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Abstract Different external representations for learning and

solving mathematical operations may affect learning and

transfer. To explore the effects of learning representations,

learners were each introduced to two new operations (b↑n

and b↓n) via either formulas or graphical representations.

Both groups became adept at solving regular (trained) prob-

lems. During transfer, no external formulas or graphs were

present; however, graph learners’ knowledge could allow

them to mentally associate problem expressions with visuo-

spatial referents. The angular gyrus (AG) has recently been

hypothesized to map problems to mental referents (e.g., sym-

bolic answers; Grabner, Ansari, Koschutnig, Reishofer, &

Ebner Human Brain Mapping, 34, 1013–1024, 2013), and

we sought to test this hypothesis for visuospatial referents. To

determine whether the AG and other math (horizontal

intraparietal sulcus) and visuospatial (fusiform and posterior

superior parietal lobule [PSPL]) regions were implicated in

processing visuospatial mental referents, we included two

types of transfer problems, computational and relational,

which differed in referential load (one graph vs. two).

During solving, the activations in AG, PSPL, and fusiform

reflected the referential load manipulation among graph but

not formula learners. Furthermore, the AG was more active

among graph learners overall, which is consistent with its

hypothesized referential role. Behavioral performance was

comparable across the groups on computational transfer prob-

lems, which could be solved in a way that incorporated

learners’ respective procedures for regular problems.

However, graph learners were more successful on relational

transfer problems, which assessed their understanding of the

relations between pairs of similar problems within and across

operations. On such problems, their behavioral performance

correlated with activation in the AG, fusiform, and a relational

processing region (BA 10).
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The manner in which information is represented and solved

during learning doubtless affects transfer (Kotovsky &

Fallside, 1989). In this research, we were interested in the

potential benefits of visuospatial referents for mathematical

learning and transfer. Learners were each introduced to two

new math operations (designated by ↓ and ↑) via either for-

mulas or graphical representations. After acquiring mathemat-

ical competence in one of these two ways, the two groups

mentally solved familiar and novel problems that were pre-

sented in an identical symbolic form across groups. To expand

on prior research that had largely been behavioral (for reviews,

see Arcavi, 2003; Presmeg, 2006), we collected neural imag-

ing data in order to gather insight about the different patterns

of brain activity that arise from differences in instruction

representation (formulas vs. graph referents) and how they

might support differential transfer.

Benefits of visuospatial information for mathematical

learning

Visuospatial processes obviously have a role in spatial do-

mains of mathematics like geometry, but they also appear to

have a role in more symbolic domains of mathematics

(Arcavi, 2003). Some (but not all) famous mathematicians

have reported relying heavily onmental imagery to guide their

mathematical thinking (Tall, 2006; see Hadamard, 1945, for a

discussion of Einstein). One key feature of effective
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visuospatial math representations (e.g., number lines, strips,

and graphs) is that they tend to spatially represent relative

magnitudes (e.g., as locations, lengths, or areas). Several

studies of mathematical learning have pointed to the relevance

of spatially represented numerical magnitudes. For example,

children’s ability to position numbers on a number line is

correlated with their arithmetic ability and overall math

achievement (Booth & Siegler, 2006; Geary, Hoard, Byrd-

Craven, Nugent, & Numtee, 2007; Siegler & Booth, 2004;

Siegler & Pyke, 2013). Interacting with games like Chutes and

Ladders that associate numbers with linearly spaced locations

enhances children’s ability at number line estimation and

magnitude comparison (Ramani & Siegler, 2008; Whyte &

Bull, 2008) and at learning new arithmetic facts (Siegler &

Ramani, 2009). Cartesian graphs are another common exam-

ple of using spatial layout to represent relationships among

numbers, used both for the instruction of older children and to

facilitate mature mathematical reasoning.

Visuospatial magnitude representations can also play an

active role as learners solve specific problems. For example,

Booth and Siegler (2008) found that children were better able

to memorize or estimate answers for specific addition facts

(e.g., 5 + 4 = 9, 18 + 16 = 34) when, during training, they had

been exposed not only to the symbolic fact, but also to shaded

bars representing the magnitudes of each operand and the

sum. Visuospatial representations have also proved beneficial

for solving arithmetic word problems (for a meta-analysis, see

Hembree, 1992). For example, students’ spontaneous con-

struction and use of effective visuospatial representations

can predict their math problem-solving performance (Blatto-

Vallee, Kelly, Gaustad, Porter, & Fonzi, 2007; Hembree,

1992; van Garderen, 2006). Such strategies presumably con-

tribute to the correlations found between spatial ability and

mathematics performance (e.g., Clements & Battista, 1992;

Gathercole & Pickering, 2000; Kyttälä & Lehto, 2008;

Reuhkala 2001; for a review, see Mix & Cheng, 2011).

Diagrams are not always beneficial, however (e.g., Berends

& van Lieshout, 2009; Booth & Koedinger, 2012; Larkin &

Simon, 1987). For example, students (especially those with

low math or spatial ability) may generate pictorial representa-

tions that depict irrelevant details of word problem objects

(e.g., cars, trees) rather than relevant quantitative relations

(i.e., schematic or pattern imagery), and the generation or

use of irrelevant pictorial images can be unhelpful or detri-

mental to problem-solving success (Hegarty & Kozhevnikov,

1999; Presmeg, 1997, 2006).

Since some students might be inclined to construct unhelp-

ful images, instruction in constructing effective visuospatial

representations can facilitate problem-solving ability

(Hembree, 1992; Lewis, 1989). For example, students trained

to generate a number-line-like representations to order the

quantities and variables in word problems exhibited gain and

transfer superior to that among controls (Lewis, 1989). Similar

spatial representations of relative quantities with strips or bars

are commonly taught and used in countries such as Singapore

(Beckmann, 2004) and Japan (Murata, 2008), where students

exhibit high math achievement.

In the present research, we contrasted graph learners, who

were instructed on the relevant visuospatial representations for

mathematical expressions, with formula learners, who

learned how to solve these problems without a spatial referent.

In contrast to past research, our focus was not on the use or

construction of external diagrams, but rather on learners’

subsequent ability to mentally represent and solve problems

in a manner informed by the knowledge that they systemati-

cally corresponded to visuospatial referents. Thus, the learn-

ing representations (formulas or graphs) were never displayed

during transfer.

Distinct neural signatures?

Knowledge that problems corresponded to visuospatial refer-

ents was expected to invoke distinct mental processes, and

thus brain activation patterns, in graph versus formula

learners. However, in comparison to behavioral research on

visuospatial representations in math learning, there have been

relatively few brain-imaging studies. In one of the few studies,

K. Lee et al. (2007; see also Terao et al., 2004) explored

BOLD activation differences in a context in which partici-

pants read relations within a word problem (e.g., James has 50

fewer watches than Mike) and then mentally had to generate

either a symbolic representation (J = M – 50) or a visuospatial

representation (a short horizontal bar for James, a longer one

beneath it for Mike, with the difference labeled “50”).

Participants then saw a representation (of the appropriate type)

on screen and verified whether or not it corresponded to their

mental representation. No group differences emerged in this

behavioral representation verification task, and no brain re-

gions were significantly more active in the visuospatial than in

the symbolic condition. However, K. Lee et al.’s participants

never had to solve the problems per se. In the present study,

mental representations (symbolic or graphical) could be con-

structed as part of the solution process, but we also wanted to

capture the processes that utilize such representations to obtain

an answer.

Math tasks generally induce activation in prefrontal and

parietal areas (e.g., Menon, Rivera, White, Glover, & Reiss,

2000). The majority of research on the neural basis of math-

ematics has gone into understanding the role of various re-

gions in basic numerical and arithmetic tasks (e.g., Castelli,

Glaser, & Butterworth, 2006; Naccache & Dehaene, 2001;

Eger, Sterzer, Russ, Giraud, & Kleinschmidt, 2003; Isaacs,

Edmonds, Lucas, & Gadian, 2001; Molko et al., 2003; Piazza,

Izard, Pinel, Le Bihan, & Dehaene, 2004; Pinel, Piazza, Le

Bihan, & Dehaene, 2004). On the basis of evidence from a
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number of such studies, Dehaene, Piazza, Pinel, and Cohen

(2003) emphasized the importance of three parietal regions,

the horizontal intraparietal sulcus (HIPS); the posterior supe-

rior parietal lobule (PSPL), and the angular gyrus (AG).

Dehaene et al. associated these three parietal regions, respec-

tively, with magnitude processing, visuospatial processing/

attention, and the retrieval of verbally stored arithmetic facts

(e.g., 2 + 2 = 4). Additionally, Dehaene (1997; see also

Schmithorst & Brown, 2004) implicated the fusiform in the

visual processing of numbers. As discussed below, these four

regions, though sometimes with extended functional interpre-

tations, are areas of interest in the present study.

