
ACT-R Updates Summer 2014

Dan Bothell

Carnegie Mellon University

db30@andrew.cmu.edu

New Website

ACT-R 6.0 Additions

simulate-retrieval-request command

> (simulate-retrieval-request isa count-order first 3)

Chunk J does not match

Chunk I does not match

Chunk H does not match

Chunk G does not match

Chunk F does not match

Chunk E does not match

Chunk D matches

Chunk C does not match

Chunk B does not match

Chunk A does not match

Chunk D has the current best activation 0.0

Chunk D with activation 0.0 is the best

(D)

Style Warnings

• Additional inter-production checks

– Conditions with types or slots not set in actions or
initial state

– Actions which modify slots that aren’t tested

• :style-warnings set to nil will suppress them

Starting parameters

• New system parameter called :starting-parameters

• Set to a list of parameters and values which are
appropriate for use with sgp

(ssp :starting-parameters (:esc t :trace-detail high))

• Those settings applied at the start of every model
definition and at the beginning of every reset

Motor module extensions

• Collection of motor addons available in extras

– holding and releasing actions for keys

– buffers for tracking hands and fingers individually

– more high-level 'press-key like' actions

Multithreaded calculations

• Speculative code available in extras

• Take advantage of multiple cores in a machine

• Find-matching-chunks

• Compute activations

• Perform blending

Android ACT-R Environment app

• Full ACT-R Environment as an Android app

• Get it from the ACT-R website

• Possible because of AndroWish Tcl/Tk system

• There is not a Tcl/Tk system available for iOS

ACT-R 6.0 Issues

• Incongruence between chunk-types and
dynamic productions’ abilities to extend
chunks and to variablize conditions and
actions

• Issues with non-merging of apparently similar
chunks

– Overloaded use of nil

• Inability for productions to detect some states

– Both “slot t” and “- slot t” false

Static chunk-types

• Discussed at last year’s workshop

• Create almost as many issues as they solve

ACT-R 6.1

The Chunk-type is dead, long live the
Chunk-type.

Why not just fix 6.0?

• The right fix seems to be a conceptual change

• Could break existing 6.0 models

• Allows for “fixing” other things as well

Chunks do not have a type!

• A chunk is a collection of slots and non-nil
values

• A slot value of nil means that the chunk does
not have the slot
– Both for setting slot values and testing them

6.0

CHUNK
 ISA TEST
 SLOT1 "value"
 SLOT2 NIL
 SLOT3 NIL

6.1

CHUNK
 SLOT1 "value"

(p* works-as-expected-in-6.1
 =imaginal>
 isa test
 slot1 slot3
 slot1 =s
 =goal>
 isa test
 =s nil
==>

Don’t eliminate chunk-types

• Useful tool for the modeler

• Allow chunk-type creation and isa like before

• Don’t require that isa be used anywhere

• Not used by the model!

• Important differences in 6.1 for isa
– NOT a test in a production condition

– NOT a component of a request to a module

Make chunk-type more useful in new role

• Allow multiple inheritance

• Default chunk-type slot value expansion in
both chunk and production definitions

(define-model example

 (sgp :v t)

 (chunk-type example (slot t))

 (define-chunks

 (example isa example))

 (pprint-chunks example)

 (p e1

 ?goal>

 buffer empty

 ==>

 +goal>

 isa example)

 (p e2

 =goal>

 isa example

 ==>

 !stop!

 !eval! (buffer-chunk goal))

 (pp)

 (run 1))

ACT-R 6.0

EXAMPLE

 ISA EXAMPLE

 SLOT T

(P E1

 ?GOAL>

 BUFFER EMPTY

 ==>

 +GOAL>

 ISA EXAMPLE

)

(P E2

 =GOAL>

 ISA EXAMPLE

 ==>

 !STOP!

