
This article appeared in a journal published by Elsevier. The attached
copy is furnished to the author for internal non-commercial research
and education use, including for instruction at the authors institution

and sharing with colleagues.

Other uses, including reproduction and distribution, or selling or
licensing copies, or posting to personal, institutional or third party

websites are prohibited.

In most cases authors are permitted to post their version of the
article (e.g. in Word or Tex form) to their personal website or
institutional repository. Authors requiring further information

regarding Elsevier’s archiving and manuscript policies are
encouraged to visit:

http://www.elsevier.com/authorsrights

http://www.elsevier.com/authorsrights


Author's personal copy

Discovering the structure of mathematical problem solving

John R. Anderson a,1, Hee Seung Lee b, Jon M. Fincham a

a Department of Psychology, Carnegie Mellon University, USA
b Department of Education, Yonsei University, Republic of Korea

a b s t r a c ta r t i c l e i n f o

Article history:
Accepted 8 April 2014
Available online 16 April 2014

Keywords:
fMRI
Hidden Markov model
Mathematical problem solving
Multivariate pattern analysis

The goal of this research is to discover the stages of mathematical problem solving, the factors that influence the
duration of these stages, and how these stages are related to the learning of a new mathematical competence.
Using a combination of multivariate pattern analysis (MVPA) and hidden Markov models (HMM), we found
that participants went through 5 major phases in solving a class of problems: A Define Phase where they identi-
fied the problem to be solved, an Encode Phase where they encoded the needed information, a Compute Phase
where they performed the necessary arithmetic calculations, a Transform Phase where they performed any
mathematical transformations, and a Respond Phase where they entered an answer. The Define Phase is charac-
terized by activity in visual attention and default network regions, the Encode Phase by activity in visual regions,
the Compute Phase by activity in regions active in mathematical tasks, the Transform Phase by activity in math-
ematical and response regions, and the Respond phase by activity inmotor regions. The duration of the Compute
and Transform Phaseswere the only ones that variedwith condition. Two features distinguished themastery tri-
als on which participants came to understand a new problem type. First, the duration of late phases of the prob-
lem solution increased. Second, there was increased activation in the rostrolateral prefrontal cortex (RLPFC) and
angular gyrus (AG), regions associatedwithmetacognition. This indicates the importance of reflection to success-
ful learning.

© 2014 Elsevier Inc. All rights reserved.

Introduction

The past decade has seen a considerable growth in the understanding
of the neural basis of certain aspects ofmathematics. The greatest amount
of research has gone into understanding the role of various parietal re-
gions in basic arithmetic tasks and their role in normal and abnormal de-
velopment (e.g., Ansari and Dhital, 2006; Arsalidou and Taylor, 2011;
Butterworth et al., 2011; Castelli et al., 2006; Molko et al., 2003).
Dehaene's (1997) triple-code theory identifies three regions as critical
to the representation of number: the horizontal intraparietal sulcus that
processes numerical quantity, the angular gyrus that is involved in the
verbal processing of numbers, and the fusiformgyrus that processes num-
ber form. In addition, the prefrontal cortex is particularly involved inmore
advanced tasks involving topics like algebra, geometry, or calculus (e.g.,
Krueger et al., 2008; Qin et al., 2004). One prefrontal region of interest is
the lateral inferior prefrontal cortex that is involved in retrieval of arith-
metic facts and semantic facts (Danker and Anderson, 2007; Dehaene
et al., 1999;Menon et al., 2000).More dorsal andmore anterior prefrontal
regions become engaged as the problem solving gets more complicated
(Wintermute et al., 2012).

Most of this past research has looked at the execution of well-
established procedures. The current research investigated how mathe-
matical knowledge becomes “alive” and extends to solving novel prob-
lems. We taught participants a new mathematical skill (which is really
just equation-solving in disguise) and then challenged them to extend
what they had learned to novel transfer problems. In order to identify
when the key cognitive events occurred we needed to develop new
methods that deal with the variability in complex mathematical problem
solving.

A complex skill like algebra problem solving involves a rich mixture
of perceptual, cognitive, and motor activities. For instance, when ma-
nipulating an equation in traditional paper and pencil mode, a student
has to scan past lines of equations, identify the next critical transforma-
tion, determine what the new equation will be, and then write that
equation. In more modern computer interfaces and tutoring systems,
handwriting can be removed but there still are the same basic steps
with computer gestures replacing handwriting. This complexity and
mixture of activities makes it difficult to identify when the critical cog-
nitive events are taking place. This paper will show that it is possible to
analyze individual trials and identify the critical events by combining
multivariate pattern analysis (MVPA—e.g., Norman et al., 2006;
Pereira et al., 2009) and Hidden Markov Model (HMM) algorithms
(Rabiner, 1989). The MVPA recognizes the mental states and the
HMM recognizes the sequence of states.
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Our past work (Anderson et al., 2010, 2012a, 2012b) trained an
HMM and an MVPA classifier on the states with one set of data and
then tested it with another set. This required that the states be known
in advance and marked in the training set. More recently, Anderson
and Fincham (2013) showed that this approach could be extended to
discoverwhat the states were solely based on the data, without needing
the state structure to be specified in advance. Their demonstration in-
volved using only imaging data, but the current paper will show that
this approach becomes more powerful when the imaging data are
merged with behavioral data. These methods can analyze problem-
solving episodes that involve up to 60 s of mixed activities and identify
the few key moments in the episodes where the most critical cognitive
events are happening.

This paper is divided into four parts. Part 1 describes an imaging ex-
periment studying how participants learn new mathematical problem
solving skills. Part 2 explains the MVPA–HMM method and describes
the states that it discovers for this experiment. Part 3 uses the inferred
states to gain a deeper understanding of task performance at both be-
havioral and neural levels. Finally, Part 4 interprets our results and
their implications.

A study of mathematical learning and transfer

We have developed a data-flow isomorph of school algebra that has
allowed us to study college students learning algebra all over again
(Brunstein et al., 2009; Lee et al., 2011). Because it is a laboratory inven-
tion and not a real mathematics topic, we have been free to explore a
range of instructional variation that might not be appropriate or ethical
for students learning real algebra. The data for this paper come from an
experiment (Lee et al., in press2) that involved a contrast between
learning by discovery and learning by direct instruction. Participants
learned how to solve the problems in one session outside the scanner
and then had to transfer this knowledge to solving new, challenging
problems in the scanner. Discovery participants were somewhat slower
in mastering the material in the learning session but there were no dif-
ferences (behavioral or imaging) between instruction and discovery
participants in the transfer session. Lee et al. analyzed the instructional
effects in learning and their disappearance in transfer. Here we are in-
terested in analyzing the common processes by which participants
approached these transfer problems andwill pool the data from the dif-
ferent instructional groups.

Fig. 1 shows examples of the data-flow structures thatwe used. They
consist of a set of boxes containing tiles with numbers or operators. Ar-
rows connect boxes to tiles. In data-flow representations a number

flows from a top box through a set of arithmetic operations to a bottom
box. If that number is unknown, the data-flow structure is equivalent to
an algebraic equation with a single variable. For instance, Fig. 1a is the
data-flow equivalent of 6 ∗ (7 − x) = 24. The task is to determine
what values to fill into the empty tiles in the boxes. For a linear structure
like Fig. 1a, the values can be determined by simply “propagating” the
number up from the bottom and performing the arithmetic operations.
The solution (as illustrated in Fig. 1b) involves placing 4 in the empty
tile above the bottom box (since 6 ∗ 4 = 24), then placing 3 in the
empty tile above it (because 7 − 3 = 4), and finally placing 3 in the
top box (equivalent to solving as x = 3). Most participants find solving
these problemsby this propagation strategy easy and intuitive (one par-
ticipant described it as similar to playing Sudoku). However, when
problems cannot be solved by this simple propagation strategy, partici-
pants tend to have difficulty understanding the problem structure and
figuring out a procedure for solving the problem.

One class of difficult problems involves the unknown value flowing
downmultiple paths. Fig. 1c illustrates a simple case of such a problem,
which is equivalent to solving an equationwithmultiple appearances of
the variable. The diagram in Fig. 1c is equivalent to the algebraic expres-
sion, (5 − x) + (5 ∗ x) = 29. In the diagram an unknown value flows
down into the two tiles in a box below, which are summed to produce
a result of 29. Because two paths converge in a single result, the propa-
gation strategy does not work. Theway to solve this problemwithin the
rules of the system is to transform the graph in Fig. 1c into the linear
form in Fig. 1d (equivalent to 4x+5=29), where this simple propaga-
tion procedure is possible again as illustrated in Fig. 1e. This transforma-
tion step, called linearization, is a major conceptual hurdle in this
artificial curriculum. It corresponds to collection of variables and con-
stants in regular algebra, which in combinationwith distribution causes
some difficulty when regular algebra is taught in school.