Such research on basic numeracy and arithmetic has often

been concerned with routine aspects of math. The present

work also builds upon research exploring the neural and

behavioral patterns in more complex math contexts, like alge-

bra (Anderson, 2005; Danker & Anderson, 2007; Ravizza,

Anderson, & Carter, 2008), and contexts requiring learners to

extend their math knowledge beyond the instructed problem

types and procedures (Anderson, Betts, Ferris, & Fincham,

2011; H. S. Lee, Fincham, Betts, & Anderson, 2014;

Wintermute et al., 2012). In addition to the four regions

mentioned above, such work motivated our interest in two

prefrontal areas, the lateral inferior prefrontal cortex (LIPFC)

and rostrolateral prefrontal cortex (RLPFC), which will be

elaborated below.

Besides themanipulation of learning representation, to help

us better assess the possible involvement of brain regions in

processing visuospatial mental referents, we included two

types of transfer problems, computational and relational,

which typically differed in visuospatial referent load (one

graph vs. two). For graph learners, regions involved in pro-

cessing visuospatial referents should be sensitive to this refer-

ent load manipulation. Thus, with prior mathematical research

and the experimental manipulations in mind, we investigated

six predefined regions of interest, described below (Table 1).

Angular gyrus (AG) In Dehaene et al.’s (2003) theory of

mathematical processing, the left AG is involved in the mem-

ory retrieval of well-learned arithmetic facts (e.g., 2 × 2 = 4).

This view is compatible with evidence that the AG is more

active when solving overlearned versus untrained arithmetic

problems (e.g., Delazer et al., 2003; Grabner et al., 2009).

Grabner, Ansari, Koschutnig, Reishofer, and Ebner (2013;

also Ansari, 2008) have since suggested a broader, though

compatible, interpretation of AG function—that the AG is

generally involved in semantic mappings from symbols to

referents. This view is compatible with evidence that the AG

also supports access to semantic meanings for linguistic ex-

pressions (e.g., Binder et al., 1997). Thus, for overlearned

arithmetic facts, the AG would support mapping a problem

to its answer (qua referent)—which is functionally similar to

Dehaene et al.’s verbal fact-retrieval role. However, Grabner

et al.’s (2013) view can also be extended to math stimuli with

visuospatial referents. For our graph learners, although no

problems are overlearned to allow direct answer recall, each

problem has an associated visuospatial referent.

Thus, one objective of this research was to test the hypoth-

esis that the AG has a role to play in associating mathematical

expressions with visuospatial referents. This would be consis-

tent with the idea that the AG may generally support associ-

ating symbolic problem expressions with mental referents

(Grabner et al., 2013). This hypothesized symbol–referent

mapping role for the AG would predict greater AG activation

among graph than formula learners. Further, among graph

learners AG activity was expected to increase with a prob-

lem’s referent load. Although formula learners can associate a

problem with a formula, the formulas are more procedural

than referential in nature.

Horizontal intraparietal sulcus (HIPS) Another math-

relevant parietal region is the horizontal intraparietal sulcus

(HIPS), which is commonly implicated in numerical magni-

tude comparison tasks (see Cohen Kadosh, Lammertyn, &

Izard, 2008, for a neuroimaging meta-analysis). Behaviorally,

magnitude comparison latencies decrease as the distance be-

tween the two values increases (Moyer & Landauer, 1967), so

people are faster comparing 2 versus 9 than 2 versus 5. This

numerical distance effect could indicate that numbers are

represented spatially along mental number line, so it is easier

Table 1 Descriptions of predefined brain regions of interest

Region Talairach (x, y, z) Center Brodmann Region(s) Height (mm) Width = Length (mm)

RLPFC ±34, 47, 8 10 12.8 15.6

LIPFC ±43, 23, 24 9, 46 12.8 15.6

AG ±41, –65, 37 39 12.8 12.5

HIPSa ±34, –49, 45 40 12.8 12.5

PSPL ±19, –68, 55 7 12.8 12.5

Fusiform ±42, –60, –8 37 9.6 12.5

RLPFC, rostrolateral prefrontal cortex; LIPFC, lateral inferior prefrontal cortex; AG, angular gyrus; HIPS, horizontal intraparietal sulcus; PSPL,

posterior superior parietal lobule. a HIPS coordinates are based on the meta-analysis of Cohen Kadosh et al. (2008)
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to determine which number is smaller if their locations are

farther apart. In view of these and other data, Dehaene et al.,

(2003, p. 489) proposed that “a nonverbal representation of

numerical quantity, perhaps analogous to a spatial map or

‘number line’, is present in the HIPS of both hemispheres.”

Extending the view of Deheane et al., the HIPS might partic-

ipate in processing visuospatial math referents beyond the

mental number line. If so, HIPS activation would be higher

among graph than formula learners, and would be sensitive to

referent load among the former.

Posterior superior parietal lobule (PSPL) Another parietal

region, the PSPL, is however, more generally associated with

visuospatial processing in a variety of tasks including those

that involve attention orienting, spatial working memory, eye

movements, reaching, grasping and pointing (e.g., Corbetta,

Kincade, Ollinger, McAvoy, & Shulman, 2000; Culham &

Kanwisher, 2001; Simon, Cohen,Mangin, Bihan, & Dehaene,

2002). Deheane et al. (2003) suggest that the PSPLmay play a

role in attentional orientation on the mental number line. More

broadly, data fromChen et al. (2006) also implicates the PSPL

(but not the HIPS) in supporting mental imagery for other

visuospatial math representations during calculation (e.g., an

abacus). Thus, perhaps the PSPL might be more likely than

the HIPS to have higher activation among graph than formula

learners, and to be sensitive to referent load among the former.

Fusiform The fusiform gyrus is a visual processing region

that has been implicated in numerical tasks. Dehaene and

Cohen (1995; Schmithorst & Brown, 2004) suggest it plays

a role in processing visual number forms in math stimuli. The

fusiform is also implicated in mental imagery (Ganis,

Thompson, & Kosslyn, 2004). For example, D’Esposito

et al. (1997) found that left fusiform activity was associated

with generating mental images of aurally presented concrete

nouns (e.g., horse) relative to a condition in which listeners

processed aural abstract nouns (e.g., treaty). The right fusi-

form is active not only when people observe faces, but when

they imagine faces (O’Craven & Kanwisher, 2000). Fusiform

regions are also active when people view or imagine other

items (e.g., houses and chairs; Ishai, Ungerleider, & Haxby,

2000), and when they mentally transform images (e.g., to see

if they are mirror images; Wartenburger, Heekeren, Preusse,

Kramer, & van der Meer, 2009).

The fusiform has also been implicated in imagery to support

mathematical computation. In a PET study (Zago et al., 2001),

learners solved horizontally displayed single-digit (6 × 4) and

multidigit (37 × 14) multiplication problems. They reported

mentally reorganizing the multidigit problems into a vertical

representation, and exhibited increased fusiform blood flow

relative to reading digit pairs or retrieving single-digit facts. In

another study, right fusiform activity was correlated with

solvers’ self-reported use of visualization strategies to solve

arithmetic word problems (Zarnhofer et al., 2013). Thus, we

expect higher fusiform activation among graph learners than

formula learners and this should increase with referential load.

In addition to the above regions, math-related tasks also

tend to involve frontal activation. As was reviewed by

Schmithorst and Brown (2004), prefrontal areas are proposed

to coordinate the sequencing of processing, holding interme-

diate results in working memory, and detecting errors

(Dehaene, 1997; Dehaene & Naccache, 2001; Dehaene

et al., 1996; Shallice & Evans, 1978). We focused on two

prefrontal regions, described below.

Lateral inferior prefrontal cortex (LIPFC) The prefrontal cor-

tex generally supports working memory and executive control

processes, which are necessary for math problem solving. The

LIPFC has been associated with declarative memory retrieval

in computational models (e.g., in ACT-R; Anderson et al.,

2008), and in other theories of memory (e.g., Thompson-

Schill, D’Esposito, Aguirre, & Farah, 1997; Wagner, Paré-

Blagoev, Clark, & Poldrack, 2001). In several experiments

studying tasks like algebra equation solving and geometry

proofs (see Anderson, 2007, for a review), LIPFC activity

proved to be the best correlate of student proficiency. We thus

expected LIPFC activity to predict performance, but had no

specific expectations about group effects.

