides unique outcome. Specifically, IMINT can reveal
whether an attack happened on a government or military
building, MOVINT provides outcomes on whether an
attack occurred in dense or sparse traffic, SIGINT
indicates electronic “chatter” or “silence” by different
groups, and SOCINT provides the group in whose region
the attack happened. At each stage, the selection of a
particular INT provides outcomes that can be used to

update probability distributions over the hypotheses about
the responsibility of the four different groups in producing
the given attack. The rules specifying how outcomes
ought to update these probabilities are given as the
PROBS rules in Table 2.1. After the last stage of both
tasks, participants were asked to allocate resources
(troops) to prevent further attacks and the allocation score
was provided to participants based on their allocation for
each group and the ground truth (e.g., if the ground truth
is A, the allocation is 40-30-20-10 for each group, then
the allocation score is 40).

Table 2.1. Probabilistic rules provided to user for
inferring beliefs about group attack likelihoods.

INTS PROBS

If a group attacks then the likelihood is a normal
(Gaussian) function of distance along road(s) from
the group’s center.

If A or B attack then the attack is four times as
likely to occur on a Government vs. Military
building.

If C or D attack then vice versa.

HUMINT

IMINT

If A or C attack then the attack is four times as
likely to occur in dense vs. sparse traffic.
If B or D attack then vice versa.

MOVINT

If SIGINT on a group reports chatter, then attack by
that group is seven times as likely as attack by each
other group
If SIGINT on a group reports silence, then attack by
that group is one-third as likely as attack by each
other group.

SIGINT

If a group attacks then that group is twice as likely

SOCINT to attack in its own vs. other region.




3. Analysis of Human Data

Forty-five participants (MITRE Technical Report, In
Progress) performed the Tasks 1 through 6 with resting
periods between tasks. We analyzed participants’ layer
selection sequences in Task 6 first. Figure 3.1 shows the
observed layer selection sequences for Task 6, which
indicates that about one third of the all sequences follow
the IMINT-MOVINT-SIGINT sequence (the vertical
order of layers appearing in the Graphical User Interface
(GUI), see Figure 2.1), another third selected SOCINT for
the first choice and selected ANYINT (any layer) for the
rest of their choices. The remaining layer selection
sequences appear to be random selections.

SOCINT - SIGINT - MOVINT
SOCINT - SIGINT - IMINT
SOCINT - MOVINT - SIGINT
SOCINT - MOVINT - IMINT
SOCINT - IMINT - SIGINT
SOCINT - IMINT - MOVINT
SIGINT - SOCINT - MOVINT
SIGINT - SOCINT - IMINT
SIGINT - MOVINT - SOCINT
SIGINT - MOVINT - IMINT
SIGINT - IMINT - SOCINT
SIGINT - IMINT - MOVINT
MOVINT - SOCINT - SIGINT
MOVINT - SOCINT - IMINT
MOVINT - SIGINT - SOCINT
MOVINT - SIGINT - IMINT
MOVINT - IMINT - SOCINT
MOVINT - IMINT - SIGINT
IMINT - SOCINT - SIGINT
IMINT - SOCINT - MOVINT
IMINT - SIGINT - SOCINT
IMINT - SIGINT - MOVINT
IMINT - MOVINT - SOCINT
IMINT - MOVINT - SIGINT
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Figure 3.1 Layer selection sequences in human data on
Task 6.

We hypothesize that some participants selected the
IMINT-MOVINT-SIGINT sequence more often because
they were influenced by the experimental GUI. As we can
see in Figure 2.1, the IMINT-MOVINT-SIGINT sequence
is the vertical order of layers presented on the GUI, so
some of participants just followed that sequence without
other considerations, such as information gain.

We also assume that participants’ previous experiences
made them have some preference for a particular layer.
That is, if the participants had some positive experience
for specific layers in Tasks 4 and 5, they might choose
those preferred layers rather than the others in Task 6. We
analyzed the outcomes of SOCINT layer selections in
Tasks 4 and 5, because SOCINT-first choices were
observed frequently in the human data, even though it
provides the least expected information gain among all
layers (based on the expected change in the entropy of the
probabilities assigned to groups if one follows the rules in
Table 2.1). Figure 3.2 shows the frequency that

hypotheses about group responsibility are assigned the
highest probability immediately after initial HUMINT
(distance estimation) evidence in Task 4. Figure 3.2
shows that in more than 85% of the cases the hypothesis
of group D responsibility has the highest probability.
When the SOCINT layer was presented to participants,
the outcome was always region “D”, supporting the
highest probability group.
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Figure 3.2 Frequency that a group was the highest
probability group after HUMINT (distance estimation) in
Task 4.

