
ACT-R 6.0 Tutorial 8-Oct-14 Unit One

Unit 1: Introduction to ACT-R

ACT-R is a cognitive architecture. It is a theory of the structure of the brain at a level of
abstraction that explains how it achieves human cognition. That theory is instantiated in the
ACT-R software which allows one to create models which may be used to explain performance in
a task and also to predict performance in other tasks. This tutorial will describe how to use the
ACT-R software for modeling and provide some of the important details about the ACT-R
theory, but it is not a complete reference on the theory of ACT-R. More detailed information on
the theory can be found in the paper “An integrated theory of the mind”, which is available on the
ACT-R website at: http://act-r.psy.cmu.edu/publications/pubinfo.php?id=526, and also in the
book “How Can the Human Mind Occur in the Physical Universe?”.

The goals of this unit are to introduce the knowledge representations which are used in ACT-R,
present the formal notation for specifying that knowledge within an ACT-R model, and to
describe how those types of knowledge interact in an ACT-R model.

1.1 Knowledge Representations

There are two types of knowledge representation in ACT-R -- declarative knowledge and
procedural knowledge. Declarative knowledge corresponds to things we are aware we know and
can usually describe to others. Examples of declarative knowledge include “George Washington
was the first president of the United States” and “An atom is like the solar system”. Procedural
knowledge is knowledge which we display in our behavior but which we are not conscious of.
For instance, no one can describe the rules by which we speak a language and yet we do. In
ACT-R declarative knowledge is represented in structures called chunks and procedural
knowledge is represented as rules called productions. Thus chunks and productions are the basic
building blocks of an ACT-R model.

1.1.1 Chunks in ACT-R

In ACT-R, elements of declarative knowledge are called chunks. Chunks represent knowledge
that a person might be expected to have when they solve a problem. A chunk is defined by its
chunk-type and its slots. One can think of chunk-types as categories (e.g., birds) and slots as
category attributes (e.g., color or size). A chunk also has a name which can be used to reference
it, but that name is only a convenience for using the ACT-R software and is not considered to be
a part of the chunk itself. Below are some representations of chunks that encode the facts that the
dog chased the cat and that 4+3=7. The chunks are displayed as a name and then slot and value
pairs. The type of the first chunk is chase and its slots are agent and object. The isa slot is
special and specifies the type of the chunk. The type of the second chunk is addition-fact and its
slots are addend1, addend2, and sum.

1

http://act-r.psy.cmu.edu/publications/pubinfo.php?id=526

ACT-R 6.0 Tutorial 8-Oct-14 Unit One

Action023
 isa chase
 agent dog
 object cat

Fact3+4
 isa addition-fact
 addend1 three
 addend2 four
 sum seven

1.1.2 Productions in ACT-R

A production is a statement of a particular contingency that controls behavior. They can be
represented as if-then rules and some examples might be

IF the goal is to classify a person
 and he is unmarried
THEN classify him as a bachelor

IF the goal is to add two digits d1 and d2 in a column
 and d1 + d2 = d3
THEN set as a subgoal to write d3 in the column

The condition of a production (the IF part) consists of a conjunction of features which must be
true for the production to apply. The action of a production (the THEN part) consists of the
operations the model should perform when the production is selected and used. The above are
informal English specifications of productions. They give an overview of when the productions
apply and what actions they should do, but do not necessarily detail everything that needs to
happen within the production. You will learn the syntax for precise production specification in
ACT-R later in this unit.

1.2 Creating Knowledge Elements

To create chunks, chunk types, and productions one must issue the necessary ACT-R commands.
Because ACT-R commands are Lisp functions they must be enclosed in parentheses to execute
them. The first term after the left parenthesis is the command name. That is followed by the
details needed for the command and then a right parenthesis. In the following sections we will
show how to use the commands to create the knowledge representations in ACT-R.

2

ACT-R 6.0 Tutorial 8-Oct-14 Unit One

1.2.1 Creating New Chunk Types

To create a new type of chunk like “bird” or “addition fact”, you need to specify a frame for the
chunk using the chunk-type command. This requires that you specify the name of the chunk
type and the names of the slots that it will have. The general chunk type specification looks like
this:

 (chunk-type name slot-name-1 slot-name-2 … slot-name-n)

and here are some examples:

(chunk-type bird species color size)
(chunk-type column row1 row2 row3)

The first argument to chunk-type specifies the name of the new type. In the examples above the
names are bird and column. Each type of chunk also has a number of slots each of which can
hold one value. The remaining arguments in the chunk-type specification are the names of the
slots for that type of chunk.

1.2.2 Creating Chunks

The command to create a set of chunks and add them to model’s declarative memory is called
add-dm. It takes any number of chunk specifications as its arguments. Here is an example from
the count model we will discuss later:

(add-dm
 (b ISA count-order first 1 second 2)
 (c ISA count-order first 2 second 3)
 (d ISA count-order first 3 second 4)
 (e ISA count-order first 4 second 5)
 (f ISA count-order first 5 second 6)
 (first-goal ISA count-from start 2 end 4))

Each chunk is specified in a list (a sequence of items enclosed in parentheses). The first element
of the list is the name of the chunk. The name may be anything you want which is not already
used as the name of a chunk as long as it is also a valid Lisp symbol. In the example above the
names are b, c, d, e, f, and first-goal. The purpose of the name is to provide a way to refer to the
chunk - it is not considered to be a part of the chunk, and can in fact be omitted in which case a
new and unique name will be generated for that chunk automatically. The rest of the list is pairs
of slot names and initial values. The first pair must be the isa slot and the type of the chunk. The
isa slot is special because every chunk has one. Its value is the type of the chunk, which must be
either a type that was defined with chunk-type or one of the predefined types, and it cannot be

3

ACT-R 6.0 Tutorial 8-Oct-14 Unit One

changed once the chunk is created. The remainder of the slot-value pairs can be specified in any
order, and it is not necessary to specify an initial value for every slot of the chunk. If an initial
value for a slot is not given, that slot will be empty which is denoted with the Lisp symbol nil.

1.2.3 Productions

A production is a condition-action pair. The condition (also known as the left-hand side or LHS)
specifies a pattern of chunks that must be present in the buffers for the production to apply. The
action (right-hand side or RHS) specifies some actions to be taken when the production fires.

1.2.4 Buffers

Before continuing with productions we need to describe what these buffers are. The buffers are
the interface between the procedural memory system in ACT-R and the other components (called
modules) of the ACT-R architecture. For instance, the goal buffer is the interface to the goal
module. Each buffer can hold one chunk at a time, and the actions of a production affect the
contents of the buffers. Essentially, buffers operate like scratch-pads for creating, storing, and
modifying chunks.

In this chapter we will only be concerned with two buffers -- one for holding the current goal and
one for holding information retrieved from the model’s declarative memory module. Later
chapters will introduce other buffers and modules as well as further clarify the operations of the
goal and retrieval buffers used here.

1.2.5 Productions Continued

The general form of a production is:

(p Name “optional documentation string”
 buffer tests
==>
 buffer changes and requests
)

Each production must have a unique name and may also have an optional documentation string
that describes what it does. The buffer tests consist of a set of patterns to match against the
current buffers’ contents. If all of the patterns correctly match, then the production is said to
match and it can be selected. It is possible for more than one production to successfully match the
current buffer contents. However, among all the matching productions only one will be selected,
and that production’s actions will be performed. The process of choosing a production from
those that match is called conflict resolution, and it will be discussed in detail in later units. For
now, what is important is that only one production may fire at a time. After a production fires,

4

ACT-R 6.0 Tutorial 8-Oct-14 Unit One

matching and conflict resolution will again be performed and that will continue until the model
has finished.

1.3 Production Specification

In separate subsections to follow we will describe the syntax involved in specifying the condition
and the action of a production. In doing so we will use the following production that counts from
one number to the next:

(P counting-example English Description
 =goal> If the goal chunk is
 isa count of the type count
 state incrementing the state slot has the value incrementing
 number =num1 there is a number we will call =num1
 =retrieval> and the chunk in the retrieval buffer
 isa count-order is of type count-order
 first =num1 the first slot has the value =num1
 second =num2 and the second slot has a value we will call =num2
==> Then
 =goal> change the goal
 number =num2 to continue counting from =num2
 +retrieval> and request a retrieval
 isa count-order of a count-order chunk to
 first =num2 find the number that follows =num2
)

1.3.1 Production Conditions

The condition of the preceding production specifies a pattern to match to the goal buffer and a
pattern to match to the retrieval buffer:

 =goal>
 isa count
 state incrementing
 number =num1
 =retrieval>
 isa count-order
 first =num1
 second =num2

A pattern starts by naming which buffer is to be tested followed by the symbol ">". The names
goal and retrieval specify the goal buffer and the retrieval buffer. It is also required to prefix the

5

ACT-R 6.0 Tutorial 8-Oct-14 Unit One

name of the buffer with "=" (more on that later). After naming a buffer, the first test must specify
the chunk-type using the isa test and the name of a chunk-type. That may then be followed by
any number of tests on the slots for that chunk-type. A slot test consists of an optional modifier
(which is not used in any of the tests in this example production), the slot name, and a
specification of the value it must have. The value may be either a specific constant value or a
variable.