The most difficult step in a Linearize problem is determining the
values to enter into the linearized form—for instance, the 4 and the 5
in Fig. 1d. Participants in this experiment had spent thefirst day, outside
of the scanner, mastering this linearization step on relatively simple
problems like Fig. 1c. On the second day, they went into the scanner
and solved Linearize problems that posed new challenges. Fig. 2
shows two examples of such challenging problems. They would see
the problem on the left with the multiple boxes highlighted that had
been replaced by a linear structure on the right. Their task was to
enter into the two blue tiles the numbers that would make the left
and right structures equivalent.

The major experimental manipulation in the transfer section in-
volved the type of problem participants were asked to solve. The prob-
lems were either

1. Graphic problems: These involved more complex graph structures
than participants had solved up until this point. Fig. 2a illustrates a

2 This paper and entire experimental materials are available at https://www.dropbox.
com/sh/bya83pfytbixzzf/OLMbG0OVX4.

Fig. 1.Data flowgraphswhere an unknownnumberflows down from the top box. Reddenotes numbers added to the diagramby the participant. (a) A simple Propagate problemequivalent to
6 ∗ (7− x)=24; (b) The solution for (a)where 4 is enteredbecause 6 ∗4=24and3 is enteredbecause 7−3=4; (c)A Linearize problem, equivalent to (5− x)+(5 ∗ x)=29,with twopaths
which must be converted into Propagate form; (d) The Propagate equivalent of (c) since 5− x + 5x= 4x + 5; (e) The solution for (d) since 5 + 24= 29 and 4 ∗ 6 = 24.
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Graphic problem. This particular problem involves combiningmulti-
ple loops—something participants had not seen before. To make the
right graph equivalent, participants would need to enter a 1 and a 9
into the blue tiles in the right side of Fig. 2a.

2. Algebraic problems: These involved performing some transforma-
tion of the answer from its normal form. The changewas highlighted
in green. In the example in Fig. 2b, where previously the right struc-
ture had involved a multiplication flowing into an addition, now an
addition flows into amultiplication. Participants would have entered
the equivalent of 3x + 36 for Fig. 2b in the learning session, but the
changed graph structure on the right half of Fig. 2b requires that
they enter the equivalent of 3 ∗ (x + 12). Thus, rather than entering
3 and 36 they would now enter 3 and 12.

Graphic problems could be solved even if participants did not under-
stand why the right and left graphs were equivalent but rather just un-
derstood how to combine numbers in the left graph. In contrast, the
Algebraic problems cannot be solved without understanding the equiv-
alence of the two graphs. Thus, Graphic problems were a test of how
well participants understood how to combine the numbers on the left,
while Algebraic problems were also a test of their understanding of
the equivalence of the two structures. Even though Algebraic problems
were physically less complicated (averaged fewer boxes), we expected
that Algebraic problems would be more difficult because of their extra
conceptual requirements.

There were 4 types of Graphic problems and 4 types of Algebraic
problems. Participants went through 8 blocks of 8 problems in which
they saw one instance of each type. The first time participants saw
each problem type they would only succeed if they could extend what
they had been taught to the new problem type. After each problem
the correct answer was shown without an explanation. By studying
the correct answer, participants had an opportunity to figure out how
the problem type was solved.

Procedure

3 Analyses will include data from 39 participants4 in the scanning
session on the second day. Participants interacted with this system by
means of a mouse. They moved the mouse to a tile where they want
to enter a value, then a keypad of numbers came up on the screen,
they clicked on the digits to create the value to enter into the tile, and
they moved the mouse out of the tile when they were done. They
made numerous false starts such as moving to a tile and then choosing
not to enter anything or going back and changing what they entered.
This record of mouse actions provides a rich behavioral data source to
coordinate with the fMRI data.

Each trial in the scanner had the following phases:

1. 3 s of fixation.
2. The problem was presented and participants had up to 60 s to solve

the problem. This is the portion of the trial that will be analyzed.
3. If their answer was correct, participants saw the solution confirmed

for 2 s. If it was incorrect or timed out, they had 10 s to study the cor-
rect solution without any explanation.

4. 3 s of fixation.
5. 12 s of repetition detection. During repetition detection, letters ap-

peared on the screen at a rate of 1 per 1.25 s, and participants were
instructed to click a match button on the screen whenever the
same letter appeared twice in a row. This task served to distract the
participants from the main Linearize task and return brain activity
to a relatively constant level.

In addition, the block began with a fixation phase and a repetition
detection phase. Thus each trial was surrounded by this baseline
sequence.

Image analysis

Images were acquired using gradient echo-echo planar image (EPI)
acquisition on a Siemens 3 T Verio Scanner using a 32 channel RF
head coil, with 2 s repetition time (TR), 30 ms echo time (TE), 79° flip
angle, and 20 cm. field of view (FOV). The experiment acquired 34
axial slices on each TR using a 3.2 mm thick, 64 × 64 matrix. This pro-
duces voxels that are 3.2mmhigh and 3.125 × 3.125mm2. The anterior
commissure–posterior commissure (AC–PC) line was on the 11th slice
from the bottom scan slice. Acquired images were pre-processed and
analyzed using AFNI (Cox, 1996; Cox and Hyde, 1997). Functional im-
ages were motion-corrected using 6-parameter 3D registration. All im-
ageswere then slice-time centered at 1 s and co-registered to a common
reference structural MRI by means of a 12-parameter 3D registration
and smoothedwith an 6mm full-width-half-maximum3DGaussianfil-
ter to accommodate individual differences in anatomy.

In complex tasks like this we have found it useful to performMVPA
on whole brain activity. However, as a step of dimension reduction and
to accommodate variations in anatomy over participants that may not
be dealt with in co-registration, we work with relatively large regions.
A total of 408 regions were created by evenly distributing 4 × 4 × 4
voxel cubes over the 34 slices of the 64 × 64 acquisition matrix.5 Be-
tween-region spacing was 1 voxel in the x- and y-directions in the
axial plane and one slice in the z-direction. Some of these regions

3 The detailed methods are described in Lee et al. (in press).
4 Therewere 40 participants in the original experiment but one participantwas exclud-

ed who showed mean percent BOLD changes twice any other participant and had more
than 10% scans with changes greater than 5%. This was done to avoid distorting the group
PCA.

5 Averaging has the danger of loosing information that depends on precise anatomical
location. Simulations have shown that this can have substantial effects on functional con-
nectivity analyses (Smith et al., 2011), although our method is not a functional connectiv-
ity analysis.

Fig. 2. Transfer problemswhere the participant must fill in the blue tiles on the right to cre-
ate an equivalent graph to the one on the left: (a) An example of a Graphic transfer problem:
the left is the equivalent of ((((x+ 9)− x)+ x)+ x)= 3 and it should be transformed by
filling in the right to be the equivalent of ((1x+9)+x)=3. (b) An example of anAlgebraic
transfer problem: the left is the equivalent of ((−2 ∗ (−18− x))+x)=−33 and it should
be transformed by filling in the right to be the equivalent of (3 ∗ (12 + x)) =−33.
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show an excess of extreme values for some participants, probably
reflecting differences in anatomy. These were regions mainly on the
top and bottom slices as well as some regions around the edge of the
brain. Difficulties in getting consistent signals at edges reflect limita-
tions in the co-registration of different brains to the reference brain
and limitations in the corrections for slight head movements.
Anderson and Fincham (2013) eliminated these edge regions to pro-
duce a final set of 290 regions that we also use here.

The BOLD response is calculated as the percent change from a linear
baseline defined from first scan (beginning of fixation before problem
onset) to last scan (beginning of fixation before next problem). This is
deconvolved with a hemodynamic response function to produce an es-
timate of the underlying activity signal. The hemodynamic function is
the SPM difference of gammas (Friston et al., 2011: gamma(6,1)-
gamma(16,1)/6). AWiener filter (Glover, 1999) with a noise parameter
of .1 was used to deconvolve the BOLD response into an inferred activity
signal on the scan. To an approximation, this results in shifting the BOLD
signal to the left by 2 scans (4 s). We have used this simple scan shift in
mind-reading studies (e.g., Anderson et al., 2010, 2012a, 2012b) where
there is not a constant baseline activity interspersed at regular intervals.