Figure 3.3 plots Task 5 data showing how SOCINT
evidence supports the group-responsibility hypothesis.
The x-axis in Figure 3.3 plots the SOCINT support
according to the rank probability of the hypothesis at the
time of SOCINT presentation.
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Figure 3.3 Frequency of the SOCINT outcome supports
the highest to the lowest probability by rank order.



Figure 3.3 shows that the outcome of the SOCINT layer
supports the highest probability group more than 53% of
the time and the second highest probability group more
than 23%. These results suggest that participants had
frequent positive experiences of the SOCINT layer in
Task 5, which may have made them choose a SOCINT
layer more frequently in the layer selection of Task 6.

We also investigated the reason that participants rarely
chose the SIGINT layer as their first choice, because the
SIGINT layer gives the highest expected information gain
among all layers. One possible reason is that the SIGINT
layer appears to involve a high mental calculation cost,
because participants needed to decide on a particular
group first, and then consider the possible outcomes of the
layer selection. We also assumed that experience from the
previous tasks (Tasks 4 and 5) and the ongoing task (Task
6) might make participants not to choose the SIGINT
layer as their first choice. We investigated the actual
information gain (as measured by change in entropy of
the probabilities assigned to groups) at the end of each
trial with respect to the first layer choice. Figure 3.4
shows that participants get the most information gain
when SOCINT was presented as the first layer in Task 5.
SIGINT ranks as second in Task 5, but the worst in Task
6. Therefore, if participants were learning from
experience, there is sufficient evidence suggesting that
selecting the SIGINT layer, as the first choice, might not
be an optimal choice. So, SIGINT is not necessary for
seeking the highest expected information gain when
making the first layer selection, because it cannot
guarantee the optimal end results, and this might explain
why participants did not frequently use the SIGINT-first
strategy in Task 6.
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Figure 3.4 Information gain at the end of the trial with
respect to layers and tasks

4. ACT-R Architecture

ACT-R (Anderson, Bothell, Byrne, Douglass, Lebiere, &
Qin, 2004; Anderson & Lebiere, 1998) is a cognitive
architecture. It includes a declarative memory module that
stores and retrieves information, a procedural module that
coordinates the flow of information, and perceptual-motor
modules that enable the model to interact with the
external environment. Each module has a buffer, which
contains a chunk, as interface to the procedural module
and the rest of the architecture to receive commands and
requests and return results. Each chunk has an associated
numerical value, called activation, that reflects its
expected degree of usefulness at any particular moment.
When a retrieval request is made, the most active
matching chunk is retrieved. Partial matching is a
mechanism that allows retrieving a chunk that does not
perfectly match a retrieval request. Based on a
combination of the activation strength and a similarity
score, the best chunk is selected. Blending (Lebiere,
1999) is a memory retrieval mechanism that allows
retrieval of an aggregation of all possible chunks in
declarative memory, weighted by their probabilities of
retrieval reflecting their activation strength and similarity.

The information flow in ACT-R is controlled by a
production system. Each production consists of if-then
condition-action pair. Conditions are criteria against
matched chunks in buffers (e.g., goal, retrieved memory
chunk, visual object chunk), and actions make changes to
the contents of buffers that trigger operation in the
associated modules. The production with the highest
utility is selected among possible productions that match
the current conditions.

5. ACT-R Model

Our previous ACT-R model (Paik, Pirolli, Lebiere, &
Rutledge-Taylor, 2012) was based on assumptions about
the behaviors of experts who invariably rely on vast
amount of declarative memory experience and well-
practiced cognitive skill (Klein, 1999). However, our
observed participants had no chance to have a vast
amount of declarative knowledge experience during the
experimental tasks. So we are proposing an alternative
way to model the layer selection process.