Rostrolateral prefrontal cortex (RLPFC) This anterior pre-

frontal region in Brodmann Area 10 may have a

metacognitive role, since it has been found to be active when

reflecting on task performance (Fleming, Huijgen, & Dolan,

2012) and when learners extend their mathematical knowl-

edge beyond practiced procedures (Anderson et al., 2011;

Anderson & Fincham (2014), H. S. Lee et al., 2014;

Wintermute, Betts, Ferris, Fincham, & Anderson, 2012). It

has been implicated in reasoning about higher-order relation-

ships and analogies (Bunge, Helskog, & Wendelken, 2009;

Christoff et al., 2001; Volle, Gilbert, Benoit, & Burgess, 2010;

Wendelken, Nakhabenko, Donohue, Carter, & Bunge, 2008),

including those involving visuospatial relations (Watson &

Chatterjee, 2012). Thus, graph learners were expected to engage

the RLPFC for relational transfer problems, which had a high

visuospatial referent load of two graph referents, and which

probed the relations between them. Such relational processing

of visuospatial referents in the RLPFC was expected to benefit

(i.e., predict) transfer performance among graph learners.

The present study

To explore the effects of visuospatial learning referents on

mathematical learning, we sought to investigate relations be-

tween: (1) learning representation and brain activation
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patterns; (2) learning representation and performance; and (3)

activation patterns and performance. We introduced students to

two new mathematical operators designated by ↓ and ↑, that

mapped pairs of numbers onto values. Students were trained on

solving regular problems of the form b↑n = X (e.g., 3↑2 = X),

where they calculated the value (X) and where b and n were

single-digit positive integers. Learners were told how to calcu-

late the values by means of either a formula or a graph repre-

sentation, as is shown in Fig. 1. The graph representations were

staircases. Learners were told that b↑n was the area of the n

stairs starting with the stair of height b. The up arrow (↑)

denotes that one goes up from b, and the down arrow (↓)

denotes that one goes down. Graph learners could solve regular

problems by calculating the sum of the heights of the stairs.

Formula learners efficiently calculated the final values without

any graphic or explanation.

Graph learners, who were privy to the visuospatial inter-

pretations for problems, could engage in distinctive process-

ing to mentally associate problems with graphical referents.

Thus, we expected increased activation among graph (vs.

formula) learners in the fusiform, AG, and HIPS/PSPL, on

the basis of prior findings (summarized above) that have

implicated these regions, respectively, in mental imagery,

semantic association, and mental number line processes.

Different learning representations and activation pat-

terns might not, however, necessarily produce perfor-

mance differences. Indeed, during a learning phase

(Day 1), we expected that both groups would become

comparably adept at solving regular problems. However,

we also included novel transfer problems in the scanning

phase (Day 2) to test the hypothesis that graph learners’

ability to associate problem expressions and components

with meaningful mental referents might facilitate transfer.

Note that the graphical representations spatially represent

the magnitudes of both operands and the value1 (Fig. 1).

Prior research has suggested that learning and transfer

benefit from knowledge about the magnitudes of problem

elements (Siegler & Ramani, 2009) and the magnitude

relations among these elements, which characterize the

operation (Slavit, 1998).

Thus, after mastering the calculations for regular problems

in one representation or the other (Fig. 1), learners were asked

to solve transfer problems for which they had to extend their

knowledge (exemplified in the Appendix). The two classes of

transfer problems, computational and relational, differed in

the complexity of the referents (one vs. two graphs) and the

degree to which we expected knowledge of the graph referents

to facilitate performance.

Computational transfer If both learning conditions compara-

bly equipped learners to solve regular problems, then we

hypothesized that learners in both groups might comparably

handle computational transfer problems that allowed them to

leverage the same solution process that they had mastered for

regular problems. There were two types of such problems:

1. Negative operands (e.g., –4↑3 or 4↑–3) Formula learners

could apply the formulas as usual. For graph learners, a

negative first operand would still designate the starting

column, but it would be left of the origin and would have

negative height. They had experienced adding negative

height columns during training, when solving problems

like 2↓6 = X. In the case of a negative second operand, n,

they could infer that it required them to traverse the graph

in the other direction than would be appropriate for pos-

itive n (e.g., 4↑3 = 4 + 5 + 6, whereas 4↑–3 = 4 + 3 + 2).

Thus, a negative operand problem like 4↑–3 would have

the same single-graph interpretation as the regular prob-

lem 4↓3 = X (see the bottom graph of Fig. 1b).

2. Unknown operands (e.g., X↓3 = 9 or 4↓X = 9) We

assumed that both groups would solve these problems

by guess and check—that is, guessing a value for X and

then applying their regular procedure. Both groups could

use their representations and experience with the training

set to come up with reasonable guesses. For instance,

simply dividing the value on the right of the equal sign

by the given operand would give a ballpark value for the

missing operand. Note that unknown-operand problems

(e.g., X↓3 = 9 or 4↓X = 9) share the same single-graph

interpretation as the corresponding regular problem

(4↓3 = X; see the bottom graph of Fig. 1b).

Relational transfer A separate set of relational transfer prob-

lems were intended to probe learners’ understanding of the

systematic regularities and relations within and across opera-

tions. More concretely, as is exemplified in the Appendix,

relational problems typically probe the relation between a pair

of similar problems with different operations (e.g., 15↑4 =

X↓4) or within the same operation (e.g., 20↑15 = 21↑14 + X).

As is evident from these examples, the referential demands of

associating problems to referents were higher for relational

(vs. computational) transfer problems, because relational

problems include two problem expressions (e.g., 5↓3 =

4↓2 + X; see also the Appendix), and thus two graph

referents, as is exemplified in Fig. 2.

For basic arithmetic, Grabner et al. (2013) demonstrated

that AG activation is increased when an arithmetic stimulus is

likely to bring two symbolic referents to mind. We assessed

the generality of this effect to visuospatial referent demands.

The relations probed by relational transfer problems were

expected to be more readily apprehended by graph learners,

1 In the expression b↑n=X, the height of the starting stair reflects b, the

horizontal extent n, and the area X (note the similarity to area under the

curve, as in calculus).
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who were not only exposed to all of the problems and answers

in the training set, but also to their corresponding graphical

representations that rendered the relational information more

explicit.

1. Relating up and down problems (e.g., 5↑3 = X↓3) From

the graphical representation in Fig. 2a, we see that prob-

lems 5↑3 and 7↓3 both refer to the same area (columns) on

the graph; thus, 5↑3 = 7↓3. In the formulas, the two

different operations differ in whether their two terms are

separated by a + or a – sign (Fig. 1a). We hypothesized

that graph representations would provide more intuitive

insight into the patterns of relations between up and down

problems.

2. Consecutive-operand problems (e.g., 5↓3 = [4↓2] + X)

These problems probe the effects of incremental increases

or decreases in the operands. For example, as is shown in

Fig. 2b, 5↓3 and 4↓2 both include two columns with

heights 4 and 3, and 5↓3 additionally includes a column

with height 5, thus 5↓3 = (4↓2) + 5.

3. Mirror problems (e.g., 5↓5 = X↓6, 5↓11 = X) For down-

arrow problems, increasing the second operand by one

sometimes does not change the final answer. Figure 2c

exemplifies that this occurs when the first and second

operands are positive and equal (e.g., 5↓5), so

incrementing the second operand extends the relevant

graph area over the origin, contributing a column of

height 0 (area = 0) to the total area. Thus, 5↓5 = 5↓6, or

generally, b↓b = b↓(b + 1). As is shown in Fig. 2d, as the

second operand becomes larger still, the relevant graph

region will include columns left of the origin, which

contribute negatively to the sum and cancel the contribu-

tions of their counterpart columns to the right of the

origin. This cancelation is not quite complete for n = 2b

(e.g., 5↓10), because the column 0 lies between the pos-

itive and negative columns but does not contribute or

cancel anything. Thus, at n = 2b all positive columns will

be cancelled except the original one, so that 5↓10 = 5, but

5↓11 = 0. Note that mirror problems (Fig. 2d) implicitly

relate two subgraphs to the left and right of the origin,

which can be parsed as two areas that sometimes cancel

each other out (e.g., 5↓5 + 0↓(5 + 1) = 5↓11 = 0). As is

characterized above and in Fig. 2d, this mirror property

(Wintermute et al., 2012) may be readily anticipated by

graph learners. For formula learners, because the formula

for b↓n (Fig. 1) has a structure in which a second

term (n/2[|n| – 1]) is subtracted from a first term (b*|n|),

it may be foreseeable that for some pair of b and n values,

the two terms may cancel to give an answer of 0.

However, the visuospatial framework (Fig. 2d) presum-

ably makes this mirror property more salient.

4. Rule problems (e.g., 5↓X = 7↓X) Two special values of

the second operand, 0 and 1, yield regularities that accord

with simple rules. As in multiplication, when the second

operand is 0, the answer is zero (b↓0 = 0 and b↑0 = 0), and

when the second operand is 1, the answer is the value of

the first operand (b↓1 = b and b↑1 = b). Thus, X = 0 is the

solution for 5↓X = 7↓X. From a graphical perspective, n =

0 and n = 1 designate areas that include no columns or just

the starting column, respectively. The formulas also allow

for the correct computation of answers to rule problems,

but the solutions lack the transparency that is available

with the graphical interpretation.