Thus, this part of the first pattern:

 =goal>
 isa count
 state incrementing

means that the chunk in the goal buffer must be of the chunk-type count and the value of its state
slot must be the explicit value incrementing for this production to match.

The next slot test in the goal pattern involves a variable:

 number =num1

The “=” prefix in a production is used to indicate a variable. Variables are used in productions to
test for general conditions. They can be used for two basic purposes. In the condition they can
be used to compare the values in different slots, for instance that they have the same value or
different values, without needing to know all the possible values those slots could have. They
can also be used to copy values from one slot to another slot in the actions of the production. The
name of the variable can be any symbol and should be chosen to help make the purpose of the
production clear. A variable is only meaningful within a specific production. The same variable
name used in different productions does not have any relation between the two uses. For a
variable test to successfully match there must be some value in the slot. An empty slot, indicated
with the Lisp symbol nil, will not match to a variable in a buffer specification.

Now, we will look at the retrieval buffer’s pattern in detail:

 =retrieval>
 isa count-order
 first =num1
 second =num2

First it tests that the chunk is of type count-order. Then it tests the first slot of the chunk with
the variable =num1. Since that variable was also used in the goal test, this is testing that this slot
of the chunk in the retrieval buffer has the same value as the number slot of the chunk in the
goal buffer. Finally, it tests the second slot with a variable called =num2. This means that there
must be a value in the second slot, it cannot be empty, but there are no constraints placed on what
that value must be.

6

ACT-R 6.0 Tutorial 8-Oct-14 Unit One

In summary, this production will match if the chunk in the goal buffer is of type count, the chunk
in the retrieval buffer is of type count-order, the chunk in the goal buffer has the value
incrementing in its state slot, the value in the number slot of the goal buffer’s chunk and the first
slot of the retrieval buffer’s chunk match, and there is some value in the second slot of the chunk
in the retrieval buffer.

One final thing to note is that =goal and =retrieval, as used to specify the buffers, are also
variables. They will be bound to the chunk that is in the goal buffer and the chunk that is in the
retrieval buffer respectively. These variables for the chunks in the buffers can be used just like
any other variable to test a value in a slot or to place that chunk into a slot as an action.

1.3.2 Production Actions

The right-hand side of a production consists of a set of actions that affect the buffers. Here are
the actions from the example production again:

 =goal>
 number =num2
 +retrieval>
 ISA count-order
 first =num2

The actions are specified similarly to the conditions. They state the name of a buffer followed by
">" and then some slot and value specifications. There are three types of actions that can happen
to a buffer and they are designated by the character that precedes the name of the buffer.

1.3.2.1 Buffer Modifications

If the buffer name is prefixed with "=" then the action is for the production to immediately
modify the chunk currently in that buffer. Thus this action on the goal buffer:

 =goal>
 number =num2

changes the value of the number slot of the chunk in the goal buffer to the current value of the
second slot of the chunk in the retrieval buffer. This is an instance of a variable being used to
copy a value from one slot to another.

1.3.2.2 Buffer Requests

7

ACT-R 6.0 Tutorial 8-Oct-14 Unit One

If the buffer name is prefixed with a "+", then the action is a request to that buffer’s module.
Typically this results in the module replacing the chunk in the buffer with a different one, but it
could also be a request for the module to make some change to the chunk that is already in the
buffer. Each module has its own purpose and handles different types of requests. In later units of
the tutorial we will describe modules that can handle visual attention, manual control requests,
and some other types of actions.

In this unit, we are dealing only with the declarative memory and goal modules. Requests to the
declarative memory module (the module for which the retrieval buffer is the interface) are
always a request to retrieve a chunk from the model’s declarative memory which matches the
specification provided. If a matching chunk is found, it will be placed into the retrieval buffer.

 Thus, this request:

 +retrieval>
 ISA count-order
 first =num2

is asking the declarative memory module to retrieve a chunk which is of type count-order and
with a first slot that has the same value as =num2. If such a chunk exists in the declarative
memory of the model, then it will be placed into the retrieval buffer.

1.3.2.3 Buffer Clearing

The third type of action that can be performed on a buffer is to explicitly clear the chunk from the
buffer. This is done by placing "-" before the buffer name in the action.

Thus, this action on the RHS of a production would clear the chunk from the retrieval buffer:

 -retrieval>

1.3.2.4 Implicit Clearing

In addition to the explicit clearing action one can make, there is also an implicit clearing that will
occur for buffers. A request of a module with a “+” action will automatically cause that buffer to
be cleared. So, this request from the example production:

 +retrieval>
 ISA count-order
 first =num2

results in the retrieval buffer being automatically cleared.

8

ACT-R 6.0 Tutorial 8-Oct-14 Unit One

1.4 ACT-R Models

We will be going through a series of examples to illustrate how a production system like ACT-
R’s works and to introduce you to the ACT-R environment. All of your work in the ACT-R
tutorial will probably involve using the ACT-R environment. The ACT-R environment is a GUI
for running, inspecting, and debugging ACT-R models. It can be run with Lisp implementations
from multiple vendors in a variety of operating systems or as a standalone application without the
need for a Lisp application under Windows or Mac OS X.

Model files for ACT-R are text files that contain Lisp source code with the ACT-R commands to
specify how the model works. They can be opened and edited in any application that can operate
on text files. If you are running a Lisp with a GUI then that is probably the best tool for opening
and editing your models because it will provide lots of support for editing Lisp code, for example,
things like matching parentheses and Lisp language reference tools. If you are using a command
line Lisp you will need to use some other text editor program, and if you are using the standalone
version of the ACT-R environment you may use the text editing facilities it provides (however
most text editing programs will provide more capabilities than the ACT-R environment’s very
basic text tools and they are not recommended unless you have no other options).

To use a model you must load it into a Lisp application that is running the ACT-R software. So,
the first thing you need to do is start your Lisp application and load ACT-R. If you have a Lisp
with a GUI then there should be an option, typically under the File menu, to load a file, but if you
are using a command line Lisp you will need to execute the load command to load the file. The
file you need to load is the “load-act-r-6.lisp” file found at the top level of the ACT-R source file
distribution. Once that file has loaded you should start the ACT-R environment application. Once
it is ready you will connect ACT-R to it by calling the start-environment command from Lisp
(see the QuickStart.txt file in the docs directory of ACT-R 6 for more details on starting the
system and a shortcut for starting the environment in some Lisp & OS combinations).

After ACT-R is loaded and the ACT-R environment is connected you are now ready to load and
run ACT-R models. To load a model you can do that directly in your Lisp application just as you
loaded ACT-R. Alternatively, you can use the “Load Model” button on the Control Panel of the
ACT-R environment. For model files that contain Lisp functions to present an experiment to the
model you will see better performance if you compile the model file before loading it. Most Lisp
GUIs offer an option called “Compile and Load” which you can use and some Lisps compile all
functions by default (consult your Lisp’s documentation for specific details).

Once a model has been loaded, you can run it. Models that do not interact with an experiment
can be run by calling the ACT-R run command. The run command requires one parameter,
which is the length of simulated time to run the model measured in seconds. Thus, to run a model
for 10 simulated seconds one would enter this at the Lisp prompt:

(run 10)

9

ACT-R 6.0 Tutorial 8-Oct-14 Unit One

Now, to put these ideas into action, we will start working with some example models.

1.5 The Count Model

The first model is a simple production system that counts up from one number to another - for
example it will count up from 2 to 4 -- 2,3,4. It is included with the tutorial files for unit 1. It is
contained in the file called “count.lisp”. You should now start ACT-R and the ACT-R
environment if you have not done so already and load the count model.