5.1 Layer selection process

We considered four cognitive processes to develop an

ACT-R model.

*  Difference reduction heuristics. We assume that
participants used a heuristic such as hill-climbing to
evaluate layers rather than maximization of expected
information gain, because an average person is not
able to compute the expected information gain for all
layers. Hill-climbing analysis enables participants to



focus on achieving states that are closer to an ideal
goal state. This analysis just requires a simple
evaluation of difference between the current state and
the perfect (goal) state.

* Instance-Based Learning. We hypothesize that
participants might rely on direct recognition or recall
of relevant experience from declarative memory or,
failing that, heuristically interpret and deliberate
through the rules and evidence provided in the tasks.
This compute-vs-retrieve process is a design pattern
that typically structures ACT-R models. The notion
that learners have a general-purpose mechanism
whereby situation-action-outcome-utility
observations are stored and retrieved as chunks in
ACT-R declarative memory derives from instance-
based learning theory (/BLT, Gonzalez, Lerch, &
Lebiere, 2003; Reitter, 2010). Following the actual
task experiences of participants, the model had
opportunities to acquire 20 instances for the SOCINT
layer during Tasks 4 and 5, and 10 instances for the
other layers during Task 5. There is also some
number of instances from their selections during Task
6. Those instances were stored into declarative
memory and were used to simulated look-ahead
search in Task 6.

*  Reinforcement Learning. During Tasks 4-6,
participants were asked to update the probability
distribution based on the outcome (information
revealed) of each layer. Some of the layers and
outcomes might support participants’ hypothesis, but
some of them might not. Reinforcement learning was
employed in the ACT-R model to reinforce or punish
layer selection productions based on these
experiences. This reinforcement learning adjusts the
preference order for layer selection.

*  Cost-satisfaction-driven layer selection. The SIGINT
and SOCINT layers require more calculation cost
than IMINT and MOVINT layers when computing
outcomes. We assume participants might consider the
cost-satisfaction factor when exploring a layer
selection. Our model incorporates a cost estimate
when considering look-ahead search.

Our ACT-R model performed Instance-Based Learning
through Tasks 4 to 6, storing declarative chunks that
capture current <situation, actions, outcome, utility>
experiences, specifically, prior-probabilities, layer-choice,
layer-outcome, and layer-utility. For the layer utility, our
ACT-R model explored some plausible difference
reduction heuristics in a memory-based move evaluation
framework. The following equation shows that the goal is
to achieve certainty on one of the hypotheses, and
distances from the goal of certainty for each hypothesis i
are captured by 1 - p; and each distance is weighted by the
current probability p;.

Z pi(1—py)

ie/typotheses

For instance, if the model encountered a situation
[.4 .2 .2 2] as prior (meaning: probability of Group A
attack = .4, Group B attack = .2, etc.), IMINT as a layer
selection, “government building” as an outcome, and the
model updated posterior probability distribution
[.5.3.1.1], then the stored chunk is

(expl
isa layer-choice
prior-a 0.4
prior-b 0.2
prior-c 0.2
prior-d 0.2
layer IMINT
outcomes government
utility 0.64)

Our ACT-R model also performed reinforcement learning
through Tasks 4 to 6. After updating the probability
distribution over hypotheses about group attacks, based
on a layer and its outcomes, the model evaluates whether
the model gains information or loses information by
comparing the entropy of the prior distribution (prior to
selecting a layer) to the posterior distribution (after
updating hypotheses). If the model gains information, the
production for selecting the current layer receives some
reward; if it loses information, the production receives
some punishment. This reinforcement learning enables
the model to develop a preference order list for all layers,
and the preference order of layers was used to determine
which layer should be explored first in layer selection
process.

In Task 6, the prior probability distribution based on
HUMINT (distances between the attack location and each
group) is provided by the environment, and the model has
a preference ordering acquired from experience on Tasks
4 and 5. Given those priors and a preferred layer, the
ACT-R model searches for a similar chunk that has a
similar prior and layer-choice from its declarative
memory using ACT-R’s partial matching mechanism. If
the model retrieves a similar chunk, the model relies on
blending to retrieve the utility of the current layer. If a
similar chunk does not exist, the model needs to decide
whether to compute utility or not based on the calculation
cost of the current layer. If the model decides to compute,
it calculates the utility (weighted distance) of the current
layer, creates a chunk (prior-layer-outcome-utility), and
adds the chunk into its declarative memory. If the model
decides not to compute, it explores the next preferred
layer that is in the preference list, and follows the same
procedure.