Several hypotheses were related to our manipulation of

problem type (regular, computational transfer, or relational

Fig. 1 Example problems to

instruct learners how to solve

regular problems in (a) the

formula-learning group and (b)

the graph-learning group. The on-

screen graphs extended from –5

to +15, so as to provide all

necessary columns for all

problems (b = 2–9, n = 2–6).

Graph learners were told that for

4↑3, “4 is the height of the starting

column; 3 is the number of

columns to sum, rightward,

including the starting column.”

Similarly, for 4↓3, again the

starting point was column 4, but

the area extended leftward (i.e.,

the direction in which the stairs

went down).
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transfer). On behavioral measures, we expected performance

to be best on regular problems and poorest on relational

transfer problems, which were least similar to the regular

(trained) problems. Across learning groups, we expected both

groups to achieve comparable proficiency on regular prob-

lems. However, we expected better performance on transfer

problems among graph learners, because they could mentally

characterize problems and their components in terms of mean-

ingful visuospatial referents.

Since relational transfer problems tended to have the

highest referent load (two graphs), among graph learners

the brain regions allegedly involving semantic and visuospa-

tial referent processing (e.g., AG, HIPS, PSPL, and fusiform)

should be most active for these problems.

We also expected the performance benefits of such visuo-

spatial representations, and thus the performance differences

across groups, to be highest among relational problems. The

Appendix summarizes our assumptions about the solution

processes used by the two learning groups for regular and

computational transfer problems. For relational transfer prob-

lems, the Appendix provides symbolic expressions summa-

rizing the relations in question. However, we expected the

Fig. 2 Illustration of some

relationships between graphical

referents in relational transfer

problems (for more details, see

the Appendix): (a) relating up and

down problems, (b) a

consecutive-operand problem, (c)

a mirror-1 problem, and (d) a

mirror-2 problem
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solution processes to differ across groups for these problems.

For example, to solve 5↓3 = 4↓2 + X, on the basis of Fig. 2b, a

graph learner need not compute either 5↓3 or 4↓2 to recognize

that the only difference between them is due to a single

column of height 5 (thus, X = 5). Such solving “shortcuts”

are not as readily afforded by the visuospatial referents for

regular and computational transfer problems. Thus, among

graph learners, we expected that relations between visuospa-

tial referent processes (i.e., activations in AG, HIPS, PSPL,

and fusiform) and solving performance would be strongest for

relational transfer problems.

With no knowledge of graphical referents, a formula learn-

er could also nonetheless solve relational transfer problems

like 5↓3 = 4↓2 + X via rote computation (i.e., compute 5↓3 and

4↓2, and then subtract them). Formula learners might also try

guessing answers, on the basis of the answer patterns for prior

problems gleaned from feedback (e.g., answers were often

equal to an operand in the problem). Rote computation and

guessing are, however, presumably more error-prone strate-

gies than those that capitalize on the insights afforded by

graphical referents (Fig. 2).

Method

Participants

A group of 49 participants (31 male, 18 female; mean age =

23.9, SD = 5.3) recruited from the university community were

given course credit or payment for their participation. The

participants were randomly assigned to one of the two learn-

ing conditions (graph vs. formula).

Procedure

The study entailed two 1.5-h sessions on consecutive days.

Training was provided in Session 1. Transfer was assessed in

Session 2, which took place in a Siemens 3T Verio Scanner.

Training session

Arithmetic pretest To check whether random assignment

yielded two groups with roughly equivalent arithmetic skills

at experiment outset, participants completed the addition and

the subtraction/multiplication subtests from French, Ekstrom,

and Price (1963). Each subtest had two sheets with 60 arith-

metic questions each and participants had 2 min per sheet to

correctly complete as many problems as possible.

Keypad training To prepare learners to operate a numeric

response keypad without looking in the scanner, participants

practiced using an occluded numeric keypad during training.

With practice, when prompted with a character on the screen

(i.e., one of the nine digits, +, –, or ENTER), participants

ultimately had to press the correct corresponding key within

1.5 s.

Learning phase Each learner was then trained on two novel

math operators: designated, respectively, with an up arrow, ↑,

and a down arrow, ↓. Learners were assigned randomly to

either the learning condition with graphical representations or

the condition with formulas (Fig. 1). Training problems were

of the form b↑n = X and b↓n = X, where participants solved for

X; and b and n were integers from 1 to 9 and 2 to 6, respec-

tively. The 90 unique training problems (45 per operation)

were partitioned into eight blocks, the first and last with 12

problems each and the rest with 11 problems each. Each block

had about equal numbers of ↑ and ↓ problems.

Problems were presented one at a time on the screen in

black font on a white background. Learners pressed ENTER

when they had solved the problem, and typed their answers

using the occluded numeric keypad. A problem would time

out if learners took longer than 30 s to compute an answer and/

or longer than 5 s to type it. Otherwise, learners’ answers

appeared in blue font below the problem. Upon pressing

ENTER after their response, learners got feedback that

consisted of three elements: (1) Their answer turned green if

correct and red if incorrect; (2) the X in the problem was

replaced with the correct answer, framed in a box; and (3) as

per the learner’s condition, a representation for the particular

problem appeared under the learner’s answer (either a shaded

graph or a formula with the appropriate numerical values

substituted in). Feedback was displayed for 5 s when the

learner’s answer was correct and 7 s when incorrect.

In the first and last training blocks (1 and 8), before enter-

ing a solution, participants were required to first interact with

the representation for their group (graph or formula). In each

interactive block, for each operation (↓, ↑), three problems had

b > n and three had b ≤ n. On these interactive trials for the

graph group, the problem was presented with an unshaded

graph. Learners used the mouse to click on the columns

relevant to the current problem (e.g., columns with heights

4, 3, and 2 for 4↓3 = X). Clicked columns became shaded in

blue. When the column selection was complete, learners

pressed ENTER and proceeded to compute and enter their

final answer as for noninteractive trials. The feedback ele-

ments were the same as for noninteractive trials, with one

addition: The correct graph columns were shaded in dark gray

as usual, but additionally, the learner’s selected columns were

outlined in blue, to help learners notice any mismatch between

the correct shaded area and their selection.

On interactive blocks for the formula group, an incomplete

equation appeared below the problem (see Fig. 3), and

the learner’s task was to fill in the empty boxes with

appropriate values for the current problem, including the
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operation sign (+ or –) between the two terms. The

active cursor began in the leftmost empty box and auto-

matically advanced to the next box once the learner

typed a value. The learner’s values were shown in blue.

When ENTER was pressed after the final formula box,

the learner then computed and entered the final answer

as in a noninteractive trial. The feedback elements were

the same as for noninteractive trials, including a correctly

completed equation at the bottom of the screen; however,

the learner’s completed equation also remained visible

(with values in blue) above the correct one, to enable

learners to check for any mismatch between their values

and the correct ones.

Transfer session

To ensure that learners remembered their training, they were

asked to either write out the formulas or appropriately shade

graphs (as per their condition) for two example problems (1↑6

and 1↓6). Feedback was provided. The remainder of the

session took place in a Siemens 3-T Verio Scanner. An initial

warm-up block consisted of eight regular problems (b from 2

to 9, n from 2 to 5), during the structural scan. The remaining

eight blocks, which provided the data for the study, each

began with a regular warm-up problem (not analyzed), follow-

ed by a randomly ordered mix of two regular problems (one

up, one down) and eight transfer problems (four computation-

al and four relational; see the Appendix). Problems were

presented in the same way as in Blocks 2–7 of training, except

that the feedback duration was always 7 s and all participants

got the same type of feedback (i.e., correct answers).

Computation formulas and graphs were never displayed in

the scanner session. Thus, in contrast to training, the physical

presentation was identical across groups. To distract partici-

pants from thinking about the prior problem and allow brain

activity to return to a relatively constant level between prob-

lems, a repetition detection task (12 s) was inserted after the

feedback on each trial: A fixation cross (3 s) was followed by a

series of letters (1.25 s each), and learners were instructed to

press ENTER when the same letter appeared twice in a row.