Behavioral results

Fig. 3 shows the learning trends over the 8 blocks of the experiment.
As expected, Graphic problems have significantly higher accuracy than
Algebraic problems (F(1,38) = 32.93, p b .0001). There is also a signif-
icant improvement over trials (F(1,38) = 124.16, p b .0001, comparing
first half versus second half). There is a significant type-by-half interac-
tion (F(1,38)= 8.43, p b .01), such that the difference between Graphic
and Algebraic problems is reduced in the second half of the experiment.

Scanner difficulties resulted in the loss of 2 blocks of imaging data for
1 participant and 1 block for 3 participants, leaving (39 participants × 8
blocks − 5 lost blocks) × 8 problems = 2520 trials. Table 1 shows the
counts of correct, error, and time-out trials for the two problem types.
The imaging analyses will be restricted to corrects and errors because
of the difficulty in interpreting time-outs and because only 15 of the
39 participants had time-outs in both the Graphic and Algebraic condi-
tions (6 had no time-outs in either condition, 15 no time-outs in the

Graphic condition only, and 3 no time-outs in the Algebraic condition
only). An analysis of variance on corrects and errors finds no significant
difference in time for Graphic and Algebraic problems (F(1,38) = .03),
slower times for errors (F(1,38) = 39.69, p b .0001), and a significant
interaction between the two factors (F(1,38) = 4.83 p b .05) such that
the difference between corrects and errors is larger for Algebraic
problems.

Mouse gestures provide another source of behavioral data and they
will contribute substantially to the state analysis. To correctly solve a
problem participants need to enter each of the two blue tiles in the
right graph (see Fig. 2), key a number of characters, and exit. Although
they need to enter and exit a tile only once they average 1.68 visits
per tile. They also change their answers on 19% of the trials, resulting
in the keying of more characters than the minimum. The extra visits
and self-corrections indicate some vacillation on the part of participants
as to what to do and what the answer is.

While such behavioral data provides some information, they largely
leave open a characterization of what is happening during a trial. Next
we describe how the MVPA–HMM approach can identify the unique
structure of each trial and so reveal what is happening.

Model discovery by combining fMRI and mouse gestures6

Anderson and Fincham (2013) described an HMM–MVPA approach
to model discovery that used only fMRI activation patterns. Here we
provide an alternative description of the same process, adapted for
this experiment. First, we will describe the parameter estimation pro-
cess for a fixed number of states and then we will describe how we de-
termine the number of states.

Estimating parameters for a fixed number of states

We conceive of the participant as going through a sequence of men-
tal states during the solution of one of these problems. These states are
“hidden” in the sense that we do not see them but only see their conse-
quences in the brain signals and behavioral data. Fig. 4 illustrates how
we infer the characteristics of these states from the data. The data
input into the HMM–MVPA is a set of trials consisting of a variable num-
bers of scans, where each scan has a set of independent variables. In our
case, as described in the Methods, these variables consist of the first 20
PCA dimensions (which capture 73% of the variance in brain activation)
and 6 binary variables that reflect mousing activity. The mousing data
provide behavioral data not available in Anderson and Fincham and
prove to be very valuable. Aswewill describe, themousing data provide
a “co-training” signal (BlumandMitchell, 1998) to usewith the imaging
data and provide a “ground truth” to judge the contribution of the other
components of the effort.

As explained in the Appendix A to this paper, for any number of
states, the HMM–MVPA methodology estimates a set of parameters
that maximize the probability of this data set. For each state, three
types of parameters are estimated:

1. Brain signature: 20 mean values for the 20 PCA dimensions in that
state.

2. Mousing signature: 6 probabilities for the 6 types of mouse actions
during a scan in that state.

3. Temporal signature: A gamma distribution (defined by 2 parame-
ters), which gives the probability that the state will last for a number
of scans including 0 scans (which means the state is skipped).

The HMM–MVPA produces a second product besides the estimated
parameters. For each scan of each trial, given the data and maximum-
likelihood parameters, it provides a state occupancy description,
which is the probability that each scan was in each state. As we will

Fig. 3. Mean accuracy for Graphic and Algebraic problems as a function of experimental
block.

Table 1
Number of trials and average number of scans.

Graphic Algebraic

Correct n = 856 n = 606
14.3 scans 13.5 scans

Error n = 326 n = 531
15.7 scans 15.9 scans

Time-out n = 46 n = 91
30 scans 30 scans

6 The data sets and Matlab analysis functions for Figs. 4–11 are available at https://
www.dropbox.com/sh/bya83pfytbixzzf/OLMbG0OVX4.
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describe, these estimates can be aggregated to provide estimates of
mean duration in each state for each trial. These state durations prove
to be very informative and will provide most of the information for
the third section of this paper.

The “HMM” component of this process involves use of dynamic pro-
gramming techniques to achieve efficiency in the computation. The
“MVPA” component refers to the estimation of the brain signature, as
we will now describe. An expectation maximization process iterates
on its parameter estimates until it finally converges on the maximum
likelihood estimates. On each iteration, it takes the current estimate of
state occupancy and uses this as the training signal for performing a lin-
ear discriminant analysis (LDA) to find the features that define the
states. While we are able to take advantage of the structure of the PCA
factors and apply a simple, constrained LDA (see Appendix A), any
MVPA technique could be used that delivered a probability of the
image data given the technique's classification of the scans into states.

Determining the number of states

This approach will find the best fitting model for any number of
states. To determine the best number of states, N, we use a leave-one-
out cross-validation (LOOCV) methodology. This approach estimates
the maximum-likelihood parameters for all but one of the participants
and then uses these parameters to calculate the likelihood of the data
from the last participant. This likelihood measures the success of using
these parameters to predict the data of the left-out participant. This pro-
cess is rotated through all the participants and so can calculate the

predicted log-likelihood of the data for each participant assuming N
states. The data of the all-but-one participants can always be fit better
with more states because there are more parameters, but there is no
guarantee that more states will predict the data of the left-out partici-
pant better. If using more states is just overfitting, the predicted log-
likelihoods will not be better. As in Anderson and Fincham, we will
use a sign test to determine the best number of states to see if the num-
ber of participants correctly predicted is more than would be expected
by chance. An N-state model is justified if it fits significantly more par-
ticipants than any model with fewer states. More generally, a model
with more parameters is to be preferred over a model with fewer pa-
rameters if it fits significantly more participants.

Fig. 5 displays the result of a search for the optimal number of states
in the current data set, plotting separately the results using just the
image data, just themouse actions, or both. It plots average gain per par-
ticipant in log-likelihood relative to a 1-state model for each number of
states. In the case of using both sources of information, 15 states results
in highest log-likelihood gain. Nine states is the closest competitor. Fif-
teen states results in better predictions than 9 states for 29 of the 39par-
ticipants (p b .005) with a mean log-likelihood gain of 17.08.7

The best number of states is 7 when only using activations and 12
when only fitting mouse actions. The 15-state solution, by using the
constraints of both data sources, better predicts either data source
than the solutions that just focus on one data source. That solution

Fig. 4.An illustration of HMM–MVPAproducing a 4-statemodel. Input to the data are scans organizedwithin trials. Each scan consists of the 20PCA values and 6 binary variables indicating
whether a mousing action has occurred. Parameters are estimated for each state: brain signatures reflecting patterns of activations over the 290 regions, mousing signatures giving prob-
abilities of each action, and distributions of state durations. Also calculated are state occupancies, the probabilities that the participant is in each state on a particular scan. Parameters are
estimated to provide best fitting description of brain activity, duration, andmousing behavior. The resulting data and parameters can be combined to get a description of each trial as prob-
abilities that scans are in one of the 4 states.

7 A log-likelihood difference of 17means the participant's data ismore than 20,000,000
times more likely with the 15-state solution.

167J.R. Anderson et al. / NeuroImage 97 (2014) 163–177



Author's personal copy

better predicts the activation patterns for 27 of the 39 participants than
the 7-state model just fit to activations, with a mean log-likelihood gain
of 13.52. Similarly, it better predicts the mousing patterns for 22 of the
39 participants than the best-fitting 12-state solution for mouse ges-
tures only, with a mean log-likelihood gain of 3.40. Thus, either data
source can be predicted better by taking advantage of the constraints
provided by the other data source. As we will show, the 15-state solu-
tion has a quite interpretable structure. The structures of the 7-state ac-
tivation solution or the 12-state mouse solutions are less interpretable.
This is an example of co-training where the two data sources are better
than either alone.