If you run the model for 1 second you should see the following output in your Lisp application or
the Listener window if you are using a standalone version of ACT-R:

> (run 1)
 0.000 GOAL SET-BUFFER-CHUNK GOAL FIRST-GOAL REQUESTED NIL
 0.000 PROCEDURAL CONFLICT-RESOLUTION
 0.000 PROCEDURAL PRODUCTION-SELECTED START
 0.000 PROCEDURAL BUFFER-READ-ACTION GOAL
 0.050 PROCEDURAL PRODUCTION-FIRED START
 0.050 PROCEDURAL MOD-BUFFER-CHUNK GOAL
 0.050 PROCEDURAL MODULE-REQUEST RETRIEVAL
 0.050 PROCEDURAL CLEAR-BUFFER RETRIEVAL
 0.050 DECLARATIVE START-RETRIEVAL
 0.050 PROCEDURAL CONFLICT-RESOLUTION
 0.100 DECLARATIVE RETRIEVED-CHUNK C
 0.100 DECLARATIVE SET-BUFFER-CHUNK RETRIEVAL C
 0.100 PROCEDURAL CONFLICT-RESOLUTION
 0.100 PROCEDURAL PRODUCTION-SELECTED INCREMENT
 0.100 PROCEDURAL BUFFER-READ-ACTION GOAL
 0.100 PROCEDURAL BUFFER-READ-ACTION RETRIEVAL
 0.150 PROCEDURAL PRODUCTION-FIRED INCREMENT
2
 0.150 PROCEDURAL MOD-BUFFER-CHUNK GOAL
 0.150 PROCEDURAL MODULE-REQUEST RETRIEVAL
 0.150 PROCEDURAL CLEAR-BUFFER RETRIEVAL
 0.150 DECLARATIVE START-RETRIEVAL
 0.150 PROCEDURAL CONFLICT-RESOLUTION
 0.200 DECLARATIVE RETRIEVED-CHUNK D
 0.200 DECLARATIVE SET-BUFFER-CHUNK RETRIEVAL D
 0.200 PROCEDURAL CONFLICT-RESOLUTION
 0.200 PROCEDURAL PRODUCTION-SELECTED INCREMENT
 0.200 PROCEDURAL BUFFER-READ-ACTION GOAL
 0.200 PROCEDURAL BUFFER-READ-ACTION RETRIEVAL
 0.250 PROCEDURAL PRODUCTION-FIRED INCREMENT
3
 0.250 PROCEDURAL MOD-BUFFER-CHUNK GOAL
 0.250 PROCEDURAL MODULE-REQUEST RETRIEVAL
 0.250 PROCEDURAL CLEAR-BUFFER RETRIEVAL
 0.250 DECLARATIVE START-RETRIEVAL
 0.250 PROCEDURAL CONFLICT-RESOLUTION
 0.250 PROCEDURAL PRODUCTION-SELECTED STOP
 0.250 PROCEDURAL BUFFER-READ-ACTION GOAL
 0.300 DECLARATIVE RETRIEVED-CHUNK E
 0.300 DECLARATIVE SET-BUFFER-CHUNK RETRIEVAL E
 0.300 PROCEDURAL PRODUCTION-FIRED STOP
4

10

ACT-R 6.0 Tutorial 8-Oct-14 Unit One

 0.300 PROCEDURAL CLEAR-BUFFER GOAL
 0.300 PROCEDURAL CONFLICT-RESOLUTION
 0.300 ------ Stopped because no events left to process

This output is called the trace of the model. Each line of the trace represents one event that
occurred in the running of the model. The event shows the time in seconds at which it happened,
the module that generated the event and the details of that event. Any output from the model is
also shown in the trace. The default trace shows everything that happened in the model, but
often that is more detail than is necessary and it is possible to change the level of detail that is
displayed in the trace. How to do that is discussed in the unit 1 model code description
document. A model code description document accompanies each of the tutorial units and
provides more detailed information about the Lisp code and functions used in that unit’s models.
Those are the documents with “_exp” on the end of the name e.g. “unit1_exp”.

You should now open the count model in a text editor (if you have not already) to begin looking
at how the model is specified. We will be focusing on the specification of the chunks and
productions. The other commands that are used in this unit’s models are described in the unit 1
model description document.

1.5.1 Chunk-types for the Count model

In the model file you will find the following two specifications for new chunk types used by this
model:

(chunk-type count-order first second)
(chunk-type count-from start end count)

The count-order chunk type is used for chunks that encode the ordering of numbers. The count-
from chunk type will be used as the type for the goal chunk of the model and has slots to hold the
starting number, the ending number, and the current count so far.

1.5.2 Declarative Memory for the Count model

In the model file you will find the initial chunks placed into the declarative memory of the
model:

(add-dm
 (b ISA count-order first 1 second 2)
 (c ISA count-order first 2 second 3)
 (d ISA count-order first 3 second 4)
 (e ISA count-order first 4 second 5)
 (f ISA count-order first 5 second 6)
 (first-goal ISA count-from start 2 end 4))

11

ACT-R 6.0 Tutorial 8-Oct-14 Unit One

Each of the lists in the add-dm command specifies one chunk. The first five define the counting
facts named b, c, d, e, and f. They are of the type count-order and each counting fact connects
the number lower in the counting order (in slot first) to the number next in the counting order (in
slot second). This is the knowledge that enables the model to count.

The last chunk, first-goal, is of the type count-from and it encodes the goal of counting from 2
(In slot start) to 4 (in slot end). Note that the chunk-type count-from has another slot called
count which is not used when creating the chunk first-goal. Because the count slot is not stated,
it will be empty in the chunk first-goal which means that it will have the value nil.

1.5.3 Setting the Initial Goal

The chunk first-goal is declared to be the model’s current goal (placed into the goal buffer) by
the command goal-focus in the model:

(goal-focus first-goal)

The results of that command can be seen in the first line of the trace:

 0.000 GOAL SET-BUFFER-CHUNK GOAL FIRST-GOAL REQUESTED NIL

The trace shows that the chunk first-goal is set to be the chunk in the goal buffer by the goal
module. It also indicates that this chunk was not requested by a production. For now, that is not
an important detail, but we will come back to other instances of that in later units.

Now that we have seen the chunks the model has we will look at the productions that use those
chunks to count.

1.5.4 The Start Production

The productions are specified with the command p, as described earlier. The count model has
three productions: start, increment, and stop. The first production that gets selected and fired by
the model is the production start which can be seen in this part of the trace:

 0.000 PROCEDURAL CONFLICT-RESOLUTION
 0.000 PROCEDURAL PRODUCTION-SELECTED START
 0.000 PROCEDURAL BUFFER-READ-ACTION GOAL
 0.050 PROCEDURAL PRODUCTION-FIRED START

The first line shows that the procedural module is performing conflict resolution to determine
which productions, if any, match the current contents of the buffers and then choosing one of
them. The next line shows that among those that matched, the start production was selected.
The third line shows that the selected production tested the chunk in the goal buffer as a

12

ACT-R 6.0 Tutorial 8-Oct-14 Unit One

condition. The last line, which happens 50 milliseconds later (time 0.050), shows that the start
production has now fired and its actions will take effect. The 50ms time is a parameter of the
procedural system, and every production will take 50ms between the time it is selected and when
it fires.

Now we will look at the details of the start production. Here is its definition from the model:

(p start
 =goal>
 ISA count-from
 start =num1
 count nil
 ==>
 =goal>
 count =num1
 +retrieval>
 ISA count-order
 first =num1
)

On its LHS it tests the goal buffer. It tests that there is a value in the start slot which it now
references with the variable =num1. This is often referred to as binding the variable, as in
=num1 is bound to the value that is in the start slot. It also checks that the count slot is currently
empty i.e. that it has the value nil.

On the RHS it performs two actions. The first is to change the value of the count slot of the
chunk in the goal buffer to be the value bound to =num1. The other action is to request that the
declarative memory system retrieve a chunk of type count-order that has the value which is
bound to =num1 in its first slot.

These actions can be seen as the next two lines of the trace:

 0.050 PROCEDURAL MOD-BUFFER-CHUNK GOAL
 0.050 PROCEDURAL MODULE-REQUEST RETRIEVAL

The next line of the trace is also a result of the RHS of the start production:

 0.050 PROCEDURAL CLEAR-BUFFER RETRIEVAL

That is the implicit clearing of the retrieval buffer that happens because of the +retrieval>
request.

13

ACT-R 6.0 Tutorial 8-Oct-14 Unit One

The next line is a notification from the declarative module that it has received a request and has
started the chunk retrieval process:

 0.050 DECLARATIVE START-RETRIEVAL

The next line indicates that the procedural system is now trying to find a new production to fire:

 0.050 PROCEDURAL CONFLICT-RESOLUTION

However, it is not followed by a notification of a production being selected, because there are no
productions whose conditions are satisfied at this time.

The following two lines show the completion of the retrieval request by the declarative memory
module and then the setting of the retrieval buffer to that chunk.

 0.100 DECLARATIVE RETRIEVED-CHUNK C
 0.100 DECLARATIVE SET-BUFFER-CHUNK RETRIEVAL C

Now we see conflict resolution occurring again and this time the increment production is
selected.

 0.100 PROCEDURAL CONFLICT-RESOLUTION
 0.100 PROCEDURAL PRODUCTION-SELECTED INCREMENT

1.5.5 The Increment Production

Here is the specification of the increment production:

(P increment
 =goal>
 ISA count-from
 count =num1
 - end =num1
 =retrieval>
 ISA count-order
 first =num1
 second =num2
==>
 =goal>

14

ACT-R 6.0 Tutorial 8-Oct-14 Unit One

 count =num2
 +retrieval>
 ISA count-order
 first =num2
 !output! (=num1)
)

On the LHS of this production we see that it tests both the goal and retrieval buffers. In the test
of the goal buffer it uses a modifier in the testing of the end slot:

 =goal>
 ISA count-from
 count =num1
 - end =num1

The “-” in front of the slot is the negative test modifier. It means that this production will only
match if the end slot of the chunk in the goal buffer does not have the same value as the count
slot since they are tested with the same variable =num1.