Images were acquired using gradient echo–echo planar

image acquisition on a Siemens 3-T Verio Scanner with a

32-channel RF head coil, with a 2-s repetition time (TR), 30-

ms echo time, 79° flip angle, and 20-cm field of view. On each

TR, 34 axial slices (3.2 mm) were acquired using a 64 × 64

matrix. Voxels were 3.2 mm high by 3.125 × 3.125 mm2. The

anterior commissure–posterior commissure line was on the

11th slice from the bottom.

fMRI analysis

Acquired images were preprocessed and analyzed using AFNI

(Cox, 1996; Cox & Hyde, 1997). Functional images were

motion-corrected using six-parameter 3-D registration, slice-

time centered at 1 s, and normalized such that voxel time

series within blocks had mean value of 100. The functional

data were then co-registered to a common reference structural

magnetic resonance image by means of a 12-parameter 3-D

registration and smoothed with a 6-mm full-width-at-half-

maximum 3-D Gaussian filter un order to accommodate indi-

vidual differences in anatomy.

Our primary goal was to understand brain activity

(engagement) during correct problem solving and during the

feedback period for incorrectly solved problems. Estimates of

engagement (beta weights) were obtained by using general

linear models (GLM). Separate first-level design matrices

were constructed for analyzing the correct and incorrect trials.

In each case, the design matrix consisted of seven model

variables and a baseline model of an order-4 polynomial to

account for general signal drift. Six of the model variables

corresponded to the 3 × 2 cells of problem type (three levels:

regular, computational transfer, and relational transfer) by

period within trial (two levels: solving and feedback). A single

additional variable corresponded to the response entry period

within a trial, collapsed over problem types. The designmatrix

regressors were constructed by convolving the boxcar func-

tions of these variables with the standard SPM hemodynamic

function (Friston, Ashburner, Kiebel, Nichols, & Penny,

2011). Each GLM yielded seven beta weights per voxel for

each participant. Group-level analyses were performed on

these first-level beta estimates.

Both whole-brain exploratory analyses and predefined

region-of-interest analyses of the average beta weight per

region were conducted. As we discussed in the introduction,

the predefined regions were the AG, HIPS, PSPL, fusiform,

LIPFC, and RLPFC. Their locations are summarized in

Table 1. Left and right analogues were used for each region.

Results

Of the 49 participants, nine were excluded from the analyses:

Two did not show up for the transfer session, one felt claus-

trophobic upon entering the scanner and withdrew, one had a

brain abnormality identified by the imaging technician, one

could not master the occluded keypad during training, and

four did not master solving regular problems during training,

Fig. 3 Example of the representation interaction task for the formula

group during interactive training blocks: The learners’ task was to fill in

empty boxes in the formula with appropriate values for the current

problem, including the operation sign (+ or –) between the two terms
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on the basis of a threshold of 71 % correct in the last four

noninteractive blocks (as inWintermute et al., 2012). Thus, all

analyses are based on the 40 participants (20 per group) with

complete data (mean age = 23.3, SD = 4.9; 26 males, 14

females). Within our analyses of variance (ANOVAs),

Bonferroni corrections were used for pairwise comparisons.

Behavioral results

The two learning groups did not differ significantly in age,

gender distribution, or performance on the arithmetic pretest

(Fs < 1).

Training session Omitting Blocks 1 and 8, in which learners

interacted with either a graph or formula (as per their training

group) prior to entering an answer, there were six core training

blocks, and these were grouped into two halves of three blocks

each. Panels a and b of Fig. 4 summarize the accuracy and

latency data for the training session. The accuracy and latency

(on correct trials) were each analyzed in a Learning Group

(formula vs. graph) × Training Half (1st, 2nd) × Difficulty

(n value: 2–6) ANOVA. The n value determined the

number of additions for the graph learners (i.e., n – 1) and

should have a stronger effect on the performance for this group.

Performance improved from the first to the second half of

training in both accuracy (78 % to 87 %), F(1, 38) = 26.26,

p < .001, ηp
2 = .41, and latency (9,218 to 7,321 ms),

F(1, 37) = 79.41, p < .001, ηp
2 = .68. Formula and graph

learners did not exhibit significant overall differences in

either accuracy (82 % vs. 84 %; F < 1) or latencies

(7,978 vs. 8,561 ms; F < 1). Furthermore, for accuracy,

we found no interaction of group with training half, F(1, 38) =

1.03, p = .318, ηp
2 = .03. However, latencies decreased more

with training half among formula learners, producing a

Group × Half interaction, F(1, 37) = 15.60, p < .001,

ηp
2 = .30. Formula learners produced answers more slowly

than graph learners initially, but by the end of training they

were marginally faster. Their reduced latencies may reflect the

fact that the number and nature of computation steps are more

consistent across problems when computing answers via fixed

formulas. Thus, aspects of the computation sequence could

become very well practiced and quick to execute.

Overall, as the size of the second operand (n) increased,

accuracy decreased, F(4, 152) = 4.23, p = .003, ηp
2 = .10, and

latencies increased, F(4, 148) = 109.73, p < .001, ηp
2 = .75.

We also found a strong interaction with group [accuracy,

F(4, 152) = 4.64, p = .001, ηp
2 = .11; latency, F(4, 148) =

32.98, p < .001, ηp
2 = .47]. As expected, the effects of n were

stronger for graph learners, for whom n determined the num-

ber of additions. Graph learners showed a strong linear rela-

tionship between n and latency; regressing latency against n

yielded a latency of 3,229 ms at n = 2 and a slope of 2,540 ms

(r = .675, p < .001). This pattern provides assurance that graph

learners were computing answers in the manner expected for

their condition. For formula learners, a regression model

analogous to the one for graph learners showed a latency of

5,962 ms for n = 2 and a slope of only 863 ms (r =

.290, p < .001), substantially smaller than that for the graph

group. When using the formulas (Fig. 1a), the number of

computation steps required did not vary with n. However,

the time to retrieve or compute answers for individual steps

(e.g., “multiply b*n”) tends to increase with operand size in

basic arithmetic (i.e., the problem size effect; for a review, see

Zbrodoff & Logan, 2005).

In summary, the groups computed answers via different

strategies as per their instructed representations, but both

groups acquired comparable ability to generate accurate

answers.

Transfer session Figures 4c and d summarize the accuracy

and latency data, respectively, for the transfer session. For

both accuracy and latency (on correct trials), we conducted 2

(learning group: graph vs. formula) × 3 (problem type: regular,

computational transfer, relational transfer) ANOVAs.

Problem-type effects emerged for both accuracy, F(2, 76) =

125.95, p < .001, ηp
2 = .77, and latency, F(2, 76) = 62.60,

p < .001, ηp
2 = .62: As expected, accuracy was highest and

latencies were shortest for regular problems. Accuracy was

lower for relational than for computational transfer problems,

but the problems’ latencies did not significantly differ. Across

groups, we found nomain effect of latency, F(1, 38) = 0.27,

p = .608, ηp
2 = .01, but graph learners attained higher

overall accuracy in the transfer session, F(1, 38) = 4.90,

p = .033, ηp
2 = .11. As was reflected in a Group × Problem

Type interaction for accuracy, F(2, 76) = 16.89, p = < .001,

ηp
2 = .31, the higher graph-learner accuracy arose primarily

from relational transfer problems, whereas the other prob-

lem types did not significantly differ, pairwise, across

groups (ps > .152). Group also interacted with problem

type for latencies, F(2, 76) = 5.35, p = .007, ηp
2 = .15, but

no significant latency differences were apparent between

the groups for any problem type.

Brain-imaging results

For our predefined regions, we report analyses of the activa-

tion patterns during correct solving and during feedback after

solution failure (i.e., the solving and feedback analyses were

on distinct subsets of trials).2 We then report exploratory

whole-brain analyses to check for other regions exhibiting

distinct activations across groups or Group × Problem Type

interactions. Finally, we assess relations between activation

patterns and behavioral performance.

2 Also, the solving and feedback intervals were separated by a variable-

length (up to 5-s) response phase.
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Activations associated with problem solving in regions of

interest For each predefined region, we performed a 2 (group:

graph vs. formula) × 3 (problem type: regular, computational

transfer, relational transfer) × 2 (hemisphere) ANOVA for

correctly solved problems. Table 2 summarizes the ANOVA

results (corrected for multiple comparisons), and Fig. 5a illus-

trates the activity patterns across groups and problem types for

each region. Our primary interest was in the effects of our

learning-group manipulation, including interactions of group

with problem type. However, we note that all regions except

the PSPL showed main effects of problem type, with regular

problems tending to show the least activation, and relational

transfer problems the greatest. These analyses are of beta

values that reflect the mean levels of engagement during

problem solving, and so are corrected for solving time.

Thus, as anticipated, our regions of interest were en-

gaged by the demands of the problem-solving task. We

also found main effects of hemisphere (left > right) in

the RLPFC, LIPFC, and HIPS.

As we hypothesized, the AG exhibited an effect of

learning group. During solving, graph learners exhibited

higher AG activation than did formula learners. This

group difference was significant within each of the three

problem types (ps < .028).