As indicated by the height of the curve for the mouse-actions-only
relative to the curve for the activation-only, the mouse actions provide
a very regular signal that is captured by the state analysis. Fig. 6 displays
the probability of mouse actions in various states and reveals that there
are three adjacent states (6–8) that are involved inmoving into the first
tile, entering the value, and exiting the tile. The final three states (13–
15) represent the same sequence for the second tile.While themousing
data is noisy and these are not the only states where mouse actions
occur, there is enough consistency from the mousing data that these 6
states anchor the rest of the analysis.

Determining the number of brain signatures

The use of LOOCV enables us to find the least complex model that
captures the systematic variance common across subjects in the data.

Fig. 5 shows that the best model is a 15-state model. It is important to
note that each state in the discoveredmodel is defined by a conjunction
of features: the temporal, mousing and brain signatures discussed earli-
er. A priori, there is no reason to expect that each feature type will be
unique in each state. This leaves open the possibility of further
constraining the discovered model by identifying and exploiting com-
monalities within feature types across states. Our focus here is simplify-
ing the 15-state model by minimizing the number of distinct brain
signatures so that we may gain a better understanding of the problem
solving. Fig. 7 summarizes two critical steps along the searchwe carried
out toward generating a simpler 15-state model:

a. It seemed reasonable that the brain signatures for the two sequences
of 3 response states would be the same since the mousing patterns
were similar except for the tile involved. Beyond just these response
states we found that the preceding 4 states had similar brain signa-
tures suggesting that participants were going through similar pro-
cesses for each tile before they began mousing. This led to the
Wrap model where the brain signatures for states 2–8 repeated for
states 9–15. To determinewhether we were loosing any predictable
variance in reducing the 15 brain signatures to 8, we compared the
original Full model to the Wrap model in a LOOCV. Since the Full
model is more complex we can apply the same LOOCV logic and
seewhether its complexity is justified. The Fullmodelwasnot signif-
icantly better than theWrapmodel, only predicting 21 of the 39 par-
ticipants better. Thus theWrapmodel is to be preferred in the search
to find the least complex model that captures the systematic vari-
ance in the data.

b. Inspecting the correlation between brain signatures in the Wrap
model, we found that the brain signatures in the response states
(6, 7, 8, 13, 14, 15) all showed high inter-correlation (mean inter-
correlation .75) and that there was also a substantial inter-
correlation (.6) between the signatures in states 2, 3, 9 and 10.
Therefore, we constructed a Final model in which states 6–8 and
13–15 had the same brain signature and states 2, 3, 9 and 10 had an-
other common brain signature. LOOCV comparison with either of
themore complexmodels indicated that their complexity did not re-
sult in better predictions and so it is to be preferred to the Wrap
model and the Full model.

While there may be some other collapsing of the original 15 brain
signatures that is better than the Finalmodel, there is no further collaps-
ing of these 5 signatures that yields a simpler model that would not be
rejected in LOOCV.8 Therefore, we will use this model in further discus-
sion as the simplest known set of brain signatures to capture the activity
in the task. To summarize, this Final model is a 15-state model that has
been constrained to have 5 unique brain signatures. As we will explain
shortly, we have labeled these five signatures (and consequently their
associated states) as the “phases” Define, Encode, Compute, Transform,
and Respond.

Fig. 6 illustrates this Final model, with the states represented by
boxes, color coded to indicate those that shared a common brain signa-
ture. The lengths of the boxes reflect the mean durations of the states
Fig. 8 shows examples of the state occupancies using our 5-phase nam-
ing convention on three trials (these three trials had equal duration of
40 s or 20 scans). Example (a) is the most prototypical where there is
an initial rise of the Define phase followed by two passes of the Encode,
Compute, Transform, and Respond phases as the participant fills in each
of the tiles. For extreme contrast, example (c) shows a pattern where
many of the states in the second pass are skipped and the participant
goes almost immediately on to filling the second tile. As these examples

Fig. 6. (a) Probability of amouse action in Tile 1 during a scan for each state. (b) Probability
of a mouse action in Tile 2 during a scan for each state. The length of the boxes illustrates
themean duration of each state. The boxes are color coded to indicate common activation
patterns.

8 The number of ways to collapse n signatures into fewer is the Bell exponential number
(Brualdi, 2004) which is approximated by (n + 2)!/(3 ∗ 2n) and grows exponentially
with n, the number of signatures. Thus, it was feasible to search all 52 collapsings of the
5-signature Final model, but not all 1,382,958,545 collapsings of the original 15-
signature Full model.

Fig. 5.Mean log-likelihood gain (per participant) over 1 state formodels involving different
numbers of states. Plotted separately are the results using just fMRI activation, just mouse
gestures, or both. The state with the maximal log-likelihood is indicated for each state.
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illustrate, each trial involves the 5 phases defined by the 5 signatures,
but that these phases break up differently into states on individual trials.
Table 2 gives the inter-correlations among the 5 brain signatures.

The brain signatures associated with the phases define complex
multivariate patterns of activation over the brain. While these patterns
capture significant predictable variance across participants it need not
follow that a particular state show increased activation in any state
using a univariate test. Nonetheless, to help understandwhat these pat-
terns are, we investigated what regions would show significant differ-
ences in activation across states. A whole brain analysis was
conducted to determine which regions were active for each of the five
phases. The data were modeled using a general linear model (GLM).
The design matrix consisted of 6 model regressors and a baseline
model of an order-4 polynomial to account for general signal drift. The
6 model regressors corresponded to the 5 state occupancy probabilities
over all trials (e.g., Fig. 8) and the feedback period for each trial. The de-
sign matrix regressors were constructed by convolving the state occu-
pancy probabilities and the feedback boxcar function with the

standard SPM hemodynamic response function (Friston et al., 2011).
The GLM yielded 6 voxel-wise betas for each participant. For each of
the 5 phases of interest, group level statistical maps were created by
performing a voxel-wise t-test (2-tailed) that the corresponding mean
beta weight across all participants was significantly different from
zero. Voxels were thresholded at the significance level p b 0.000001 un-
corrected. Figs. 9a–e shows those voxels that are significant in each of
the 5 phases.Warm colors reflect positive activity and cool colors reflect
deactivation. As can be seen there are regions that both activate and de-
activate in the different phases.

Reflecting the overall correlation in brain activation, there is consid-
erable overlap of regions among phases, but there are differences. Fig. 9f
provides one illustration of these differences andhow they contribute to
the brain signatures associated with the phases. Of those regions that
are significantly positive (p b 0.000001) over the entire problem-
solving period, Fig. 9f notes which areas were more active in which
phases.

As we will discuss, sometimes these activation differences result in
significant univariate contrasts and sometimes they do not (Jimura
and Poldrack, 2012). Our goal here is to try to illustrate what might be
contributing to the multivariate patterns that are driving the ability of
phases and thus their corresponding states to capture predictable vari-
ance in the image data. Nonetheless, it is of interest to know when the
activity in a state is significantly greater than the activity in any other
state. Fig. 9f separates those regions that meet this criterion from the
other regions that are just more active.

Overall, the Phase 1 is most active followed by Phases 2 and 5,
followed by Phases 3 and 4. Considering these overall activation differ-
ences, the coloring in Fig. 9f uses the following conventions: the blue re-
gions are significantly more active (p b .01) in Phase 1 than any other
phase. Of the remaining regions, those in green are more active in
Phase 2 than Phase 1 (the darker green significantly so) and significant-
ly more active in Phase 2 than any of Phase 3–5. Similarly, those regions
in yellow aremore active in Phase 5 than Phase 1 and significantlymore
active than Phases 2, 3 or 4. Those in red aremore active in Phase 3 than
any other, although most are not significantly so. The orange regions
similarly are more active in Phase 4 than any other region but there
are virtually no such regions. However, a phase specified by being less
than other regions is just as well defined in anMVPA as a phase defined
by being more active.

Fig. 7. An illustration of the collapsing of brain signatures in the identification of a simpler description of the 15-state Full model: In the Wrap model the brain signatures for states 2–8
repeat for states 9–15 reducing the number of brain signature parameters from 15 × 20 = 300 to 8 × 20 = 160. In the Final model adjacent states 2&3, 6–8, 9&10, and 13–15 share
brain signatures reducing the number of parameters from 160 to 5 × 20 = 100.

Fig. 8. Example trials showing the probability of scans being occupied by stateswith differ-
ent brain signatures.

Table 2
Correlations among brain signatures.