After the model obtains the utility of the current layer, the
model evaluates it by comparison to the average utility of
all layers to determine whether the utility of the current
layer is acceptable or not. If the utility of the current layer
is better (smaller weighted distance to certainty) than the
average utility, the model is satisfied with the current
layer and selects the layer as its choice, if not, the model
explores the next preferred layer and follows the same
procedure. After the model selects a layer, it creates a
chunk and stores it into declarative memory as its
previous experience. The model runs this layer selection
and probability adjustment process three times to select
three different INT layers. After selecting INTs, the
model allocates troops based on the final probability
distribution. Figure 5.1 shows the probability distribution
of layer selection sequences for our ACT-R model,
human data, and a rational model based on local
maximization of expected information gain.
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Figure 5.1 Layer selection sequences from the ACT-R
model, human data, and rational.

It appears that the ACT-R model focuses more on
particular layer sequences than participants. However,
participants had more preference for the GUI order
(IMINT-MOVINT-SIGINT) than our ACT-R model. To
measure the similarity of the probability distribution of
layer selection sequences between ACT-R and human
data, we measured the Jensen-Shannon Divergence (JSD)
between the two distributions. The divergence between
the two distributions is .34 (the range of JSD is 0 to 2, 0
means the two distributions are the same), indicating our
ACT-R model predicts the human data well.

5.2 Hypothesis probability adjustment

Our model of probability adjustment after receiving new
evidence from each INT layer selection is based on a
model of cognitive arithmetic (Lebiere, 1999). The

cognitive arithmetic model used the retrieval of arithmetic
facts to generate estimates of answers rather than explicit
computations. The cognitive arithmetic model uses partial
matching to retrieve facts related to the problem, and the
blending mechanism merges retrieved chunks to get an
aggregate estimated answer. The cognitive arithmetic
model matched a number of characteristics of the
distribution of errors in elementary school children, such
as table and non-table errors, error gradients around the
correct answer, higher correct percentage for tie problems,
and, most relevant here, a skew toward underestimating
answers, as is common in anchoring and adjustment
processes.

We leveraged the cognitive arithmetic model for our
geospatial intelligence model to account for how the
PROBS rules (from Table 2.1) are interpreted and applied
based on the recent studies (Lebiere, Pirolli, Thomson,
Paik, Rutledge-Taylor, Stazewski, &  Anderson,
Submitted;  Rutledge-Taylor,  Lebiere, = Thomson,
Stazewski, & Anderson, 2012) . Initially, our ACT-R
model has only five facts that are derived from the
instructions provided participants about the PROBS rules
(presented graphically during the experiment). Those rule
instructions assume cases in which the prior probability
distribution  over  group  hypotheses is  flat
[.25, .25, .25, .25], and present the posteriors for all the
outcomes of all the INT layers (e.g., the posterior of
IMINT-Government is [.4 .4 .1 .1] when the prior is a
uniform distribution). These rules are represented with
triplets: an initial probability, an adjustment factor, and
the resulting probability. Through Tasks 4 to 6, our model
tries to blend over the initial probabilities and the
adjustment factor, retrieves the relevant chunks as its
posterior, and stores the retrieved chunk into declarative
memory if similar chunks (with similar prior) exist. If
similar chunks do not exist, the model computes the
actual posterior and stores it into declarative memory,
then blends the prior with the adjustment factor. Our
model computes and stores a lot during the earlier trials,
however, it relies more on blending to get the posterior in
later trials. When provided with ratio similarities (Lebiere
et al., Submitted) between probabilities and factors, the
primary effect is an underestimation of the adjusted
probability for most of the probability range. This
produces a kind of anchoring bias as the probability
adjustments tend to be closer to the initial prior than what
is predicted by normative Bayesian updating.