Main effects of learning group were not found in the other

regions hypothesized to support the processing of visuospatial

mental referents—fusiform, HIPS, and PSPL. However, the

fusiform, PSPL, and AG3 exhibited interactions between

learning group and problem type. Among graph learners,

these regions exhibited significantly higher activation for re-

lational than for computational transfer problems, but among

formula learners, this contrast across transfer types was not

significant. This increased activation in AG, PSPL, and fusi-

form for relational (vs. computational) transfer among graph

learners had been predicted due to the higher visuospatial

referent load for relational transfer problems (two graphs vs.

one). Regular problems, like computational transfer problems,

were associated with a single graph, and accordingly invoked

similar activations in the PSPL and fusiform. However, in the

AG, the activations among graph learners were distinct for all

three problem types: regular < computational transfer < rela-

tional transfer (ps < .001). Though similar in referential load,

the computation transfer problems were novel in format rela-

tive to regular problems, which may have increased the refer-

ential processing demands. (Such novelty may have

3 For the AG and PSPL, the interaction became marginal after correction

for multiple comparisons (uncorrected ps=.015 and .010, respectively).

Fig. 4 Behavioral data on (a)

accuracy during training, (b)

correct latencies during training,

(c) accuracy by problem types in

the transfer session, and (d)

correct latencies by problem types

in the transfer session. Error bars

are 95 % confidence intervals.

Latencies on regular problems

during transfer are shorter than

those in the second half of

training, presumably in part

because in training the n values

were 2–6, whereas during transfer

they were 2–5
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contributed to higher activation on computational transfer than

on regular problems, despite their similar demands in both

groups in the RLPFC [Fig. 5a], which could play a

metacognitive role.) Across groups, although the fusiform

did not show a main effect, graph learners did exhibit signif-

icantly higher fusiform activation than formula learners when

solving relational transfer problems (p = .046).

No Group × Hemisphere interactions attained significance.

(Thus, the results are collapsed across hemispheres in Fig. 5.)

Such interactions would have been of potential interest, be-

cause functional roles in a region are sometimes hemisphere-

specific. For example, Dehaene et al.’s (2003) model empha-

sizes the role of the left AG for arithmetic. In the present study,

the AG did not show an effect of hemisphere nor any interac-

tions with hemisphere (even prior to multiple-comparison

correction), which contrasts with Dehaene et al.’s (2003)

emphasis on the left AG.

In summary, the type of learning representation (formula or

graph) affected students’ subsequent activity patterns when

solving regular and transfer problems mentally. Graph

learners exhibited higher activity in the AG and, for relational

transfer, the fusiform.

Activations associated with feedback processing in regions of

interest We hypothesized that differences in mental processes

and representations across groups might be evident not only in

the activation patterns associated with problem solving,

but also in those associated with processing feedback

(i.e., the correct answer). When learners produced correct

answers, the feedback screen provided no new information.

Unsurprisingly, then, preliminary analyses indicated that feed-

back activations were consistently smaller following correct

trials than following trials on which learners had failed to

generate a correct response. In the latter case, learners

Fig. 5 Percent changes in

activation relative to baseline in

predefined regions: (a) during

correct solutions, and (b) during

feedback after learners had failed

to produce a correct solution. G,

Group; PT, Problem Type; G ×

PT, interaction. mp < .10, *p < .05,
**p < .01; corrected for multiple

comparisons (Table 2). Bars are

standard errors
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presumably had to reason about why the provided answer was

the correct one. In the case of graph-trained learners, such

reasoning plausibly involved visuospatial referent imagery.

Thus, to explore feedback-induced activation differences, for

each predefined region we also performed a 2 (group: graph

vs. formula) × 2 (problem type: computational transfer vs.

relational transfer) × 2 (hemisphere) ANOVA on feedback

processing for incorrect trials. We omitted regular problems

from this analysis because relatively few were answered in-

correctly. Figure 5b illustrates the feedback activation pat-

terns, and Table 2 summarizes the ANOVA contrasts.

In terms of problem type, in all regions of interest, feedback

processing was characterized by more activation following

relational than following computational transfer problems. In

terms of group differences, feedback patterns in the AG

(Fig. 5b) tended to replicate those during problem solving

(Fig. 5a). AG activation was higher among graph than among

formula learners (marginal after multiple-comparison correc-

tion, uncorrected p = .016). We also found an interaction of

learning group with problem type, such that AG activation

was sensitive to the visuospatial referent load among graph

learners (computational transfer < relational transfer), but not

among formula learners.

Brain-wide analyses Exploratory analyses were also per-

formed to detect other possible regions characterized by either

(1) an effect of learning group (graph vs. formula learners) or

(2) an interaction of learning group and problem type (regular,

computational transfer, and relational transfer).

Using a voxel-wise significance threshold of .001 yielded a

brain-wide alpha estimated to be less than .05 by simulation for

clusterswithmore than 20 contiguous voxels (Cox, 1996; Cox&

Hyde, 1997). As is detailed in Table 3 and illustrated in Fig. 6,

four such regions were found for the graph versus formula group

contrast (in all cases, graph > formula), and three regions were

found for the Learning Group × Problem Type interaction. The

activation patterns in these regions, partitioned by group and

problem type, are shown in Fig. 7. The regions identified by a

main effect of learning groupwere assessed forGroup ×Problem

Type interactions viaGroup ×ProblemTypeANOVAs, but none

proved significant (ps > .20). Similarly, the regions identified by

a Group × Problem Type interaction were assessed for main

effects of learning group, but none proved significant (ps > .09).

Note that the left parietal region identified to have a main

effect of learning group overlapped with the supramarginal and

angular gyri (Fig. 6), and the activity patterns (Fig. 7) there

were similar to those in the predefined AG region (Fig. 5a).

Two of the regions identified in the interaction analysis—the

right occipital and left fusiform regions—proved sensitive to

visuospatial referent load among graph learners: Activity was

higher among relational transfer problems (associatedwith two

mental graphs) than among computational transfer and regular

problems (each associated with one mental graph, ps < .001),

which did not differ significantly (ps > .350). In contrast,

among formula learners, activity in these two regions did not

vary significantly with problem type. Note that the left fusi-

form region from the brain-wide analysis overlaps with our

predefined left fusiform region (Fig. 6) and is characterized by

a similar activity pattern (Figs. 7 and 5a, respectively). Across

groups, activations were higher among graph than among

formula learners on relational transfer problems in the right

occipital region (p = .044) and left fusiform (p = .002).

Relations between performance and activation in predefined

regions To assess which of our predefined brain regions were

most predictive of behavioral performance, we focused on

relational transfer problems, which exhibited the most varia-

tion in performance across individuals and exhibited a differ-

ence in accuracy across groups. It was suggestive that the

group differences in relational transfer accuracy (Fig. 4c) co-

occurred with group differences in activation in AG, fusiform,

and LIPFC (Fig. 5a). However, to better evaluate the relation

between regional processing and performance, we computed

correlations between the activations and relational transfer

performance within each learning group.

As is shown in Table 4,4 among graph learners, individual

performance differences were predicted by AG, fusiform, and

RLPFC activations, whereas among formula learners, no cor-

relations reached significance. Directly comparing the

strengths of the performance–activation relations across

groups (Table 4, Fisher’s z) confirmed that RLPFC activity

was more strongly related to both accuracy and latencies

among graph than among formula learners. Additionally, the

fusiform latency relation was marginally stronger among

graph than among formula learners.

Within-group (vs. collapsed) correlations were computed

because collapsed-group correlations could simply by driven

by group differences. Furthermore, it would be unclear how to

interpret regional processing in a way that transcended group

boundaries (i.e., mediation); formula learners were never

privy to graphical referents, so if some regions were involved

in referential processing among the graph learners, these re-

gions might be otherwise engaged by formula learners.

Discussion

In the present research, we explored how different instruction-

al representations (formulas vs. graphs) can impact the

4 Activations were from the left hemisphere (which tended to respond

more strongly to the task and to group differences) and included both

correct and incorrect trials. We omitted time-out trials, due to their

atypical latencies, and their possibly noisy activations if solvers allowed

their minds to wander (vs. being engaged in solving the full time).
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learning and extension of mathematical operations. Although

training equipped both learning groups to solve regular prob-

lems, the imaging and behavioral transfer data provide clear

evidence of differential processing and learning. In the AG,

activations were higher for graph than for formula learners

during subsequent mental solving, even for regular and com-

putational transfer problems that were not characterized by

behavioral performance differences across groups. This result

speaks to the general utility of imaging data to provide infor-

mation not behaviorally apparent about the possible use of

different cognitive representations and strategies (as in Sohn

et al., 2004).