Define Encode Compute Transform

Encode 0.291
Compute −0.253 0.305
Transform −0.737 −0.384 0.094
Respond −0.265 −0.524 −0.525 0.212
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The five phases

Considering these activation patterns, the mousing patterns (Fig. 6),
and the logic of the task, we suggest the following identification of the
phases.

Define phase

The first phase is the only phase to show no significant negatively
responding regions. The blue regions in Fig. 9f are not only more active
than other states, but also significantly so. Among the positive regions in
this phase are bilateral lingual gyrus, precuneus and caudate nucleus,
typically involved in orienting attention, gaze and visual search
(Fairhall et al., 2009; Fan et al., 2005; Hillen et al., 2013; Mayer et al.,
2004). Other positive regions are the posterior cingulate and hippocam-
pal regions that are often considered default mode regions (Buckner
et al., 2008). We think that during this state participants are searching
for the loop that theywill have to eliminate (i.e., a set of boxes highlight-
ed on the left graphs in Fig. 2). They also need to identify any special re-
quirements of the resulting structure on the right. Thus, in this phase
they are defining the problem that they will have to solve.

Encode phase

Among the regions that show highest activation in this phase are fu-
siform areas that are associated with recognition of fine visual detail.
We take this as evidence that this is the phase during which the partic-
ipants are encoding the numbers and operators to produce their an-
swer. Much of the visual area is significantly more active in the
Encode Phase than theDefinephase—one of the few regions to be signif-
icantly greater than the Define Phase in any other phase.

Compute phase

The third phase involves parietal and prefrontal regions that are typ-
ically active during studies that involve arithmetic and algebraic compu-
tation (e.g., Anderson, 2005; Arsalidou and Taylor, 2011; Dehaene et al.,
1999; Menon et al., 2000). They include the horizontal portion of the
intraparietal sulcus associated with the representation of quantity and
left prefrontal regions associatedwith retrieval of semantic information.
This suggests that during this period participants are computing the
values of the constant term and the coefficient term.

Transform phase

The fourth phase involves a combination of the regions that are ac-
tive in the third and fifth phase, but virtually no region that is more ac-
tive than both of these phases. Despite this overlap, Table 2 shows that
the 20 factors that define its brain signature are either uncorrelated or
negatively correlated with the other brain signatures. We think that
this is the when participants are performing any structural transforma-
tions of the answer. As Fig. 6 reveals, occasionally participants perform
mousing actions in this phase.

Respond phase

The fifth phase is primarily when the participant is entering the an-
swer and shows greatest activation in regions in the left hemisphere re-
gions associated with controlling the right hand.

Comparison with Anderson and Fincham

Another way of understanding the phases of this experiment is to
compare them with the problem-solving phases obtained in Anderson
and Fincham (2013). To briefly review that study, participants saw

Fig. 9. (a)–(e) Regions showing significant (p b .000001) activation or deactivation in each of the phases. (f) Most active phases for the positive regions: blue denote Phase 1 most active,
green Phase 2, red Phase 3, orange Phase 4, and yellow phase 5. The blue phase 1 regions are significantly more active than any other state. The dark green Phase 2 regions are similarly
more significant than any other state. The other regions displayed in part (f) do not meet this statistical criterion. (radiological convention: image left =participant's right).
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visually simple equations involving a new operator. The challenge was
that these equations had novel features that required participants de-
velop a new plan for solving them. Anderson & Fincham identified a se-
quence of 4 states, which involved encoding the problem, planning a
solution strategy, performing the arithmetic calculations, and then out-
putting the answer. They named these states Encoding, Planning, Solv-
ing, and Responding. These states were defined with respect to
activation patterns in the same 290 regions as this experiment and so
we can compare their states with the current phases. Because the
brain signatures are complex multivariate patterns, we facilitate the
comparisons by projecting each of these 290 activations down to
three dimensions.

Fig. 10 provides an illustration of this subspace and the dimensions
that define it. We have set the origin (0, 0, 0) to be the activity pattern
in the Define phase in this experiment and set the axes to be informa-
tive. The activity pattern in the other states or phases can be created
by adding to this pattern the activity patterns of the three vectors
weighted by the coordinates of their points (The resulting images corre-
late an average .989 with the images that are directly reconstructed
from the brain signatures.). The three vectors all havemeannegative ac-
tivity, meaning that they decrease the activity that is at the Define ori-
gin, but they do add positive activity in specific regions. The Visual
Vector that defines the vertical dimension adds positive activity in
areas associated with vision and visual attention. This vector is weight-
ed positively for points in the current experiment and negatively for An-
derson & Fincham, reflecting the fact that the current experiment is
more demanding visually (simple equations vs. data flow graphs). The
left graph in Fig. 10 shows the positions of the points in three dimen-
sions and on the right, to facilitate comparison between the experi-
ments, in two dimensions (x and y axes). As the x-coordinate
increases, the Right-Hand Vector is weighted, which has activation in

the left motor region that controls the responding hand. As the y-
coordinate increases, the Calculate Vector is weighted which adds acti-
vation in left prefrontal regions typically found active in mathematical
problem solving (e.g., Anderson, 2005).

The similarity among states and phases can be seen in the 2-
dimensional graph in the top right of Fig. 10. The Encode phase of this ex-
periment is close to the Encoding state of Anderson and Fincham in the x
and y dimensions. Both points are also closest to the Define origin, rein-
forcing our interpretation of these three states. Similarly, the Respond
phase from this experiment is closest to the Responding state inAnderson
& Fincham. The Compute and Transform phases in this experiment are
closest to the Planning and Solving states of Anderson & Fincham. The
points that involve more routine calculations (Compute and Solving)
are higher on the Calculate Vector. The points that are closer to emitting
a response (Solving and Transform) are higher on the Right-Hand Vector.
In summary, the brain signatures in this experiment are capturing similar
dimensions of activity as in Anderson and Fincham (2013).

Predicting mousing actions as ground truth

This phase-statemodel of the problem solvingwas obtained bymax-
imizing the predictability of the data, where that predictability was
measured in terms of the log-likelihood of the nth participant's data
given parameters estimated from n − 1. While this is a well-justified
statistical criterion, it is an “internal” measure of the regularity of the
data. It would be useful to validate the phase-state solution on its ability
to predict some “external” ground truth. For this purposewe used the 6
mousing actions—could we predict when participants would issue spe-
cific mousing actions from their brain imaging data?

To have a reference pointwe trained LDA classifiers to predictmous-
ing actions from the 20 PCA activation values. Again we used LOOCV—

Fig. 10. Left top: Three-dimensional Comparison of the Phases of this experiment with the states of Anderson and Fincham (2013). Right top: Two-dimensional projection. Bottom: Four
representative slices are shown to illustrate the origin and vectors defining the major dimensions of difference. The z coordinates for a brain slice (radiological convention: image left =
participant's right) is at x = y = 0 in Talairach coordinates.
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we trained the classifier on all the scans from n− 1 participants, where
each training instance consisted of the 20 activation PCA values for that
scan (predictor variables) and the binary category of whether a particu-
lar mousing action occurred on that scan. Table 3 gives the percent cor-
rect and breaks this down into hits (correctly predicting a mousing
action will occur during a scan) and false alarms (incorrectly predicting
a mousing action will occur during a scan). To have a measure that in-
corporates the tradeoff between hits and false alarms, we will focus on
a d-prime measure of discriminability (Wickens, 2001). This classifier
averaged d-primes of about .9 for entering and exiting a tile and 1.3
for keying in the tile. These accuracies are all well above zero and highly
significant—we were able to predict every mouse action for every par-
ticipant with a d-prime better than 0. So, perhaps not surprising, there
are signals in the brain data as to the occurrence of these motor
activities.

The interesting question is whether the phase-state model is able to
improve on this. We took the gamma distributions and brain signatures
but not the mousing signatures from our final model and re-estimated
probabilities of occupancy for the 15 states. Thus, we are using the brain
signatures and gamma distributions to perform a transformation of the
activation values used in the prior analysis. Critically, this transformation
had no access to the mousing data that we are trying to predict or the
mousing parameters; we are seeing what the benefit is of co-training
with mousing data on estimation of the other parameters. This effort
compresses our original 20 dimensions per scan down to 15 probabilities
that each scan is in a particular state. Since these probabilities sum to 1,
we just have 14 predictor variables. Again, we trained LDA classifiers. In
every case the model d-primes are better predictors than the activation
d-primes, with the smallest difference being for entering tile 2 where it
predicts 29 of the 39 participants better (t(38) = 3.15, p b .005, 2-tailed
for a test of the size of the difference).With respect to the overall average,
it predicts 34 of the 39 participants better (t(38) = 6.97, p b .0001). So,

the state analysis is capturing regularity in the data relevant to this exter-
nally defined ground truth.9

The remaining lines in Table 3 try to separate the contribution of the
gamma distributions for state durations and the brain signatures. We
tried various combinations of replacing the means that defined the
brain signatures with zeros (the mean overall activity for each dimen-
sion) or replacing the gamma distribution with a uniform distribution
that made all durations equiprobable. Replacing the gamma distribu-
tions with a non-informative distribution led to a significant decrease
in d-prime (average: t(38) = 6.71, p b .0001). However, replacing the
brain signatures with non-informative signatures led to a much larger
decrease (difference between brain-signature-only average and
gamma-distribution-only average: t(38) = 12.90, p b .0001).