The retrieval buffer test checks that it has retrieved a count-order chunk with a value of its first
slot that matches the current count slot from the goal buffer chunk and binds the variable =num2
to the value of its second slot:

 =retrieval>
 ISA count-order
 first =num1
 second =num2

We can see that these two buffers were tested by the production in the next two lines of the trace:

 0.100 PROCEDURAL BUFFER-READ-ACTION GOAL
 0.100 PROCEDURAL BUFFER-READ-ACTION RETRIEVAL

Now we will look at the RHS of this production:

 =goal>
 count =num2
 +retrieval>
 ISA count-order
 first =num2
 !output! (=num1)

15

ACT-R 6.0 Tutorial 8-Oct-14 Unit One

The first two actions are very similar to those in the start production. It updates the count slot of
the goal chunk with the next number as found from the count-order chunk in the retrieval buffer
and then requests that a count-order chunk be retrieved to get the next number. The third action
is a special command that can be used in the actions of a production:

 !output! (=num1)

!output! (pronounced bang-output-bang) can be used on the RHS of a production to display
information in the trace. It must be followed by a list of items and those items will be printed in
the trace when the production fires. In this production it is used to display the numbers as the
model counts. The results of the !output! in the first firing of increment can be seen in the next
two lines of the trace:

 0.150 PROCEDURAL PRODUCTION-FIRED INCREMENT
2

The output is displayed on one line in the trace after the notice that the production has fired. The
items in the list can be variables as is the case here (=num1), constant items like (stopping), or a
combination of the two e.g. (the number is =num). When a variable occurs in the output list the
specific value to which it was bound in the production will be substituted into the output which is
displayed. Thus the reason why the trace shows 2 instead of =num1.

The next few lines of the trace show the actions initiated by the increment production and they
look very much like the actions that the start production generated. A retrieval request is made,
the goal buffer is modified, a chunk is retrieved, and then that chunk is placed into the retrieval
buffer:

 0.150 PROCEDURAL MOD-BUFFER-CHUNK GOAL
 0.150 PROCEDURAL MODULE-REQUEST RETRIEVAL
 0.150 PROCEDURAL CLEAR-BUFFER RETRIEVAL
 0.150 DECLARATIVE START-RETRIEVAL
 0.150 PROCEDURAL CONFLICT-RESOLUTION
 0.200 DECLARATIVE RETRIEVED-CHUNK D
 0.200 DECLARATIVE SET-BUFFER-CHUNK RETRIEVAL D

We then see that the increment production is selected again:

 0.200 PROCEDURAL CONFLICT-RESOLUTION
 0.200 PROCEDURAL PRODUCTION-SELECTED INCREMENT

16

ACT-R 6.0 Tutorial 8-Oct-14 Unit One

It will continue to be selected and fired until the value of the count and end slots of the goal
chunk are the same, at which time its test of the goal buffer will fail. We see that it fires multiple
times until this point in the trace:

 0.250 PROCEDURAL CONFLICT-RESOLUTION
 0.250 PROCEDURAL PRODUCTION-SELECTED STOP

1.5.6 The Stop Production

The final production in the model is stop:

(P stop
 =goal>
 ISA count-from
 count =num
 end =num
==>
 -goal>
 !output! (=num)
)

The stop production matches when the values of the count and end slots of the chunk in the goal
buffer are the same. The actions it takes are to again print out the current number and now to also
clear the chunk from the goal buffer:

 0.300 PROCEDURAL PRODUCTION-FIRED STOP
4
 0.300 PROCEDURAL CLEAR-BUFFER GOAL

The final event that happens is another round of conflict resolution. No productions are found to
match and no other events of any module are pending at this time (for instance a retrieval being
completed) so there is nothing more for the model to do and it stops running.

 0.300 PROCEDURAL CONFLICT-RESOLUTION
 0.300 ------ Stopped because no events left to process

1.5.7 Pattern Matching Exercise

To show you how ACT-R goes about matching a production, you will work through an exercise
where you will manually fill in the bindings for the variables of the productions as they are
selected. This is called instantiating the production. You need to do the following:

17

ACT-R 6.0 Tutorial 8-Oct-14 Unit One

1. Either load the count model if it is not currently loaded or reset it to its initial conditions if
it has been loaded. That is done either by pressing the “Reset” button in the Control Panel or
by calling the ACT-R command reset at the Lisp prompt.

2. Click on the “Stepper” button in the Control Panel to open the Stepper window. In general,
this tool will stop the model before every operation it performs. For each action that shows as
a line in the trace, the stepper will force the model to wait for your confirmation before taking
that action. That provides you with the opportunity to inspect all of the components of the
model as it progresses and can be a very valuable tool for debugging models. Each time a
production is selected it will show the text of the production, the bindings for the variables as
they matched that production, and a set of parameters for that production (which we will not
discuss until later in the tutorial. When the production is fired it will show the same
information except that the production text will have the variables replaced with their bound
values. It will also show the details of which chunk is retrieved when there is a retrieval
request.

Right now you are going to use a feature of this window that allows you to manually
instantiate the productions. That is, you will assign all of the variables the proper values when
the production is selected before continuing to the firing of that production. To enable this
functionality of the Stepper, click the “Tutor Mode” checkbox at the top of the window.

3. Click on the “Buffer Viewer” button in the Control Panel to bring up a new Buffer viewer
window. That will display a list of all the buffers for the existing modules. Selecting one
from the list will display the chunk that is in that buffer in the text window to the right of the
list. You can also use the command buffer-chunk to find the names of the chunks in the
buffers. Calling it without any parameters will show all of the buffers and the chunks they
contain. If you call it with the name of a buffer, for instance, (buffer-chunk goal), then it
will print out the chunk that is in the named buffer. At this point the buffers are empty, but
that will change as the model runs.

4. Now you should run the model for at least 1 second using the run command as shown
above. The first action that occurs is the setting of the chunk in the goal buffer as was seen in
the first line of the trace above:

 0.000 GOAL SET-BUFFER-CHUNK GOAL FIRST-GOAL REQUESTED NIL

Hitting the “Step” button in the Stepper window will allow that action to occur. You can now
inspect the chunk in the goal buffer using either the Buffer Viewer or the buffer-chunk
command.

1.5.8 The first-goal-0 Chunk and Buffer Chunk Copying

If you inspect the goal buffer you will see that it contains a chunk named first-goal-0 and not the
chunk first-goal. When a chunk is placed into a buffer it is always a new copy of the chunk that

18

ACT-R 6.0 Tutorial 8-Oct-14 Unit One

goes into the buffer. The name of the chunk that was copied is also shown in the Buffer Viewer
(and by the buffer-chunk command) in square brackets after the name of the chunk actually in
the buffer. The buffers operate as scratch pads for modifying chunks. As long as a chunk is in a
buffer it can be manipulated by productions or any of the other modules. However, once it leaves
the buffer it can no longer be modified by the model because any attempt to put it back into a
buffer where it can be changed will only result in a new copy.

1.5.9 Pattern Matching Exercise Continued

5. If you Step past the conflict-resolution event you will come to the first production to match,
Start. Its structure will be displayed in the Stepper window and all of the variables will be
highlighted. Your task is to go through the production rule replacing all of the variables with
the values to which they are bound. When you click on a variable a dialog will open in which
you can enter its value. You must enter the value for every instance of a variable in the
production (including multiple instances of the same variable) before it will allow you to
progress to the next production.

Here are the rules for doing this:

• =goal will always bind to the name of the current contents of the goal buffer. This can
be found with the Buffer viewer or the buffer-chunk command.

• =retrieval will always bind to the name of the chunk in the retrieval buffer. This can
also be found with the Buffer viewer or the buffer-chunk command.

• A variable will have the same value everywhere in a production that matches. The
bound values are displayed in the Stepper window as you enter them.

• At any point in time, you can ask the tutor for help in binding a variable by hitting
either the Hint or Help button of the entry dialog. A hint will instruct you on where to
find the correct answer and help will give you the answer.

6. Once the production is completely instantiated, you can fire it by hitting the “Step” button.
The Stepper will then advance through the other events of the model as you continue to hit the
“Step” button. You should step the model to the next production that matches and watch how
the contents of the goal and retrieval buffer change based on the actions taken by the Start
production.

7. Then, at the risk of too much repetition, you will need to instantiate two instances of the
production Increment. Then, when the start and end slots of the goal are equal, the Stop
production will match and that will be the last one which you need to instantiate.

8. When you have completed this example and explored it as much as you want, go on to the
next section of this unit, in which we will describe the next model.