Behavioral differences were evident, however, on relation-

al transfer problems. Graph learners solved more of these

problems, which probed relationships across pairs of similar

problems within and across operations. Knowledge of visuo-

spatial referents for such problem pairs (Fig. 2) was expected

to allow graph learners to capitalize on relational processing in

the RLPFC. In contrast, formula learners could solve such

problems via rote computation, guessing, or shallow rules

inferred from prior feedback (e.g., b↑n = b↓–n). RLPFC

activation significantly predicted relational transfer perfor-

mance among graph but not formula learners (relations were

significantly stronger for the graph group). However, RLPFC

activation did not differ overall across groups. Formula

learners may have engaged RLPFC equally, but for different

processes (e.g., executive functions).

Parietal regions (HIPS, PSPL, and AG) were also expected

to reflect distinctive processing across groups. Parietal areas

are routinely associated with math tasks (Dehaene et al., 2003)

and visuospatial functions (for a review, see Sack, 2009).

PSPL and HIPS: processing visuospatial mental referents

beyond the mental number line?

Within mathematics, Dehaene et al. (2003) implicated the

HIPS and PSPL in mental number line processes. Thus, their

roles might generalize to processing other visuospatial math

referents. This expectation was especially strong for the PSPL,

which is more generally associated with visuospatial process-

ing, and has been implicated in supporting the visualization of

an abacus during calculation (Chen et al., 2006). The HIPS is

associated more specifically with the mental representation of

numerical quantity in a possibly visuospatial form (mental

number line) that may be distinctive (possibly even innate)

and might not generalize to processing more general

Table 3 Regions from whole-brain analyses that exhibited a significant effect of learning group (top) or a Learning Group × Problem Type interaction

(bottom)

Exploratory Region Talairach Peak x, y, z Brodmann Area Voxels

Regions exhibiting Effect of Learning Group (Graph vs. Formula Learners)a

L. Inferior parietal lobule –54, –55, 47 40 210

L. Mid/superior temporal gyrus –60, –26, –2 21/22 56

R. Inferior parietal lobule 48, –49, 47 40 22

R. Middle frontal gyrus 23, –8, 53 6 20

Regions exhibiting Problem Type × Learning Group Interactionsa

R. Middle occipital gyrus –30, 86, –14 19 78

L. Culmen –17, –54, –10 21

L. Fusiform –48, –66, –11 19 21

a Correction for multiple comparisons: Avoxel-wise p = .001 yielded a brain-wide alpha estimated to be less than .05 by simulation for cluster sizes >20

contiguous voxels

Fig. 6 The six bilateral predefined regions (black) and the regions

from brain-wide analyses (Table 3) exhibiting a main effect of

learning group (red in electronic figure; graph-learners > formula-

learners) or an interaction of Learning Group × Problem Type

(yellow in electronic figure). For each brain slice (radiological

convention: image left = participant’s right), the z-coordinate pro-

vided is for x = y = 0 in Talairach coordinates
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visuospatial math referents. In the present study, these regions

did not show main effects of learning representation (formula

vs. graph), nor did their activity correlate significantly with

relational transfer performance within either group. However,

among graph (but not formula) learners, activity in the PSPL

was modulated by transfer type (relational vs. computational),

the levels of which differed in visuospatial referent load (two

graphs vs. one). Thus, our data are compatible with the view

that the PSPL may support more general processing related to

visuospatial mental referents in math tasks. That said, more

clear-cut activation differences across groups were found in

the AG and fusiform.

Angular gyrus: associating symbolic math problems

with visuospatial referents?

We assessed the hypothesis that the angular gyrus may gen-

erally support associating symbolic problem expressions with

mental referents (Grabner et al., 2013). Accordingly, the AG

was more active among graph learners, who could mentally

associate problems with visuospatial referents, than among

formula learners, who were not privy to this referential inter-

pretation. The group effect was present in the predefined AG

region during solving, and marginally during feedback pro-

cessing (incorrects). A left inferior parietal region, which

overlapped the AG, also emerged in the whole-brain group

contrast (Table 3, Fig. 6).

These group differences would not be easily interpretable

under a related, but narrower, functional role for the AG:

arithmetic fact retrieval (Dehaene et al., 2003). The AG has

been especially implicated in the retrieval of multiplication

facts such as 3 × 2 = 6 (K. M. Lee, 2000). Since only the

formulas explicitly required multiplication (Fig. 1), according

to this view one might have expected increased instead of

decreased AG activity among formula learners. Increased AG

activation among graph learners would not be expected even

if AG mediates the retrieval of all basic arithmetic facts,

including addition (Grabner et al., 2009). If we consider

regular problems, for which the strategies are most clear, note

that for the formula group, 2↑4 = 2 × 4 + 4/2(4 – 1), could

involve five retrievable subproblems (2 × 4 = 8, 4 – 1 =

3, 4/2 = 2, 2 × 3 = 6, and 8 + 6 = 14). For the graph group,

Fig. 7 Percent changes in

activation relative to baseline in

regions identified in brain-wide

analyses as exhibiting a main

effect of learning group (left) or

an interaction between learning

group and problem type (right).

Error bars are standard errors

Table 4 Relations between mean activations in the predefined regions and performance for relational transfer

Regions Accuracy Correct Latency

Graph Learners Formula Learners Group Diff? Fisher’s za. Graph Learners Formula Learners Group Diff? Fisher’s za

L. RLPFC .457* –.135 1.83* –.546** .080 –2.02*

L. LIPFC .321m .054 0.81 –.357m –.335m –0.07

L. AG –.132 –.121 –0.74 –.427
*

–.316m –0.38

L. HIPS .228 .298 –0.22 –.360m .006 –1.12

L. PSPL .071 .033 0.11 –.286 –.227 –0.18

L. Fusiform .100 .006 0.28 –.634
**

–.222 –1.52
m

m p < .10, * p < .05, ** p < .01 (one-tailed hypothesis: better performance with higher activation). Significant or marginal F-values are emphasized in

bold. a Fisher’s z, to assess whether r(graph learners) > r(formula learners); see http://vassarstats.net/rdiff.html
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2↑4 is the sum of four columns (2 + 3 + 4 + 5) and can be

computed by retrieving three facts—that is, first retrieving 2 +

3 = 5, then 5 + 4 = 9, and then 9 + 5 = 14 (or the last summight

be solved using decomposition, 9 + [1 + 4] = 10 + 4; LeFevre,

Sadesky, & Bisanz, 1996). So, given that fewer basic fact

retrievals are not definitively necessary when applying the

formulas, it is not apparent under a fact-retrieval interpretation

why AG activity was elevated in the graph group.

Furthermore, activations in our predefined AG region were

bilateral, rather than restricted to the left hemisphere, as pre-

dicted by the verbal fact retrieval view (Dehaene et al., 2003;

see also Grabner et al., 2009).

The broader symbol–referent mapping role for the

AG is not only compatible with our group effect but

also with the finding that among graph learners, AG

activations were especially elevated for relational trans-

fer problems, which are associated with two visuospatial

referents. On such problems, for which graphical repre-

sentations might provide insight for solving “shortcuts”

(Fig. 2), AG engagement was associated with more-

efficient solving.

This symbol–referent mapping view of AG function is a

unifying one, because more general evidence suggests that the

AG supports cognitive access to semantic meanings for lin-

guistic as well as for mathematical expressions (e.g., Binder

et al., 1997). For example, the AG is more active for tasks

requiring semantic versus surface processing of a word

(Binder, Desai, Graves, & Conant, 2009). The AG adjoins

visual, spatial, auditory, and somatosensory association areas,

which may make it a good candidate for a high-level integra-

tion area (Geschwind, 1965). Notably, several other studies

have implicated the AG in visuospatial numerical processing

(e.g., Cattaneo, Silvanto, Pascual-Leone, & Battelli, 2009;

Göbel, Walsh, & Rushworth, 2001; Zorzi, Priftis, & Umiltà,

2002). For example, TMS of the angular gyrus disrupted

performance of a visuospatial search task and a number com-

parison task (using the putative mental number line; Göbel

et al., 2001). On the basis of the AG’s location and connec-

tivity (Andersen, Asanuma, Essick, & Siegel, 1990), and of

their meta-analysis of 120 semantic studies, Binder et al.

(2009) suggested that the AG plays a role as a heteromodal

association area for complex information integration and

knowledge retrieval. Two other regions that showed group

contrasts in the present research, the middle temporal gyrus

(from the whole-brain analysis, Table 3, Fig. 6) and the

fusiform (Fig. 5), also emerged in Binder et al.’s (2009)

meta-analysis and were suggested to play a role in semantic

integration and retrieval.

Fusiform: mental imagery in math problem solving?

