
How does 6.1 differ from 6.0?

Dan Bothell

Carnegie Mellon University

db30@andrew.cmu.edu

Chunks do not have a type!

• A chunk is a set of slots with non-nil values

• A slot value of nil means that the chunk does
not have the slot

– Both for setting slot values and testing them

Doesn’t eliminate chunk-types

• Useful tool for the modeler
• Allow chunk-type creation and isa like before
• Don’t require that isa be used anywhere

• Any isa provided is not used by the model!

– NOT a test in a production condition
– NOT a component of a request to a module

• Essentially a chunk-type is just a declaration not a
constraint

Example chunk output

(chunk-type test slot1 slot2 slot3)

(define-chunks (chunk isa test slot1 "value"))

(pprint-chunks chunk)

 In 6.0
CHUNK
 ISA TEST
 SLOT1 "value"
 SLOT2 NIL
 SLOT3 NIL

In 6.1
CHUNK
 SLOT1 "value"

Make chunk-types more useful in new role

• Now allows multiple inheritance

• Invalid slots for a specified type only lead to
warnings in chunk and production definitions

• Implicit inclusion of default slot values from a
chunk-type occurs in both chunk and
production definitions now instead of just
chunk definitions

(define-model example

 (sgp :v t)

 (chunk-type example (slot t))

 (define-chunks

 (example isa example))

 (pprint-chunks example)

 (p e1

 ?goal>

 buffer empty

 ==>

 +goal>

 isa example)

 (p e2

 =goal>

 isa example

 ==>

 !stop!

 !eval! (buffer-chunk goal))

 (pp)

 (run 1))

ACT-R 6.0
EXAMPLE

 ISA EXAMPLE

 SLOT T

(P E1

 ?GOAL>

 BUFFER EMPTY

 ==>

 +GOAL>

 ISA EXAMPLE

)

(P E2

 =GOAL>

 ISA EXAMPLE

 ==>

 !STOP!

 !EVAL! (BUFFER-CHUNK GOAL)

)

0.000 CONFLICT-RESOLUTION

0.050 PRODUCTION-FIRED E1

0.050 CLEAR-BUFFER GOAL

0.050 SET-BUFFER-CHUNK GOAL

0.050 CONFLICT-RESOLUTION

0.100 PRODUCTION-FIRED E2

GOAL: EXAMPLE0-0

EXAMPLE0-0

 ISA EXAMPLE

 SLOT T

ACT-R 6.1
EXAMPLE

 SLOT T

(P E1

 ?GOAL>

 BUFFER EMPTY

 ==>

 +GOAL>

 SLOT T

)

(P E2

 =GOAL>

 SLOT T

 ==>

 !STOP!

 !EVAL! (BUFFER-CHUNK GOAL)

)

0.000 CONFLICT-RESOLUTION

0.050 PRODUCTION-FIRED E1

0.050 CLEAR-BUFFER GOAL

0.050 SET-BUFFER-CHUNK GOAL

0.050 CONFLICT-RESOLUTION

0.100 PRODUCTION-FIRED E2

GOAL: CHUNK0-0

CHUNK0-0

 SLOT T

Example model showing a default slot value being used

New production action indicator *

• Since isa is optional in production definitions
the distinction between a request and a
“modification request” can’t hinge on the isa

– These are equivalent in 6.1 unlike 6.0
 +goal> slot value

 +goal> isa something slot value

• * is now used for modification requests

+goal> slot value is now *goal> slot value

New production action indicator @

• Remove the special case for the = action to do
a buffer overwrite

• @ is now used for the buffer overwrite actions

 =buffer> chunk is now @buffer> chunk

Now there are no special cases in
production actions

• Given these definitions
(chunk-type x slot)

(define-chunks (value isa chunk) (c isa x slot value))

• These production actions all do the same thing
=goal> isa x slot value
=goal> slot value
=goal> c

• These also do the same as above (through the goal module)
*goal> isa x slot value
*goal> slot value
*goal> c

• These are also all the same (but not the same as above)

+goal> isa x slot value
+goal> slot value
+goal> c

Module requests

• Chunk-type information not provided
– All details must be in the slots

• For the PM modules all of the chunk-types now have a
slot named cmd which is used to indicate the action
– The value is the same name as the chunk-type

• The chunk-types have a default value for that slot which
matches the type name

• Therefore specifying the isa still works since the default
slot value will be added to a production definition

• Either of the following will work in 6.1

+manual>
 isa press-key
 key “a”

+manual>
 cmd press-key
 key “a”

Other changes

• Remove the p/p* distinction

– Both commands still exist and do the same thing

– Using p is recommended now for all productions

• Simplify production condition syntax

– One buffer test and/or one query per buffer

• Cannot modify chunks in DM now

– Wasn’t recommended before, but now it’s strictly
enforced

Will a 6.0 model work as-is in 6.1?

• Probably, unless it uses:
– Modification requests
– Buffer overwrites
– Productions which are differentiated only by isa tests

• There is a system parameter called :backwards which can
be set to true to handle those situations

• Out of 48 test models with ACT-R 6.0
– 41 work the “same” as-is (functionally the same but some minor

differences in model output/trace information)
– 48 work if the :backwards system parameter set

• 25 of those models are from the tutorial units
– 21 of the tutorial models work the same as-is

Typical issue to fix

• Production conditions or Lisp code which
differentiate based only on the isa

• Setting the :backwards switch will handle that
without changing the model

(p needs-the-isa-1

 =goal>

 isa task1

 ==>

 ...)

(sdp-fct (list (no-output (sdm isa number)) :base-level 3))

(p needs-the-isa-2

 =goal>

 isa task2

 ==>

...)

Things that will require changes to
model/code

• Lisp code which tests chunk types

– Calls to chunk-chunk-type or chunk-spec-chunk-type
will need to test something in a slot of the chunk
instead

• Most module implementations will require
some change

– Requests usually tested the chunk-type info

Having “types” of chunks now a
modeling choice

• Could give all chunks a slot to hold a type value essentially
replacing the isa with a real slot
– May not work well if a type hierarchy desired

– Possibility for errors due to partial matching and spreading activation
(may be good or bad depending on needs)

• Previously, sharing a type meant a common underlying
structure which suggests differentiating based on the slots a
chunk has not the value in a slot
– Give each type a unique slot with a default value

– If the value isn’t a chunk no spreading activation issues

– Slots don’t get partial matched

• Other options also possible