19

ACT-R 6.0 Tutorial 8-Oct-14 Unit One

1.6 The Addition Model

The second example model uses a slightly larger set of count facts to do a somewhat more
complicated task. It will do addition by counting up. Thus, given the goal to add 2 to 5 it will
count 5, 6, 7, and return the answer 7. You should load the addition model in the same way as
you loaded the count model.

The initial count facts are the same as those used for the count model with the inclusion of a fact
that encodes 1 follows 0 and those that encode all the numbers up to 10. The chunk type for the
goal now has slots to hold the starting number (arg1) and the number to be added (arg2):

(chunk-type add arg1 arg2 sum count)

There are two other slots in the goal called count and sum which will be used to hold the results
of the counting and the total so far as the model progresses. Here is the initial goal chunk created
for the model:

(second-goal ISA add arg1 5 arg2 2)

Since the count and sum slots are not specified, they are empty, which is indicated with the
default value of nil.

If you run this model (without having the Stepper open) you will see this trace:

 0.000 GOAL SET-BUFFER-CHUNK GOAL SECOND-GOAL REQUESTED NIL
 0.000 PROCEDURAL CONFLICT-RESOLUTION
 0.050 PROCEDURAL PRODUCTION-FIRED INITIALIZE-ADDITION
 0.050 PROCEDURAL CLEAR-BUFFER RETRIEVAL
 0.050 DECLARATIVE START-RETRIEVAL
 0.050 PROCEDURAL CONFLICT-RESOLUTION
 0.100 DECLARATIVE RETRIEVED-CHUNK F
 0.100 DECLARATIVE SET-BUFFER-CHUNK RETRIEVAL F
 0.100 PROCEDURAL CONFLICT-RESOLUTION
 0.150 PROCEDURAL PRODUCTION-FIRED INCREMENT-SUM
 0.150 PROCEDURAL CLEAR-BUFFER RETRIEVAL
 0.150 DECLARATIVE START-RETRIEVAL
 0.150 PROCEDURAL CONFLICT-RESOLUTION
 0.200 DECLARATIVE RETRIEVED-CHUNK A
 0.200 DECLARATIVE SET-BUFFER-CHUNK RETRIEVAL A
 0.200 PROCEDURAL CONFLICT-RESOLUTION
 0.250 PROCEDURAL PRODUCTION-FIRED INCREMENT-COUNT
 0.250 PROCEDURAL CLEAR-BUFFER RETRIEVAL
 0.250 DECLARATIVE START-RETRIEVAL
 0.250 PROCEDURAL CONFLICT-RESOLUTION
 0.300 DECLARATIVE RETRIEVED-CHUNK G
 0.300 DECLARATIVE SET-BUFFER-CHUNK RETRIEVAL G
 0.300 PROCEDURAL CONFLICT-RESOLUTION
 0.350 PROCEDURAL PRODUCTION-FIRED INCREMENT-SUM
 0.350 PROCEDURAL CLEAR-BUFFER RETRIEVAL
 0.350 DECLARATIVE START-RETRIEVAL
 0.350 PROCEDURAL CONFLICT-RESOLUTION

20

ACT-R 6.0 Tutorial 8-Oct-14 Unit One

 0.400 DECLARATIVE RETRIEVED-CHUNK B
 0.400 DECLARATIVE SET-BUFFER-CHUNK RETRIEVAL B
 0.400 PROCEDURAL CONFLICT-RESOLUTION
 0.450 PROCEDURAL PRODUCTION-FIRED INCREMENT-COUNT
 0.450 PROCEDURAL CLEAR-BUFFER RETRIEVAL
 0.450 DECLARATIVE START-RETRIEVAL
 0.450 PROCEDURAL CONFLICT-RESOLUTION
 0.500 DECLARATIVE RETRIEVED-CHUNK H
 0.500 DECLARATIVE SET-BUFFER-CHUNK RETRIEVAL H
 0.500 PROCEDURAL PRODUCTION-FIRED TERMINATE-ADDITION
 0.500 PROCEDURAL CONFLICT-RESOLUTION
 0.500 ------ Stopped because no events left to process

The first thing you will notice is that there is less information in the trace of this model than there
was in the trace of the count model. This model is set to show a reduced trace to make it easier
to read the sequence of productions that fire. The model code description document for this unit
describes how one can change the amount of detail shown in the trace. Sometimes having all the
details can be useful for determining what a model is doing and other times a more concise trace
is desirable.

In this sequence we see that the model alternates between incrementing the count from 0 to 2 and
incrementing the sum from 5 to 7. The production initialize–addition starts things going and
requests a retrieval of an increment to the sum. Increment-sum processes that retrieval and
requests a retrieval of an increment to the count. That production fires alternately with
increment-count, which processes the retrieval of the counter increment and requests a retrieval
of an increment to the sum. Terminate-addition recognizes when the counter equals the second
argument of the addition and modifies the goal to make the model stop.

1.6.1 The initialize-addition and terminate-addition Productions

The production initialize-addition initializes an addition process whereby the system tries to
count up from the first digit a number of times that equals the second digit and the production
terminate-addition recognizes when this has been completed.

(P initialize-addition English Description
 =goal> If the goal is
 ISA add to add the arguments
 arg1 =num1 =num1 and
 arg2 =num2 =num2
 sum nil but the sum has not been set
==> Then
 =goal> change the goal
 sum =num1 by setting the sum to =num1
 count 0 and setting the count to 0

21

ACT-R 6.0 Tutorial 8-Oct-14 Unit One

 +retrieval> and request a retrieval
 isa count-order of a chunk of type count-order
 first =num1 for the number that follows =num1
)

This production initializes the sum slot to be the first digit and the count slot to be zero. It
requests a retrieval of the number that follows =num1.

Pairs of productions will apply after this to keep incrementing the sum and the count slots until
the count slot equals the arg2 slot, at which time terminate-addition applies:

(P terminate-addition English Description
 =goal> If the goal is
 ISA add to add
 count =num and the count has the same value
 arg2 =num as arg2
 sum =answer and there is a sum
==> Then
 =goal> change the goal
 count nil to stop counting
)

This production clears the count slot of the goal by setting it to nil (remember nil is the value of
an empty slot). This causes the model to stop because other than initialize-addition, (which
requires that the sum slot be empty) all the other productions require there to be a chunk in the
count slot. So, after this production fires none of the productions will match the chunk in the goal
buffer.

1.6.2 The increment-sum and increment-count Productions

The two productions that apply repeatedly between the previous two are increment-sum, which
harvests the retrieval of the sum increment and requests a retrieval of the count increment, and
increment-count, which harvests the retrieval of the count increment and requests a retrieval of
the sum increment.

(P increment-sum English Description
 =goal> If the goal is
 ISA add to add
 sum =sum and the sum is =sum
 count =count and the count is =count

22

ACT-R 6.0 Tutorial 8-Oct-14 Unit One

 - arg2 =count and the count has not reached the end
=retrieval> and a chunk has been retrieved
 ISA count-order of type count-order
 first =sum where the first number is =sum
 second =newsum and it is followed by =newsum
==> Then
 =goal> change the goal
 sum =newsum so that the sum is =newsum
 +retrieval> and request a retrieval
 isa count-order of a chunk of type count-order
 first =count for the number that follows =count
)

(P increment-count English Description
 =goal> If the goal is
 ISA add to add
 sum =sum and the sum is =sum
 count =count and the count is =count
 =retrieval> and a chunk has been retrieved
 ISA count-order of type count-order
 first =count where the first number is =count
 second =newcount and it is followed by =newcount
==> Then
 =goal> change the goal
 count =newcount so that the count is =newcount
 +retrieval> and request a retrieval
 isa count-order of a chunk of type count-order
 first =sum for the number that follows =sum
)

1.6.3 The Addition Exercise

Now, as you did with the count model, you should use the tutor mode of the Stepper to step
through the matching of the four productions for this example model. Once you have completed
that you should move on to the next model.

23

ACT-R 6.0 Tutorial 8-Oct-14 Unit One

1.7 The Semantic Model

The last example for this unit is the semantic model. It contains chunks which encode the
following network of categories and properties. It is capable of searching this network to make
decisions about whether one category is a member of another category.

ostrich

animal

moves

skin

fish
gills

swims

shark
dangerous

swims
salmon

edible

swims

bird
wings

flies

canary
yellow

sings

can't fly

tall

1.7.1 Encoding of the Semantic Network

All of the links in this network are encoded by chunks of type property with the slots object,
attribute, and value. For instance, the following three chunks encode the links involving shark:

(p1 ISA property object shark attribute dangerous value true)
(p2 ISA property object shark attribute locomotion value swimming)
(p3 ISA property object shark attribute category value fish)

p1 encodes that a shark is dangerous by encoding a true value on the dangerous attribute. p2
encodes that a shark can swim by encoding the value swimming on the locomotion attribute. p3
encodes that a shark is a fish by encoding fish as the value on the category attribute.

You can inspect the chunks in the add-dm command of the model to see how the rest of the
semantic network is encoded.