As we noted in the introduction, the fusiform has been

implicated in mental imagery tasks (e.g., D’Esposito

et al., 1997; Ishai et al., 2000; Wartenburger et al.,

2009), including imagery to reorganize a math problem’s

format (Zago et al., 2001), and the use of visualization

strategies to solve arithmetic word problems (Zarnhofer

et al., 2013). Across groups, graph learners exhibited

higher fusiform activity than formula learners when solv-

ing relational transfer problems. Among graph learners,

fusiform activity was sensitive to visuospatial referent

load, and predicted solving efficiency. Thus, the fusiform

seems to support visualization among graph learners to

facilitate their solution of transfer problems.

The fusiform is also assumed to play a role in pro-

cessing visual number forms in math problem stimuli

(Dehaene & Cohen, 1995; Schmithorst & Brown, 2004).

However, learners in both our conditions had to process

the same visual problem stimuli during transfer, so this

perceptual demand could not explain group differences

in fusiform activation.

If both the AG and fusiform contribute to learners’

use of visuospatial mental referents for symbolic math

expressions, then differentiating the exact contribution

of each region may remain a question for future re-

search. One possibility is that the AG supports associ-

ating the symbolic expression with the information nec-

essary to characterize an appropriate referent, whereas

the fusiform may support instantiating the visuospatial

representation in the mind’s eye. Among formula

learners, the fusiform might support visualizing and

internally manipulating formulas.

Alternate interpretations

Since a region can support a variety of cognitive func-

tions, one might suggest that increased activity in cer-

tain regions (e.g., AG, fusiform) among graph learners

may be unrelated to visuospatial referent processing. A

transfer advantage may owe to insights from exposure

to spatial referents during learning, rather than spatial

processing during transfer. However, our interpretation

that visuospatial referent processing is at play is based

on (1) the experimental manipulation of learning repre-

sentation, (2) prior evidence that implicates these re-

gions in visuospatial processing, (3) the finding that

among graph learners these regions were sensitive to

our manipulation of visuospatial referent complexity

(computational vs. relational transfer), and (4) that these

visuospatial representations provide a strategic advan-

tage for relational transfer, and the mental use of such

representations thus predicted the transfer advantage for

graph learners.

Although only basic arithmetic was required to pro-

duce the answers in both groups, it is the case that the

arithmetic computations differed somewhat across
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groups—for example, on regular problems, latency was

more sensitive to changes in the operand n among

graph than formula learners. Overall, however, the ar-

ithmetic “load” was similar across groups (comparable

accuracy and latency on regular and computational

transfer problems). Thus, basic arithmetic requirements

are unlikely a key source of group differences. However, to

further probe the contributions of arithmetic requirements

and visuospatial referents to transfer, we are developing

a follow-up study to manipulate learning representations

while equalizing the arithmetic required.

Pedagogical implications

Mathematics is cumulative, so the utility of mastering

an operation for future learning and transfer often re-

quires conceptual understanding that supersedes the

strategies sufficient to rotely compute answers. Truly

understanding a particular operation, and understanding

relations between pairs of operations (e.g., multiplication

and division) may require learners to develop an “oper-

ation sense” (Slavit 1998). Such an operation sense

extends beyond “first-order” knowledge of individual

numbers’ magnitudes and entails apprehending the sys-

tematic patterns and relations that characterize each

operation. For example, learners may come to appreciate

how the magnitude of the answer typically compares to

the magnitudes of the operands in certain ranges, some-

times called a “relation to operands principle” (Dixon,

Deets, & Bangert, 2001). Note that, for positive oper-

ands b and n, the sum (b + n) will be larger than both

operands. Similarly, for our operation, b↑n = X, X will

be larger than both operands. Learners’ operation sense

for basic arithmetic operations is related to success at

more advanced math like algebra (Slavit, 1998). When

practicing arithmetic (e.g., addition and subtraction),

some aspects of operation sense may develop even in

absence of visuospatial representations (number lines,

graphs, shaded shapes). However, learning representa-

tions that render magnitude relations more explicit

(graphs vs. formulas) presumably facilitate learners’ ap-

prehension of meaningful magnitude patterns.

Our data demonstrate the general utility of visuospatial

referents to facilitate operation sense and transfer. The imag-

ing data suggest that the recruitment of visuospatial and se-

mantic regions, even in the absence of external representa-

tions, may help explain correlations between mathematical

and spatial ability. In contrast to abstract symbol manipula-

tion, visuospatially mediated mental solution processes

may facilitate learning by allowing learners to capitalize

on the more evolutionarily developed visuospatial processes

and circuits.

Our operations can be interpreted as instances of integral

calculus (area under the curve), but the implications readily

generalize to other mathematical operations. Similar 2-D

graphics could be adapted to facilitate students’ appre-

hension of relations in multiplication (e.g., each axis

represents an operand and the area is the product) and

quadratics (Hoong et al., 2010). Linear representations

(1-D) might suffice for subtraction and addition (e.g.,

Booth & Siegler, 2008). In this era of computer tutors

and educational software, which can automate and cus-

tomize representations for each problem, educators and

students may be in a good position to capitalize on such

relevant visuospatial representations (Goldin & Kaput,

1996; Healy & Hoyles, 1999).

Conclusions

Mathematics learning is influenced by the type of repre-

sentation used to define an operation. Visuospatial learn-

ing representations that spatially represent the relative

magnitudes of operands and answers presumably enable

learners to later capitalize on visuospatial mental repre-

sentations and strategies. On the basis of the superior

performance of graph learners on relational transfer prob-

lems, visuospatial referents seem to promote the appre-

hension of relations between similar problems within and

across operations (Fig. 2), and presumably foster insight

into the patterns and principles characterizing the opera-

tion or function as a whole (“operation sense”). Our data

contribute support for extending the fusiform’s role in

math problem solving beyond processing number stimuli

(Dehaene & Cohen, 1995) and supporting imagery for

symbolic expressions (Zago et al., 2001), to also

supporting imagery for visuospatial referents. Our data

also support extending the role of the AG: Beyond

having a role in accessing answers to overlearned arith-

metic facts (Dehaene et al., 2003), we extended Grabner

et al.’s (2013) symbol–referent mapping view to suggest

that the AG is involved in associating problems with

visuospatial mental referents. This general role in seman-

tic association for the AG may help unify the interpreta-

tions of linguistic (Binder et al., 2009) and mathematical

studies (Dehaene et al., 2003; Grabner et al., 2009). In

the present study, we manipulated whether or not

learners were privy to a visuospatial referent interpreta-

tion for the problems. However, these brain activation

patterns might be useful in future research to help ascer-

tain whether or not learners are bringing visuospatial

referents to bear in problem solving.

Author note Support for this research was provided by the National

Science Foundation, Grant No. DRL-1007945 to J.R.A.
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Table 5 Types of problems presented during the transfer session in the scanner on Day 2

Problem Type Example Problems Principle and/or Solution Process

Regular (16 items/subj) 3↓2 = X

3↑2 = X

See Fig. 1 for solution examples for formula learners (Fig. 1a)

and graph learners (Fig. 1b)

Computational Transfer

Unknown b (eight items) X↓2 = 5

X↑2 = 7

Learners may guess X value then check it, by computing answer in

same way as for regulars

Unknown n (eight items) 3↓X = 5

3↑X = 7

Learners may guess X value then check it, by computing answer in

same way as for regulars

Negative b (eight items) –3↑2 = X

–2↓X = 6

Formulas apply as normal; for the graph, the starting column is to

the left of the origin

Negative n (eight items) 3↑–2 = X

2↓–5 = X

Formulas apply as normal; for graph, infer n < 0 reverses direction

to travel along horizontal axis

Relational Transfer

Relating Up and Down Problems (eight items) 31↑4 = 31↓X For positive integers b & n,

UpDown-1: b↓n = b↑(–n) and b↑n = b↓(–n)

19↓4 = X↑4 UpDown-2: b↓n = (b – n + 1)↑n

Consecutive Operand Problems (eight items) 35↓3 = (34↓2) + X

26↓15 = (X↓14) + 26

For positive integers, b & n,

Consecutive-1: b↓n = (b – 1)↓(n – 1) + b

Task: Solve for the final constant value to add

Consecutive 2: b↓n = (b – 1)↓(n – 1) + b

Task: Solve for an n or b value.

Mirror Problems (eight items) 5↓5 = X↓6

9↓X = 9↓(X + 1)

Mirror-1: b↓b = b↓(b + 1), for positive integer b

The origin column (area = 0) contributes nothing

50↓100 = X

30↓61 = X

Mirror-2: b↓2b = b and b↓(2b + 1) = 0, for positive integer b

If the area crosses the origin, negative columns cancel corresponding

positive columns.

Rule Problems (eight items) 5↓X = 7↓X 0 Rule: For any integer b, b↑0 = 0 and b↓0 = 0

5↑2 = 11↑X 1 Rule: For any integer b, b↑1 = b and b↓1 = b
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