Figure 5.2 shows the results of probability adjustment for
the IMINT and MOVINT layers with respect to
participants, ACT-R model, and the Bayesian rational
adjustment. The x-axis is a prior probability estimate of a
group attack and the y-axis is the posterior estimate
resulting from an adjustment by a factor of 4. Participant
data show more variance and more anchoring bias (i.e.,



regression toward the posterior=prior line) than our ACT-
R model. We calculated the Jensen-Shannon Divergence
(JSD) of probability adjustment between the participants
and our model, and the average JSD is .05. The R and R*
fits are .88 and .78 respectively, which suggests our ACT-
R model predicts human data closely.
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Figure 5.2 Probability adjustments for IMINT and
MOVINT layers with respect to rational, participants, and
ACT-R model.

6. Conclusion and Discussions

We developed an ACT-R model of sensemaking in
geospatial intelligence tasks based on two widely used
learning processes in ACT-R modeling: Instance-Based
Learning and reinforcement learning. The model
demonstrated behavior patterns similar to human
participants’ in terms of layer selection sequences as well
as anchoring biases in probability adjustments made in
response to new evidence.

6.1 Layer selection sequences

Our ACT-R model stores previous instances from Tasks 4
and 5 in its declarative chunks that capture the current
situation (prior probabilities), actions (provided layers),
outcome (result of the layer), and utility (distance from
certainty), and develops a preference layer list based on
reinforcement learning from past rewards or punishments.
The preference list was used to decide on which layer
should be explored first in the layer selection process, and
the previous instances were used to retrieve the utility of
the specific layer by blending over the prior and the layer.
The retrieved utility was compared with the average
utility of all layers for deciding whether to choose the
layer or not.

Our ACT-R model predicts participants’ layer selection
sequence well, however, participants were more likely
than our ACT-R model to select the layers in IMINT-
MOVINT-SIGINT order, which is their vertical order or
presentation in the GUI for the experiment environment.
The other reason for the differences in the distribution of
layer selection sequences between participants and our
ACT-R model is that participants might not consider
information gain at each stage of layer selection, but
rather consider the troop allocation score that was given
after finishing each trial after all the layer selections. That
is, the SIGINT should be the first layer selection from the
rational perspective because it gives the highest
immediate information gain, but participants rarely chose
the SIGINT layer as their first layer selection because of
the potential for erroneous selection of the group probed.
Finally, participants might satisfice and stick to one
specific combination of layer selection more often as long
as they can get a high enough troop allocation score.

6.2 Anchoring biases in probability adjustment

Our results show that when trying to retrieve an
aggregated value for the adjusted probabilities based on
stored chunks of past experience, the model tends to make
an adjustment that is smaller (i.e., more anchored) than
the rational (Bayesian) amount of adjustment. Anchoring
bias seems to occur when people tend to retrieve a
plausible value from their past experience instead of
performing costly mental calculations. Unlike exact
calculations, the retrieval will be influenced by past
experiences depending on how similar they are to the
current situation. Instances with prior probabilities in the
mid-range are more likely to be encountered than those
with extreme prior probabilities. The large amount of
chunks with mid-range probabilities in declarative
memory will pull the aggregated value away from the
extremes in the blending process.

Our model still demonstrated less anchoring bias than the
participants. This might suggest that blending is only one
of the many possible mechanisms that may lead to
anchoring bias. Previous studies have found that
anchoring could be due to a premature satisfaction (Epley
& Gilovich, 2006). That is, when people mentally adjust
the value from the anchor, they stop at the end closer to
the anchor, rather than the middle of the range of all
plausible values. Another possible reason for anchoring in
this study is that in addition to making probability
adjustments, participants also need to make sure that the
sum of the probabilities for the four groups is one. Thus,
when this constraint is not met, participants are likely to
make a second round of normalization, either mentally or
with the help of the interface, without explicitly realizing
that the retrieved values are already normalized (our task
interface provides users the option to have the four



probabilities normalized automatically, though not all
participants use that). Our previous model (Paik et al.,
2012) that incorporates both blending and a second round
of normalization generates produces results that are more
anchored than the model presented in this paper, and had
a better fit with human data. Therefore, there may be
several reasons for anchoring bias in our experiment, and
the ACT-R blending process is just one of these.
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