24

ACT-R 6.0 Tutorial 8-Oct-14 Unit One

1.7.2 Queries about Category Membership

Queries about category membership are encoded by goals of the is-member type. There are 3
goals provided in the initial chunks for the model. The one initially placed in the goal buffer is
g1:

(g1 ISA is-member object canary category bird judgment nil)

which represents the query to decide if a canary is a bird. The judgment slot is nil reflecting the
fact that the decision has yet to be made about whether it is true. If you run the model with g1 in
the goal buffer you will see the following trace:

 0.000 GOAL SET-BUFFER-CHUNK GOAL G1 REQUESTED NIL
 0.000 PROCEDURAL CONFLICT-RESOLUTION
 0.050 PROCEDURAL PRODUCTION-FIRED INITIAL-RETRIEVE
 0.050 PROCEDURAL CLEAR-BUFFER RETRIEVAL
 0.050 DECLARATIVE START-RETRIEVAL
 0.050 PROCEDURAL CONFLICT-RESOLUTION
 0.100 DECLARATIVE RETRIEVED-CHUNK P14
 0.100 DECLARATIVE SET-BUFFER-CHUNK RETRIEVAL P14
 0.100 PROCEDURAL CONFLICT-RESOLUTION
 0.150 PROCEDURAL PRODUCTION-FIRED DIRECT-VERIFY
 0.150 PROCEDURAL CLEAR-BUFFER RETRIEVAL
 0.150 PROCEDURAL CONFLICT-RESOLUTION
 0.150 ------ Stopped because no events left to process

This is among the simplest cases possible and involves only the retrieval of this property

(p14 ISA property object canary attribute category value bird)

for verification of the query. There are two productions involved. The first, initial-retrieve,
requests the retrieval of categorical information and the second, direct-verify, harvests that
information and sets the judgment slot to yes:

(p initial-retrieve English Description
 =goal> If the goal is
 ISA is-member to judge membership
 object =obj of =obj
 category =cat in the category =cat
 judgment nil and the judgment has not begun
==> Then
 =goal> change the goal
 judgment pending so that the judgment is pending

25

ACT-R 6.0 Tutorial 8-Oct-14 Unit One

 +retrieval> and request a retrieval
 ISA property of a chunk of type property
 object =obj for the object =obj
 attribute category involving the attribute category
)

(P direct-verify English Description
 =goal> If the goal is
 ISA is-member to judge the membership
 object =obj of =obj
 category =cat in the category =cat
 judgment pending and the judgment is pending
 =retrieval> and a chunk has been retrieved
 ISA property of type property
 object =obj for the object =obj
 attribute category involving an attribute category
 value =cat with the value =cat
==> Then
 =goal> modify the goal
 judgment yes so that the judgment is yes
)

You should now work through the pattern matching process in the tutor mode of the Stepper
with the goal set to g1.

1.7.3 Chaining Through Category Links

A slightly more complex case occurs when the category is not an immediate super ordinate of the
queried object and it is necessary to chain through an intermediate category. An example where
this is necessary is in the verification of whether a canary is an animal, and such a query is
defined in chunk g2:

(g2 ISA is-member object canary category animal judgment nil)

One can change the goal to g2 by the command (goal-focus g2). This can be done by editing the
model and reloading or by entering (goal-focus g2) at the Lisp prompt. Running the model with
chunk g2 as the goal will result in the following trace:

 0.000 GOAL SET-BUFFER-CHUNK GOAL G2 REQUESTED NIL
 0.000 PROCEDURAL CONFLICT-RESOLUTION

26

ACT-R 6.0 Tutorial 8-Oct-14 Unit One

 0.050 PROCEDURAL PRODUCTION-FIRED INITIAL-RETRIEVE
 0.050 PROCEDURAL CLEAR-BUFFER RETRIEVAL
 0.050 DECLARATIVE START-RETRIEVAL
 0.050 PROCEDURAL CONFLICT-RESOLUTION
 0.100 DECLARATIVE RETRIEVED-CHUNK P14
 0.100 DECLARATIVE SET-BUFFER-CHUNK RETRIEVAL P14
 0.100 PROCEDURAL CONFLICT-RESOLUTION
 0.150 PROCEDURAL PRODUCTION-FIRED CHAIN-CATEGORY
 0.150 PROCEDURAL CLEAR-BUFFER RETRIEVAL
 0.150 DECLARATIVE START-RETRIEVAL
 0.150 PROCEDURAL CONFLICT-RESOLUTION
 0.200 DECLARATIVE RETRIEVED-CHUNK P20
 0.200 DECLARATIVE SET-BUFFER-CHUNK RETRIEVAL P20
 0.200 PROCEDURAL CONFLICT-RESOLUTION
 0.250 PROCEDURAL PRODUCTION-FIRED DIRECT-VERIFY
 0.250 PROCEDURAL CLEAR-BUFFER RETRIEVAL
 0.250 PROCEDURAL CONFLICT-RESOLUTION
 0.250 ------ Stopped because no events left to process

This involves an extra production, chain-category, which retrieves the category in the case that
an attribute has been retrieved which does not allow a decision to be made. Here is that
production:

(P chain-category English Description
 =goal> If the goal is
 ISA is-member to judge the membership
 object =obj1 of =obj1
 category =cat in =cat
 judgment pending and the judgment is pending
 =retrieval> and a chunk has been retrieved
 ISA property of type property
 object =obj1 for the object =obj1
 attribute category involving an attribute category
 value =obj2 with a value =obj2
 - value =cat and this is not the same as =cat
==> Then
 =goal> change the goal
 object =obj2 to judge the category membership of =obj2
 +retrieval> and request a retrieval
 ISA property of a chunk of type property
 object =obj2 for the object =obj2
 attribute category involving the attribute category
)

27

ACT-R 6.0 Tutorial 8-Oct-14 Unit One

You should now go through the pattern matching exercise in the Stepper with g2 set as the goal.

1.7.4 The Failure Case

Now change the goal to the chunk g3.

(g3 ISA is-member object canary category fish judgment nil)

If you run the model with this goal, you will see what happens when the chain reaches a dead
end:

 0.000 GOAL SET-BUFFER-CHUNK GOAL G3 REQUESTED NIL
 0.000 PROCEDURAL CONFLICT-RESOLUTION
 0.050 PROCEDURAL PRODUCTION-FIRED INITIAL-RETRIEVE
 0.050 PROCEDURAL CLEAR-BUFFER RETRIEVAL
 0.050 DECLARATIVE START-RETRIEVAL
 0.050 PROCEDURAL CONFLICT-RESOLUTION
 0.100 DECLARATIVE RETRIEVED-CHUNK P14
 0.100 DECLARATIVE SET-BUFFER-CHUNK RETRIEVAL P14
 0.100 PROCEDURAL CONFLICT-RESOLUTION
 0.150 PROCEDURAL PRODUCTION-FIRED CHAIN-CATEGORY
 0.150 PROCEDURAL CLEAR-BUFFER RETRIEVAL
 0.150 DECLARATIVE START-RETRIEVAL
 0.150 PROCEDURAL CONFLICT-RESOLUTION
 0.200 DECLARATIVE RETRIEVED-CHUNK P20
 0.200 DECLARATIVE SET-BUFFER-CHUNK RETRIEVAL P20
 0.200 PROCEDURAL CONFLICT-RESOLUTION
 0.250 PROCEDURAL PRODUCTION-FIRED CHAIN-CATEGORY
 0.250 PROCEDURAL CLEAR-BUFFER RETRIEVAL
 0.250 DECLARATIVE START-RETRIEVAL
 0.250 PROCEDURAL CONFLICT-RESOLUTION
 0.300 DECLARATIVE RETRIEVAL-FAILURE
 0.300 PROCEDURAL CONFLICT-RESOLUTION
 0.350 PROCEDURAL PRODUCTION-FIRED FAIL
 0.350 PROCEDURAL CONFLICT-RESOLUTION
 0.350 ------ Stopped because no events left to process

The production fail applies and fires when a retrieval attempt fails. This production uses a
condition on the LHS that we have not yet seen.

1.7.5 Query Conditions

In addition to testing the chunks in the buffers as has been done in all of the productions to this
point, it is also possible to query the state of the buffer or the module which controls it. This is
done using a “?” operator instead of an “=” before the name of the buffer. A module may have a
number of different queries to which it will respond, but there are some to which all buffers and

28

ACT-R 6.0 Tutorial 8-Oct-14 Unit One

modules will always respond. The queries that are always valid are whether there is a chunk in
the buffer or not, whether or not that chunk was requested by the procedural module, and for one
of three possible states of the module: free, busy, or error. The result of a query will always be
either true or false. If any query tested in a production has a result which is false, then the
production does not match. Here are examples of the possible queries with respect to the
retrieval buffer.