 !EVAL! (BUFFER-CHUNK GOAL)

)

0.000 CONFLICT-RESOLUTION

0.050 PRODUCTION-FIRED E1

0.050 CLEAR-BUFFER GOAL

0.050 SET-BUFFER-CHUNK GOAL

0.050 CONFLICT-RESOLUTION

0.100 PRODUCTION-FIRED E2

GOAL: EXAMPLE0-0

EXAMPLE0-0

 ISA EXAMPLE

 SLOT T

ACT-R 6.1

EXAMPLE

 SLOT T

(P E1

 ?GOAL>

 BUFFER EMPTY

 ==>

 +GOAL>

 SLOT T

)

(P E2

 =GOAL>

 SLOT T

 ==>

 !STOP!

 !EVAL! (BUFFER-CHUNK GOAL)

)

0.000 CONFLICT-RESOLUTION

0.050 PRODUCTION-FIRED E1

0.050 CLEAR-BUFFER GOAL

0.050 SET-BUFFER-CHUNK GOAL

0.050 CONFLICT-RESOLUTION

0.100 PRODUCTION-FIRED E2

GOAL: CHUNK0-0

CHUNK0-0

 SLOT T

Issue with production syntax

• If isa is optional, what about the difference
between these

 +goal> slot value

 +goal> isa something slot value

New production action indicators

• * is used for modification requests

previously + without an isa

• @ is for the buffer overwrite action

previously =buffer> chunk now @buffer> chunk

No special cases in production actions

If type x has no default slots and chunk c looks like this
 C
 SLOT VALUE

• These all do the same thing
=goal> isa x slot value, =goal> isa chunk slot value, =goal> slot value, =goal> c

• These also do the same as above (through the goal module)
 *goal> isa x slot value, *goal> isa chunk slot value,*goal> slot value, *goal> c

• These are also all the same (not same as above)

+goal> isa x slot value, +goal> isa chunk slot value, +goal> slot value, +goal> c

How do the other modules work?

• The information must be in a slot

• For the PM modules all of the chunk-types
now have a slot named cmd which has a
default value which matches the type name

+manual>
 isa press-key
 key “a”

+manual>
 cmd press-key
 key “a”

But I like having my chunks typed

• Could use a slot to hold a type value

• Conceptually, a common type means common
underlying structure

• Better to provide common structure in chunks

– Give the type a unique slot with a default value
(chunk-type type-a (isa-type-a t)...)

Other changes

• Collapse the p/p* distinction

• Simplify production condition syntax

– One buffer test and/or one query per buffer

• Cannot modify chunks in DM now

– The :fast-merge switch is gone

Will my ACT-R 6.0 model work as-is?

• 50 test models with ACT-R 6.0

– 41 work the same

– 48 work if the :backwards system parameter set

• 25 of those models are from the tutorial

– 21 work the same

– 25 work with :backwards set

Typical issue to fix

• Production conditions/requests or Lisp code
which differentiate based on the isa value

• Setting the :backwards switch corrects that

(p needs-the-isa

 =goal>

 isa task1

 ==>

 +retrieval>

 isa task1-data)

(sdp-fct (list (no-output (sdm isa number)) :base-level 3))

Will require changes to model/code

• Lisp code which tests chunk types

– Chunk-chunk-type or chunk-spec-chunk-type

• Probably includes any modules which process
requests

Status

• The code is ready and available through
subversion svn://act-r.psy.cmu.edu/actr6.1

• The tutorial and documentation is not yet
updated

• End of year update should make 6.1 primary
download

Blending

• No types changes some things

• Blend over all slots which exist in the chunks
matching the request
– Not the slots of the type requested

• Common “type” for possible values now
means overlapping slots
– Intersection of the slots

– All the chunks in DM with that set of slots

Blending cont.

• Not having nil slot values changes blending
scenarios

• Blended value computed from the chunks
which have the slot
– Previously used all chunks and considered values

of nil

• When there was any nil value it didn’t really
“blend”
– Case d which picked the best value among them

• Old method would result in either 3.0, 1.0, or nil

• Now it will result in the blended average of A
and B

– But p(i) computed up front over all chunks

A isa target value 3.0
B isa target value 1.0
C isa target value nil

+blending> isa target