Analysis of participant behavior on individual trials

The estimation process delivers a probability that a participant is in
each state for each scan (“Estimates of state occupancy” in Fig. 4 and ex-
amples in Fig. 8).We can sum these probabilities to get an estimated du-
ration in each state during that trial. One can take these state durations
and treat them as 15 dependent measures that decompose the overall
trial times or one can aggregate these 15 times into the 5 times corre-
sponding the 5 phases. Analysis of these times proves to be quite
informative.

Part (a) of Fig. 11 shows the distribution of the total amount of time
spent in the five phases. While individual states may be skipped, some
time is usually spent in every phase. Nonetheless, trials vary consider-
ably in how long the phases last. One might think that these phases

Table 3
Prediction of mousing data using various predictors.

(a) d-primes
Tile 1 Tile 2

Enter Key Exit Enter Key Exit Average

Activations 0.86 1.15 0.80 0.88 1.45 1.02 1.00

State occupancies

Brain signatures Gamma 1.24 1.67 1.23 1.14 2.18 1.53 1.44
Uniform 1.08 1.45 1.08 1.10 2.18 1.46 1.33

Null signatures Gamma 0.59 0.84 0.69 1.10 2.06 1.52 1.03
Uniform 0.65 1.06 0.71 1.08 2.09 1.43 1.06

(b) Accuracy
Tile 1 Tile 2

Enter Key Exit Enter Key Exit Average

Activations 0.64 0.70 0.65 0.65 0.74 0.69 0.68

State occupancies

Brain signatures Gamma 0.82 0.85 0.82 0.76 0.91 0.89 0.84
Uniform 0.77 0.82 0.77 0.74 0.89 0.87 0.81

Null signatures Gamma 0.67 0.69 0.68 0.77 0.91 0.90 0.77
Uniform 0.58 0.58 0.56 0.73 0.90 0.87 0.70

(c) Hits
Tile 1 Tile 2

Enter Key Exit Enter Key Exit Average

Activations 0.64 0.70 0.65 0.65 0.74 0.69 0.68

State occupancies

Brain signatures Gamma 0.85 0.87 0.85 0.78 0.93 0.93 0.87
Uniform 0.79 0.84 0.79 0.75 0.91 0.90 0.83

Null signatures Gamma 0.69 0.70 0.69 0.79 0.93 0.95 0.79
Uniform 0.58 0.55 0.54 0.73 0.91 0.91 0.70

(d) False alarms
Tile 1 Tile 2

Enter Key Exit Enter Key Exit Average

Activations 0.37 0.31 0.38 0.36 0.27 0.33 0.34

State occupancies

Brain signatures Gamma 0.42 0.30 0.43 0.36 0.27 0.50 0.38
Uniform 0.42 0.36 0.42 0.35 0.24 0.45 0.37

Null signatures Gamma 0.46 0.38 0.42 0.40 0.30 0.55 0.42
Uniform 0.34 0.20 0.27 0.34 0.26 0.48 0.31

9 Theweights learned by the classifiers for the 6mousing actions correlates highlywith
mousing signatures (estimated probabilities of each action in each state)with amean cor-
relation of .905.
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would be correlated on a trial-to-trial basis with long trials having all
long-phases. However, there is very little trial-to-trial correlation be-
tween the durations of the phases: The mean correlation between
phase durations is .06, with a range from−0.05 to .21 for different
pairs of phases. Given the variability in both phase duration and
how the phases are divided into states, the structure of the data
would be lost if we averaged trials as a function of scan. It is a
major accomplishment of the semi-Markov model that it can deter-
mine the trial-by-trial realignment of the scans so that the states
and phases can be identified.

Part (b) of Fig. 11 shows the time in various states for the four
conditions defined by crossing the Algebraic-Graphic distinction
with Correct-Error distinction. The major differences among the 4
types of trials occur in the Compute and Transform states. Therefore,
we focused on these states and performed a 2 × 2 × 2 × 2 analysis of
variance where the factors were (a) which tile followed the states
(States 4 & 5 precede filling Tile 1 vs. States 11 & 12 precede filling
Tile 2), (b) State Category (Compute vs. Transform), (c) Type of
problem (Graphic vs. Algebraic), and (d) Correctness. There is not a
significant effect of Problem Type (F(1,38) = 0.09) or State Category
(F(1,38) = 1.64), but participants were significantly slower on er-
rors (F(1,38) = 32.76; p b .0001) and for the states associated with
the first tile (F(1,38) = 11.48; p b .005).

There were two highly significant 2-way interactions, which are sum-
marized in Table 4. Table 4a shows the interaction between state and tile
(F(1,38) = 71.26; p b .0001) where participants spend more time com-
puting than transforming for Tile 1butmore time transforming than com-
puting for Tile 2. This probably reflects trials where participants complete
their calculation before Tile 1, but postpone struggling with the transfor-
mations until reaching Tile 2. Table 4b shows the interaction between
Type and State (F(1,38) = 40.07; p b .0001) where participants spend
more time computing for Graphic problems but more time on
transforming for Algebraic problems. Algebraic problems pose simpler
computations but require the non-trivial transformations of the comput-
ed answer. In addition to the 2-way interactions in Table 4, the only
other significant effect is a 4-way interaction involving all the factors

(F(1,38) = 8.95, p b .005). This reflects the fact that Algebraic errors are
distinguishedby long times for the second transformation step,while cor-
rect Algebraic problems are distinguished by short times for thefirst com-
putation step.

Ignoring the somewhat obscure 4-way interaction, these effects on
state duration make sense and indicate a good deal about the course
of the problem solving. It is worth emphasizing that this state analysis
does not know about the different types of trials, but still finds effects
that vary substantially with whether the problem is correct or not and
whether the problem is Graphic or Algebraic. This indicates the power
of the state analysis to localize important effects in a long (averaging
about 30 s) episode of problem solving.

Analysis of learning across trials

Informally, it was apparent that someof the transfer problemsposed
no challenge to some participants and they knew how to solve them
from the outset. Other problemswere so confusing to some participants
that they never figured out how to solve them. Finally, therewas a third,
most interesting, class of problems that participants mastered over the
course of the experiment. To formalize this characterization, we
adapted the knowledge-tracing algorithm that has been used with in-
telligent tutors (Corbett and Anderson, 1994). With it we were able to
identify these three categories of problems andwhenmastery occurred
for the third category.

Themodel assumes that each of the 8 problem types for each partic-
ipant is in one of two states at any point of time: Mastered or
Unmastered. There is a probability, P(prior), of coming into the experi-
ment with that problem type mastered and a probability, P(master), of
mastering an unmastered problem type on a trial with that item.
Whether participants get problems correct or not is informative about
whether they knowhow to solve a problem type or not, but not perfect-
ly diagnostic. There is a probability P(slip) that participants will make
errors on problem types that they have mastered. This is particularly
likely because of computational slips. There is also a probability
P(guess) that someone will be correct on an unmastered problem
type.While such guessing probabilities can be quite high in some learn-
ing experiments, it is not too likely that onewould get an answer correct
by chance in this experiment.

This model is formally a 2-state hidden Markov model with a prob-
ability of transitioning from the Unmastered to theMastered state and a
probability of being correct in each state. Unlike the Markov model we
have been using, this model describes transitions between instances of
a problem type rather than between states within problems. It also
uses only information about whether the problem is correct or not.
Themaximum-likelihood estimates of the 4 underlyingprobabilities are

P priorð Þ ¼ :400
P masterð Þ ¼ :216
P slipð Þ ¼ :168
P guessð Þ ¼ :037

In fitting this model to the data we get posterior probabilities that
each trial is mastered. The learning data are sufficiently regular that
most of the trials can be diagnosed as being in the Mastered or

Table 4
Mean time (s) that produce the significant 2-way interactions.