This query will be true if there is any chunk in the retrieval buffer and false if there is not:

 ?retrieval>
 buffer full

This query will be true if there is not a chunk in the retrieval buffer or false if there is:

 ?retrieval>
 buffer empty

This query will be true if the chunk in the retrieval buffer was requested by a production (which
should always be true for the retrieval buffer) or false if the chunk was not requested by a
production:

 ?retrieval>
 buffer requested

This query will be true if the chunk in the retrieval buffer was placed there other than by a
request in a production and false if the chunk was the result of a production’s request:

 ?retrieval>
 buffer unrequested

This query will be true if the retrieval buffer’s module (the declarative memory module) is not
currently working to retrieve a chunk and false if it is currently working on retrieving a chunk:

 ?retrieval>
 state free

This query will be true if the declarative memory module is working on retrieving a chunk and
false if it is not:

 ?retrieval>
 state busy

This query will be true if there was an error in the last request made to the retrieval buffer and
false if there was no error:

29

ACT-R 6.0 Tutorial 8-Oct-14 Unit One

 ?retrieval>
 state error

For retrieval requests, an error means that no chunk could be found that matched the request.

It is also possible to make multiple queries at the same time. For instance this query would check
if the module was not currently handling a request and that there was currently a chunk in the
buffer:

 ?retrieval>
 state free
 buffer full

One can also use the optional negation modifier “-” before a query to test that such a condition is
not true. Thus, either of these tests would be true if the declarative module was not currently
retrieving a chunk:

 ?retrieval>
 state free
or
 ?retrieval>
 - state busy

1.7.6 The fail production

Now, here is the production that fires in response to a category request not being found.

(P fail English Description
 =goal> If the goal is
 ISA is-member to judge membership
 object =obj1 of =obj1
 category =cat in =cat
 judgment pending and the judgment is pending
 ?retrieval> and the retrieval
 state error has failed
==> Then
 =goal> change the goal
 judgment no so that the judgment slot is no
)

Note the testing for a retrieval failure in the condition of this production. When a retrieval
request does not succeed, in this case because there is no chunk in declarative memory that

30

ACT-R 6.0 Tutorial 8-Oct-14 Unit One

matches the specification requested, the buffer’s state indicates an error. In this model, this will
happen when one gets to the top of a category hierarchy and there are no super ordinate
categories.

You should now make sure your goal is set to g3, and then go through the pattern matching
exercise using the Stepper tool one final time.

1.7.7 Model Warnings

Now that you have worked through the examples we will examine another detail which you
might have noticed while working on this model. When you first loaded the semantic model
there should have been warnings like this displayed:

#|Warning: Creating chunk CATEGORY of default type chunk |#
#|Warning: Creating chunk PENDING of default type chunk |#
#|Warning: Creating chunk YES of default type chunk |#
#|Warning: Creating chunk NO of default type chunk |#

Lines that begin with ”#|Warning:” are warnings from ACT-R. These indicate that there is
something in the model that may need to be addressed. This differs from warnings or errors
which may be reported by your Lisp application which indicate a problem in the overall syntax or
structure of the Lisp code in the file. If you see ACT-R warnings when loading a model you
should always check them to make sure that there is not a serious problem in the model.

In this case, the warnings are telling you that the model uses chunks named category, pending,
yes, and no, but does not explicitly define them and thus they are being created automatically.
That is fine in this case. Those chunks are being used as explicit markers in the productions and
there are no problems caused by allowing the system to create them automatically.

If there had been a typo in one of the productions however, for instance misspelling pending in
one of them as “pneding”, looking at the warnings would have shown something like this:

#|Warning: Creating chunk PENDING of default type chunk |#
#|Warning: Creating chunk PNEDING of default type chunk |#

That would provide you with an opportunity to fix the problem before running the model and
trying to determine why the production did not fire when expected.

There are many other ACT-R warnings that could be displayed and you should always read them
to make sure that there are no serious problems before running the model.

31

ACT-R 6.0 Tutorial 8-Oct-14 Unit One

1.8 Building a Model

We would like you to now construct the pieces of an ACT-R model on your own. The tutor-
model file included with the tutorial models contains the basic code necessary for a model, but
does not have any of the declarative or procedural elements defined. The instructions that follow
will guide you through the creation of those components. You will be constructing a model that
can perform addition of two two-digit numbers. Once all of the pieces have been added as
described, you should be able to load and run the model to produce a trace that looks like this:

 0.000 GOAL SET-BUFFER-CHUNK GOAL GOAL REQUESTED NIL
 0.000 PROCEDURAL CONFLICT-RESOLUTION
 0.050 PROCEDURAL PRODUCTION-FIRED START-PAIR
 0.050 PROCEDURAL CLEAR-BUFFER RETRIEVAL
 0.050 DECLARATIVE START-RETRIEVAL
 0.050 PROCEDURAL CONFLICT-RESOLUTION
 0.100 DECLARATIVE RETRIEVED-CHUNK FACT67
 0.100 DECLARATIVE SET-BUFFER-CHUNK RETRIEVAL FACT67
 0.100 PROCEDURAL CONFLICT-RESOLUTION
 0.150 PROCEDURAL PRODUCTION-FIRED ADD-ONES
 0.150 PROCEDURAL CLEAR-BUFFER RETRIEVAL
 0.150 DECLARATIVE START-RETRIEVAL
 0.150 PROCEDURAL CONFLICT-RESOLUTION
 0.200 DECLARATIVE RETRIEVED-CHUNK FACT103
 0.200 DECLARATIVE SET-BUFFER-CHUNK RETRIEVAL FACT103
 0.200 PROCEDURAL CONFLICT-RESOLUTION
 0.250 PROCEDURAL PRODUCTION-FIRED PROCESS-CARRY
 0.250 PROCEDURAL CLEAR-BUFFER RETRIEVAL
 0.250 DECLARATIVE START-RETRIEVAL
 0.250 PROCEDURAL CONFLICT-RESOLUTION
 0.300 DECLARATIVE RETRIEVED-CHUNK FACT34
 0.300 DECLARATIVE SET-BUFFER-CHUNK RETRIEVAL FACT34
 0.300 PROCEDURAL CONFLICT-RESOLUTION
 0.350 PROCEDURAL PRODUCTION-FIRED ADD-TENS-CARRY
 0.350 PROCEDURAL CLEAR-BUFFER RETRIEVAL
 0.350 DECLARATIVE START-RETRIEVAL
 0.350 PROCEDURAL CONFLICT-RESOLUTION
 0.400 DECLARATIVE RETRIEVED-CHUNK FACT17
 0.400 DECLARATIVE SET-BUFFER-CHUNK RETRIEVAL FACT17
 0.400 PROCEDURAL CONFLICT-RESOLUTION
 0.450 PROCEDURAL PRODUCTION-FIRED ADD-TENS-DONE
 0.450 PROCEDURAL CLEAR-BUFFER RETRIEVAL
 0.450 PROCEDURAL CONFLICT-RESOLUTION
 0.450 ------ Stopped because no events left to process

There is a working solution model included with the unit 1 files, and it is also described in the
experiment description text for this unit. So, if you have problems you can consult that for help,
but you should try to complete these tasks without looking first.

32

ACT-R 6.0 Tutorial 8-Oct-14 Unit One

You should now open the tutor-model file in a text editor if you have not already. The following
sections will describe the components that you should add to the file in the places indicated by
comments in the model (the lines that begin with the semicolons).

1.8.1 Chunk-types

The first thing we need to do is define the chunk types that will be used by the model. There are
two chunk-types which we will define for doing this task. One to represent addition facts and one
to represent the goal chunk which holds the components of the task for the model. These chunk
types will be created with the chunk-type command as described in section 1.2.1.

1.8.1.1 Addition Facts

The first chunk type you will need is one to represent the addition facts. It should be named
addition-fact and have slots named addend1, addend2, and sum.

1.8.1.2 The Goal Chunk Type

The other chunk type you will need is one to represent the goal of adding two two-digit numbers.
It should be named add-pair. It must have slots to encode all of the necessary components of the
task. It should have two slots to represent the ones digit and the tens digit of the first number
called one1 and ten1 respectively. It will have two more slots to hold the ones digit and the tens
digit of the second number called one2 and ten2, and two slots to hold the answer, called one-ans
and ten-ans. It will also need a slot to hold any information necessary to process a carry from the
addition in the ones column to the tens column which should be called carry.

After you have created those chunk-types you have completed the chunk type portion of this
model. Now it is time to create the chunks that allow the model to perform addition along with an
initial goal to do such an addition.

1.8.2 Chunks

We are now going to define the chunks that will allow the model to solve the problem 36 + 47.
This is done using the add-dm command which is described in section 1.2.2.

1.8.2.1 The Addition Facts

You need to add the addition facts to encode the following math facts:

33

ACT-R 6.0 Tutorial 8-Oct-14 Unit One

3+4=7
6+7=13
10+3=13
1+7=8

They will be of type addition-fact and should be named based on their addends. For example, the
fact that 3+4=7 should be named fact34. The addends and sums for these facts will be the
appropriate numbers.