Compute Transform

(a)
Tile 1 5.31 2.80
Tile 2 2.39 3.53

(b)
Graphic 4.20 3.09
Algebraic 2.67 3.67

Fig. 11. (a) Distribution of total time spent in the 5 phases of a trial. Displayed are the pro-
portions of observation in 2-second bins as a function of the mean time of that bin. (b)
Mean time in states for correct and error Graphic and Algebraic trials.
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Unmastered states with substantial confidence.10 The high confidence of
these classifications has two consequences for use of the imaging data:
First, the neural imaging results can offer little to improve classification.
Second, on the other hand, we can be fairly confident in these behavior-
ally based classifications in pursuing their neural imaging correlates.

Fig. 12 shows accuracy and solution time relative to the trial of Mas-
tery (defined as when estimated mastery probability exceeds .5). Accu-
racy is very high (99.3%) on the trial of mastery because a correct
response tends to cinch a mastery diagnosis. What is of interest is accu-
racy before and after this trial. It can be seen that there is no trend for
accuracy to increase before the mastery trial but accuracy does increase
afterwards. Latency shows a fairly constant decrease (.63 s per trial be-
foremastery and .88 s per trial after mastery). Thus, participants show a
continuing trend to get faster at the task but the trial of masterymarks a
qualitative change in accuracy.

There are 312 learning case histories (39 participants ∗ 8 types). Of
these 103 are labeled asmastered on the first trial andmay reflect prob-
lems that the participant already knew how to solve. There are an addi-
tional 40 problems that are never labeled as mastered. Finally and of
most interest, there are 169 problems that aremastered over the course
of the experiment. As a reflection of the greater difficulty of Algebraic
problems, only 28% of those that start out mastered are Algebraic, 54%
of those that are mastered over the course of the experiment are Alge-
braic, and 85% of those that are never mastered are Algebraic. Of the
2319 non-time-out trials, 284 involve problem types that are never
mastered, 1228 involve problem types that are mastered over the
course of the experiment, and 807 involve problem types that start
out mastered. Our focus is on the 1228 cases that are mastered over
the course of the experiment. All participants contribute to this catego-
ry. Taking a posterior probability of .5 as the threshold for mastery, we
can classify these 1228 cases into three categories:

1. Pre-Mastery (361 trials): Trials with probability less than .5
2. Mastery (169 trials): First trial where probability exceeds .5
3. Post-Mastery (698 trials): Trials after the Mastery trial.

Every casewill have one ormore Pre-Mastery trials, oneMastery trial,
and, unless itwasmastered in the last block one ormore Post-Mastery tri-
als. The Markov model's estimated mastery probability was .119 for Pre-
Mastery Trials, .914 for Mastery Trials, and .978 for Post-Mastery Trials.

Fig. 13 shows the duration of the 5 problem-solving phases in terms of
position relative to the mastery point. An analysis of variance reveals sig-
nificant effects of phase (F(4,152)= 46.55, pb .0001), position relative to
mastery (F(2,76) 23.64, p b .0001), and a significant interaction between
the two (F(8,304) = 4.55, p b .0001). To further analyze the effects of

position and their interaction, the durations of each phase at the three
mastery positions were summarized with two orthogonal contrasts—a
linear trend (Pre-Mastery minus Post-Mastery) and a quadratic compo-
nent (Mastery Trial minus average of Pre and Post Mastery). All phases
but the Define Phase shows significant drops (linear trends) from Pre-
Mastery to Post-Mastery trials (Define: .17 s, t(38) = 1.61, p N .10;
Encode: .77 s, t(38) = 4.56, p b .0001; Compute: 3.16 s, t(38) = 3.98,
p b .0005; Transform: 2.36 s, t(38) = 4.42, p b .0001; Respond: .65 s,
t(38) = 2.93, p b .01). Further, all pair-wise comparisons among mag-
nitudes of these drops are significant except that between Encode and
Respond and that between Compute and Transform. Only the Respond
Phase shows a significant quadratic component (t(38) = 2.68, p b .05)
—there is a .39 s increase going from Pre-Mastery to Mastery trial. The
Transform Phase also shows some indication of a similar deviation
from linearity, but this is not significant (t(38) = 1.15).

In summary, the phases speed up as the problem type is mastered,
with the Compute and the Transform Phases showing the greatest de-
crease in duration. In addition, the Respond phase shows a slow down
on the trial of mastery. This slow down may indicate reflection on the
correct answer that is being produced. Participants sometimes correct
the answers they enter before submitting them. Therewas a greater ten-
dency for participants to change their answers on Mastery trials (qua-
dratic trend: (t(38) = 2.09; p b .05: 29.0% changes answers on
Mastery trials versus 20.8% changed answers on Pre-Mastery and 18.5%
on Post-Mastery).

We performed an exploratory analysis of the imaging data, contrast-
ing mean activation on Pre-Mastery trials, Mastery trials, and Post-
Mastery trials. Only the scans from these trials were analyzed and
three separate regressors were created for the problem-solving periods
of these three types of trials by convolving the boxcar functions for these
periods with the standard SPM hemodynamic response function
(Friston et al., 2011). Regions were identified that showed significant
linear trends (Post-Mastery minus Pre-Mastery) and regions that
showed significant quadratic trends (Mastery minus average of Pre
and Post-Mastery).11 Fig. 14 shows those regions displaying a linear
trend (part a) and those displaying a quadratic trend (part b) and
Table 5 provides information on these regions. All the linear trends are
in the direction of increased activation on Post-Mastery trials. These re-
gions include motor, visual, and subcortical areas that are part of the
basal ganglia thalamic loop. We think the increased activation is a con-
sequence of the faster processing as a problem type is mastered. The
participants still have to perform the same motor actions and visual

10 18.4% of the trials involve cases whose probability of being mastered on that trial is
less than .05, another 9.6% are between .05 and .25, only 4.5% are in the grey zone between
.25 and .75, 5.3% are between .75 and .95, and 60.2% have mastery probabilities greater
than .95.

Fig. 12. Accuracy and latency on trials relative to the trial of mastery.

Fig. 13. Mean time in the problem-solving phases as a function of position relative to
mastery.

11 The threshold was that the regions consisted of at least 44 voxels having p b .005 for a
brain-wise alpha of .05.
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encodings but do so in less timewhen a problem type is mastered. (The
activation estimates reflect activity per unit time.)

Significant quadratic trends are found in left and right rostrolateral
prefrontal cortex (RLPFC), the left angular gyrus (AG), and visual areas
overlapping the right fusiform. All these regions show increased activa-
tion on the trial of mastery. Lee et al. (in press) found that average
amount of activation in the right RLPFC on the first trial predicted per-
cent correct on later trials. In our analysis thefirst trial is never classified
as amastery trial and so our results add to the earlier result. The two re-
sults provide independent evidence that increased activation in the
RLPFC is associated with mastery of the material.

Conclusions

By combining mouse movements and fMRI activity, the MVPA–
HMM approach was able to decompose trials that took up to 60 s into
5 aggregate phases of activity. Except for the initial Define phase, each
of these phases broke up into a number of states defined by themousing
behavior and whether the processing involved the first or second tile. It
was not possible to discover these phases and states using only fMRI
data or only mousing data. This structure became apparent only when
both sources of data were combined.

Solving these problems involves a complexmixture of basic process-
es including perceptual, representational, memory, motor, and control
processes.Many of these processes are in play at any point in the exper-
iment but a phase reflects a period of timewhen the amounts of the dif-
ferent processes are constant. Reflecting the fact that the phases involve
overlapping processes, the activation patterns in Figs. 9a–e are rather
similar. However, the HMM–MVPA analysis finds independent dimen-
sions of variation produced by increases and decreases in regional acti-
vation for a phase (illustrated in Fig. 9f). These increases and decreases
reflect differences in the proportion of the different processes in the
mixture for that phase.

The existence of the initial Define Phase was a surprise and has not
shown up in prior research on mathematical problem solving. Many of
these brain areas active in this phase are involved in orienting of attention,
gaze and visual search and often these same areas are engaged through-
out problem solving. The default mode network regions that activated
in this phase do not usually co-activate with task-positive regions (how-
ever, see Gerlach et al., 2011; Spreng et al., 2010). The overall pattern of
activation suggests that during this phase participants are taking in the
complex diagram that has just appeared and determining where the dif-
ficulty in the solution will be. We suspect it has not appeared in other
studies of mathematical problem solving because the structure of the
problemswere predictable and occurred over and over again across trials.

The Encode and Respond Phases involved predictable increases in vi-
sual and motor regions. The Encode Phase had an optional first state
where participants moved the mouse to the tile where they were going
to enter the answer. Participants also had the option of encoding all the
material before calculating the value for the first tile or postponing
some encoding until it was needed for the second tile. Because of these
variations, it would have been particularly hard to identify the periods
of time where participants are encoding without the MVPA–HMM
approach.

The ordering of the 6 Respond states is required by the task—by def-
inition the first tile is dealt with before the second, and each tile must
first be entered, then the answer keyed, and the tile exited. However,
78% of the trials involved some exception to this minimal mousing pat-
tern. For instance, 15% of the trials involved entering Tile 2 before decid-
ing to enter the first answer into Tile 1,12 46% involved repeated visits to
Tile 1, and 45% repeated visits to Tile 2. 19% of trials involved changing

Fig. 14. Activation effects relative to point of mastery: (a) regions showing significant linear trend; (b) regions showing significant quadratic effects. Different regions are color coded and
the numbering refers to entries in Table 5. The z coordinates for a brain slice (radiological convention: image left =participant's right) is at x = y = 0 in Talairach coordinates.

Table 5
Regions showing significant trends relative to points of mastery.

Region of interest Brodmann
Area(s)

Coordinates
(x,y,z)

Voxel
count

(a) Linear trend
1. L Pre/Post central gyrus and anterior
cingulate

6/4/3/32/24 −18, −14, 54 726

2. R Pre central gyrus 6 41, −7, 45 172
3. Medial cuneus/lingual gyrus 17/18/19 0,−78, 10 550
4. R putamen/lentiform
nucleus/thalamus

22, −4, 10 109

5. L putamen/lentiform
nucleus/thalamus

−20, −8, 8 346

6. L middle/inferior temporal/occipital 37/19 −42, −61, 8 82

(b) Quadratic trend
7. L angular gyrus/inferior parietal lobule 7/39 −41, −64, 43 131
8. R superior/middle frontal gyrus 10 33, 53, 15 77
9. L superior/middle frontal gyrus 10 −34, 53, 16 49
10. R fusiform/inferior occipital gyrus 37/19/18 30, −64, −14 288 12 Recall that Tile 1 is defined as the first tile into which participants key an answer.
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an answer after initially keying it. Behavioral variations like these make
it difficult to interpret complex problem solving, but the HMM–MVPA
approach can deal with them.

The Compute and Transform Phases tended to activate the same
cognitive regions, with the Transformphase showing somewhat less ac-
tivation in regions associated with calculating and more activity in re-
gions associated with motor activity (participants are moving the
mouse in the Transform phase). Participants varied from trial to trial
in how much of these phases they chose to complete before entering a
value into Tile 1. These were the phases that showed the differences be-
tween Graphic and Algebraic problems. The Graphic problems had a
longer Compute Phase while Algebraic problems had a longer Trans-
form Phase (Table 4b). Also the durations of these phaseswere sensitive
to problem correctness.

Participants started out not knowing how to solve 67% of the transfer
problem types, but over the course of the experiment came to understand
how to solve over 80% of these initially unmastered problems types. As
they repeatedly saw a problem type, they sped up in most of the phases.
However, the specific trial where they mastered a problem type was dis-
tinguished by a slowdown in later phases of the problem solution.

The RLPFC and AG seem the most critical regions for purposes of
predicting mastery of these challenging problems. Activation in these
regions increased onmastery trials. Lee et al. (in press) found increased
activity in the RLPFC on the first trial was predictive of future success.
The RLPFC andAGhave been found to be involved in reflection in anoth-
er mathematical problem solving task (Anderson et al., 2011;
Wintermute et al., 2012). Anderson and Fincham (2013) found the
RLPFC and AG most active when planning a solution. Considerable
other research relates the RLPFC to reflective functions. For instance,
the RLPFC is engaged upon feedback in episodic memory experiments
(e.g., Reynolds et al., 2006), when considering intentions in prospective
memory (e.g., Benoit et al, 2012), when reasoning about higher-order
relationships and analogies (e.g., Volle et al., 2010; Wendelken et al.,
2008), and when reflecting on task performance (Fleming et al., 2012).

While it is not surprising that the RLPFC is engaged by challenging
mathematical problems, the engagement of the AG is somewhat unex-
pected. One prominent hypothesis is that the AG is involved in retrieval
of arithmetic facts (Dehaene et al., 2003). However, the angular gyrus
often deactivates during difficult mental arithmetic and has been relat-
ed to default mode activity (Grabner et al., 2013). Outside of the math-
ematics domain, the AG has most often been associated with higher-
level language comprehension, such as understanding of metaphors
(e.g., Desai et al., 2011; Rapp et al., 2012). It seems more likely that its
engagement in challenging mathematical problem solving is related to
its comprehension function than retrieval of basic arithmetic facts.
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Appendix A

As in Anderson and Fincham (2013), we assume that participants go
through N states in solving one of these problems. Each state reflects a
period of constant brain activity and (new to this analysis) constant
mousing behavior. Each state can vary in its length. A discrete version
of a gamma distribution is used to characterize the probability that a

state will last a particular number of scans. Given that each scan is 2 s
in length, the probability of spending exactlym scans in state i is given as:

G m vi; aijð Þ ¼
Z2mþ1

2m−1

gamma t vi; aij Þdtð

where vi and ai are the shape and scale parameters of the gamma distri-
bution for the ith state. This allows for cases where a state lasts 0 scans.
The probability of this is the probability of a duration less than 1 s. In
such cases the model skips that state and moves on to the successor
state. Allowing such skipped states is critical in explaining brief trials
(for instance, 3 trials out of the 2319 lasted 1 or 2 scans).

The 290 megavoxels produce 290 signal estimates for each scan. To
reduce dimensionality and to deal with the non-independence among
regions we perform a principal component analysis (PCA). We use the
first 20 factors, a number which seems to result in the best state identi-
fication. These 20 factors are normalized to have a mean of 0 and stan-
dard deviations of 1 over all of the scans in the experiment. Each state i
will be associated with a set Mi of 20 means μik for these factors. Since
the factors from the PCA are approximately distributed as independent
normals, we calculate the probability of a set Fj of observed factor values
fjk for scan j in state i as:

Primage F j Mij
� �

¼ ∏
20

k¼1
Normal f jk; μ ik;1

� �

The 20 factors means for a state are referred to as its brain signature.
We encoded the mouse actions into 6 categories defined by whether

the action involved moving the mouse into the tile, keying a character
into the tile, or exiting a tile and whether the action involved Tile 1 or
Tile 2. Tile 1 is defined as the first tile into which participants key a char-
acter. We represented the mousing behavior during each scan j in terms
of binary variables bjk which have value 1 if there is one or more mouse
actions of type k during that scan and 0 otherwise. Estimating a set of
probabilities pik for a type k mouse action for state i, the probability of
the observed 6mouse actions Bj in scan in state iwill have the probability

Prmouse Bj Pij
� �

¼ ∏
6

k¼1
pik

bjk � 1−pikð Þ 1−bjkð Þ

The 6 probabilities for a state are referred to as itsmousing signature.
We can combine the probabilities specified above to assign a proba-

bility to an interpretation of a trial. An interpretation of a trial of m
scans as N states will involve an assignment of m1 scans to state 1,
then m2 scans to state 2, and so on through to mN scans to state N,
such that m = m1 + m2 + … + mN. The probability of such an assign-
ment is a product of the probabilities of states of that length and the
probabilities of the factors and mouse actions in those states:

p mi;m2;…;mNð Þ ¼ ∏
N

i
G mi viaijð Þ � ∏

mi

j¼1
Primage F j Mij

� �
� Prmouse Bj Pij

� �h i

This is the probability of just one interpretation of the trial. The total
probability of the trial is the sum of the probabilities of all possible ways
of assigning the scans to a sequence of states. The number of possible in-
terpretations grows rapidly as the number of scans and states increases,
but the sum of these probabilities can be efficiently calculated using the
dynamic programming techniques associated with hidden Markov
models. The current case is semi-Markov because durations in the states
are variable and so we use software derived from the explicit duration
Markov implementation of Yu and Kobayashi (2003, 2006). This soft-
ware uses expectation maximization to estimate a set of parameters
that will maximize the probability of all the data, which is the product
of the probabilities of the individual trials. Since these probabilities get
very small, we will speak of log-likelihoods throughout the paper.
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