1.8.2.3 The Initial Goal

You should now create a chunk called goal which encodes that the goal is to add 36+47. This
should be done by specifying the values for the ones and tens digits of the two numbers and
leaving all of the other slots empty.

Once you have completed adding the chunk-types and chunks to the model you should be able to
load it and inspect the components you have created. To see the chunks you have created you can
press the “Declarative Viewer” button on the Control Panel. That will open a declarative memory
viewer (every time you press that button a new declarative viewer window will be opened). You
can view a particular chunk by clicking on it in the list of chunks on the left of the declarative
memory viewer. If you define a lot of chunks it may be difficult to find a particular one in the
list. To help in that situation there is a filter at the top of the declarative memory viewer (the
recessed button that defaults to saying none) that will allow you to specify a particular chunk-
type, and only chunks having that chunk-type will be displayed. Try selecting addition-fact as
the filter. You should now only see the chunks for the addition facts that you created. If you
select none for the filter, then all of the chunks in declarative memory are displayed.

You can also inspect declarative memory from the Lisp prompt. The command dm will print out
all of the chunks in declarative memory. You can also specify the name of chunks as parameters
to the dm command and only those chunks will be printed. The command sdm can be used like
the filter in the declarative memory viewer. Its parameters are a chunk description (similar to a
retrieval request) and it prints out only those chunks from the model’s declarative memory which
match that description. For example, (sdm isa addition-fact) will print out only those chunks
which are of type addition-fact and (sdm isa addition-fact addend1 3) will print only the
addition facts that have the value 3 in the addend1 slot.

You are now ready to begin the next section, where you will write productions.

1.8.2 Productions

So far, we have been looking mainly at the individual productions in the models. However,
production systems get their power through the interaction of the productions. Essentially, one

34

ACT-R 6.0 Tutorial 8-Oct-14 Unit One

production will set the condition for another production to fire, and it is the sequence of
productions firing that lead to performing the task.

Your task is to write the ACT-R equivalents of the production rules described below in English,
which can perform multi-column addition. To do that you will need to use the ACT-R p
command to specify the productions as described in sections 1.2.5 and 1.3.

Here are the English descriptions of the six productions needed for this task.

START-PAIR
IF the goal is to add a pair of numbers
 and the ones digits of the pair are available
 but the ones digit of the answer is nil
THEN note in the one-ans slot that you are busy computing
 the answer for the ones digit
 and request a retrieval of the sum of the ones digits.

ADD-ONES
IF the goal is to add a pair of numbers
 and you are busy waiting for the answer for the ones digit
 and the sum of the ones digits has been retrieved
THEN store the sum as the ones answer
 and note that you are busy checking the answer for the carry
 and request a retrieval to determine if the sum equals 10
 plus a remainder.

PROCESS-CARRY
IF the goal is to add a pair of numbers
 and the tens digits are available
 and you are busy working on the carry
 and the one-ans equals a value which a retrieval
 finds is the sum of 10 plus a remainder
THEN make the ones answer the remainder
 and note that the carry is 1
 and note you are busy computing the sum of the tens digits
 and request a retrieval of the sum of the tens digits.

NO-CARRY
IF the goal is to add a pair of numbers
 and the tens digits are available
 and you are busy working on the carry
 and the one-ans equals a sum
 and there has been a retrieval failure

35

ACT-R 6.0 Tutorial 8-Oct-14 Unit One

THEN note that the carry is nil
 and note you are busy computing the sum of the tens digits
 and request a retrieval of the sum of the tens digits.

ADD-TENS-DONE
IF the goal is to add a pair of numbers
 and you are busy computing the sum of the tens digits
 and the carry is nil
 and an addition-fact has been retrieved
THEN note the answer for the tens digits is the sum of that
 retrieved chunk.

ADD-TENS-CARRY
IF the goal is to add a pair of numbers
 and the tens digits are available
 and you are busy computing the sum of the tens digits
 and the carry is 1
 and the sum of the tens digits has been retrieved
THEN set the carry to nil
 and request a retrieval of 1 plus that sum.

When you are finished entering the productions, save your model, reload it, and then run it.

If your model is correct, then it should produce a trace that looks like the one above, and the
correct answer should be encoded in the ten-ans and one-ans slots of the chunk in the goal
buffer.

1.8.3 Incremental Creation of Productions

It is possible to write just one or two productions and test them out first before you go on to try to
write the rest – to make sure that you are on the right track. For instance, this is the trace you
would get after successfully writing the first two productions and then running the model:

 0.000 GOAL SET-BUFFER-CHUNK GOAL GOAL REQUESTED NIL
 0.000 PROCEDURAL CONFLICT-RESOLUTION
 0.050 PROCEDURAL PRODUCTION-FIRED START-PAIR
 0.050 PROCEDURAL CLEAR-BUFFER RETRIEVAL
 0.050 DECLARATIVE START-RETRIEVAL
 0.050 PROCEDURAL CONFLICT-RESOLUTION
 0.100 DECLARATIVE RETRIEVED-CHUNK FACT67
 0.100 DECLARATIVE SET-BUFFER-CHUNK RETRIEVAL FACT67
 0.100 PROCEDURAL CONFLICT-RESOLUTION
 0.150 PROCEDURAL PRODUCTION-FIRED ADD-ONES
 0.150 PROCEDURAL CLEAR-BUFFER RETRIEVAL

36

ACT-R 6.0 Tutorial 8-Oct-14 Unit One

 0.150 DECLARATIVE START-RETRIEVAL
 0.150 PROCEDURAL CONFLICT-RESOLUTION
 0.200 DECLARATIVE RETRIEVED-CHUNK FACT103
 0.200 DECLARATIVE SET-BUFFER-CHUNK RETRIEVAL FACT103
 0.200 PROCEDURAL CONFLICT-RESOLUTION
 0.200 ------ Stopped because no events left to process

The first production, start-pair, has run and successfully requested the retrieval of the addition
fact fact67. The next production, add-ones, then fires and makes a retrieval request to determine
if there is a carry. That chunk is retrieved and then because there are no more productions the
system stops. You may find it helpful to try out the productions occasionally as you write them
to make sure that the model is working as you progress instead of writing all the productions and
then trying to debug them all at once.

1.8.4 Debugging the Productions

In the event that your model does not run correctly you will need to determine why that is so you
can fix it. One tool that can help with that is a command called whynot. The whynot command
can be used to tell you what condition on the LHS of a production is causing it to fail to match. It
can be called from the Lisp prompt with the name of a production, or it is also available as a
button on the “Procedural Viewer” of the Control Panel. To use the ACT-R environment’s
version you should select a production from the list of defined productions in the Procedural
Viewer window and then press the “Whynot” button. It will open a window with the details of
why the production does not match or print the current instantiation of that production if in fact it
does match.

The Stepper is also an important tool for use when debugging a model because it lets you watch
everything that the model does. You can also use whynot, the Buffer viewer, and the Declarative
viewer windows while using the Stepper to better understand what is happening in the model at
any specific point in its run.

37

	Unit 1: Introduction to ACT-R
	1.1 Knowledge Representations
	1.1.1 Chunks in ACT-R
	1.1.2 Productions in ACT-R

	1.2 Creating Knowledge Elements
	1.2.1 Creating New Chunk Types
	1.2.2 Creating Chunks
	1.2.3 Productions
	1.2.4 Buffers
	1.2.5 Productions Continued

	1.3 Production Specification
	1.3.1 Production Conditions
	1.3.2 Production Actions
	1.3.2.1 Buffer Modifications
	1.3.2.2 Buffer Requests
	1.3.2.3 Buffer Clearing
	1.3.2.4 Implicit Clearing

	1.4 ACT-R Models
	1.5 The Count Model
	1.5.1 Chunk-types for the Count model
	1.5.2 Declarative Memory for the Count model
	1.5.3 Setting the Initial Goal
	1.5.4 The Start Production
	1.5.5 The Increment Production
	1.5.6 The Stop Production
	1.5.7 Pattern Matching Exercise
	1.5.8 The first-goal-0 Chunk and Buffer Chunk Copying
	1.5.9 Pattern Matching Exercise Continued

	1.6 The Addition Model
	1.6.1 The initialize-addition and terminate-addition Productions
	1.6.2 The increment-sum and increment-count Productions
	1.6.3 The Addition Exercise

	1.7 The Semantic Model
	1.7.1 Encoding of the Semantic Network
	1.7.2 Queries about Category Membership
	1.7.3 Chaining Through Category Links
	1.7.4 The Failure Case
	1.7.5 Query Conditions
	1.7.6 The fail production
	1.7.7 Model Warnings

	1.8 Building a Model
	1.8.1 Chunk-types
	1.8.1.1 Addition Facts
	1.8.1.2 The Goal Chunk Type

	1.8.2 Chunks
	1.8.2.1 The Addition Facts
	1.8.2.3 The Initial Goal

	1.8.2 Productions
	1.8.3 Incremental Creation of Productions
	1.8.4 Debugging the Productions

