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1. Introduction

While some instruction has as its goal that the learner become skilled at just what is being taught,
in many cases the goal is for the learner to be able to transfer what is learned to new situations. The
literature abounds with demonstrations of both failed transfer (e.g., Bassok, 1990; Detterman, 1993;
Gick & Holyoak, 1980) and near total transfer (e.g., Bovair et al., 1980; Singley & Anderson, 1989). Edu-
cators properly anguish over the implications of these apparently contradictory results (e.g., Bransford
& Schwartz, 1999; Carraher & Schliemann, 2002).

One of the reasons for the different perspectives on transfer is the wide variety of things that can
transfer. They can range from transfer of highly proceduralized skills such as from one kind of manual
transmission to another to what might better be called discovery such as the connection made
between the structure of the solar system and the structure of the atom. This paper will focus on a
particular type of transfer – where one derives new solution procedures by extending problem-solving
procedures that one already knows. It is particularly important in mathematics learning, which is the
content focus of this paper. To take a modest example, children who learn the basic principles for solv-
ing equations need to apply them successfully to an infinite space of equations. To take a more ambi-
tious example, mathematics education hopes that students will transfer what they learn in the
classroom to being successful workers and informed citizens.

More specifically, this paper will consider situations where participants need to reflect on a known
procedure and modify and replace parts of it. For instance, people often face such a situation when a
favorite piece of software is upgraded. It is an explicit goal of the National Council of Teachers of Math-
ematics (NCTM) standards (Romberg, 1992) that students should be able to ‘‘generate new procedures
and extend or modify familiar ones.’’

This paper will develop a theory of procedural extension within the ACT-R theory (Anderson, 2007;
Anderson et al., 2004; Salvucci, 2013; Taatgen, Huss, Dickison, & Anderson, 2008) of procedure follow-
ing. The ACT-R theory holds that both verbal procedural instructions and examples of procedures are
initially encoded as declarative representations of problem-solving steps, which are retrieved and
interpreted in solving a problem. Note that declarative encodings of procedures are not the sort of
unconscious ‘‘procedures’’ that occupy much of the discussion about the procedural–declarative dis-
tinction in psychology (e.g., Cohen, Poldrack, & Eichenbaum, 1997; Willingham, Nissen, & Bullemer,
1989). With enough practice such declarative knowledge can be compiled into production rules in
ACT-R, which are one form of unconscious procedures.

Recently, Taatgen (2013) has produced an ACT-R theory of transfer in which steps from one proce-
dure automatically transfer to another procedure. This is not the reflective transfer considered here.
This paper is concerned with situations where one consciously reflects on what one knows and
how to extend that knowledge. A classic example would be Wertheimer’s (1945/1959) study of
how children could use what they know of the area of rectangles to find the area of a parallelogram.
2. ACT-R, procedure following, and fMRI

As background for the current research, we will briefly review the ACT-R theory, how procedure
following is modeled, and how the activity of components in the ACT-R theory have been related to
fMRI measures. ACT-R 6.0 (Anderson, 2007) consists of a set of different modules whose interactions
are controlled by a production system. Different modules are specialized to achieve specific goals. Of
relevance to this paper, the Manual module programs the hands, the Visual module encodes visual
input, the Retrieval module accesses declarative information, and the Imaginal module manipulates
mental representations. These modules put products into module-specific buffers – for instance, rep-
resentation of a visual object into the Visual buffer or a retrieved memory into a Retrieval buffer. Pro-
ductions can detect information in these buffers and make requests of modules. For instance, a
production can detect an object in the Visual buffer and request the Retrieval module find declarative
information relevant to that object.

The ACT-R theory of declarative procedure following has had considerable success in modeling the
learning of a number of procedures including simple algebra (e.g., Anderson, 2005). According to
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ACT-R (Anderson, 2007; Salvucci, 2013; Taatgen et al., 2008), learners start out with declarative rep-
resentations of procedures. The initial declarative representations of procedures, called operators,
consist of preconditions, simple actions that ACT-R can perform, arguments for these actions, and
post-actions (see Appendix B for more detailed discussion). These operators are retrieved interpreted
by the general production rules.

During the execution of a skill, multiple modules will be engaged according to the requirements of
the skill. Activities in each of these modules reflect demands on corresponding brain regions support-
ing the functions of each module. There are the following associations between brain regions and ACT-
R modules (see Fig. 1):

1. Visual module: While large portions of the brain are devoted to processing visual information,
researchers have found that the fusiform gyrus plays a critical role in the recognition of visual
objects (Grill-Spector, Knouf, & Kanwisher, 2004; McCandliss, Cohen, & Dehaene, 2003). While dif-
ferent small areas in this region respond maximally to different material, this aggregate region has
consistently tracked the engagement of the ACT-R Visual module across multiple tasks.

2. Imaginal module: The Imaginal module is associated with a region of posterior parietal cortex (PPC).
This association is roughly consistent with the research of others who have found that this area is
involved in spatial processing (e.g., Dehaene, Piazza, Pinel, & Cohen, 2003; Reichle, Carpenter, &
Just, 2000) and verbal encoding (Clark & Wagner, 2003; Davachi, Maril, & Wagner, 2001). This mod-
ule is responsible for transformations of problem representations.
Fig. 1. The brain regions associated with modules in ACT-R: Rostrolateral prefrontal cortex (RLPFC – Metacognitive module): a
12.8 mm (high) by 15.6 � 15.6 mm2 region centered at Talairach coordinates �34,47,8; lateral inferior prefrontal cortex (LIPFC –
Retrieval module): a 12.8 mm (high) by 15.6 � 15.6 mm2 region centered at Talairach coordinates �43,23,24 spanning
Brodmann Areas 9 and 46; posterior parietal cortex (PPC – Imaginal module): a 12.8 mm (high) by 15.6 � 15.6 mm2 region
centered at Talairach coordinates �23,�63,40 spanning Brodmann Areas 9 and 46; motor (Manual module): a 12.8 mm (high) by
15.6 � 15.6 mm2 region centered at Talairach coordinates �42,�19,50, involving Brodmann Areas 2 and 4 at the central sulcus;
fusiform (Visual module): a 9.6 mm (high) by 12.5 � 12.5 mm2 region centered at Talairach coordinates �42,�60,�8 in
Brodmann Area 37. Also displayed are the activation patterns for children and adults.
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3. Manual module: Hand movements are reflected in the activity of the region along the central sulcus
where the hand is represented. This includes parts of both the motor and sensory cortex.

4. Retrieval module: While many regions, including the hippocampus, are crucial in the storage and
retrieval of memories, substantial evidence indicates that the lateral inferior prefrontal cortex (LIP-
FC) plays a critical role in the effortful retrieval of learned information (e.g., Badre & Wagner, 2007;
Thompson-Schill, D’Esposito, & Kan, 1999; Wheeler & Buckner, 2004).

5. Metacognitive module: This paper introduces a new Metacognitive module and associates its activ-
ity with the rostrolateral prefrontal cortex (RLPFC). Considerable other research relates the RLPFC
to reflective functions. For instance, the RLPFC is engaged upon feedback in episodic memory
experiments (Reynolds, McDermott, & Braver, 2006; Rugg, Henson, & Robb, 2003), when consider-
ing intentions in prospective memory (Benoit et al., 2012), when reasoning about higher-order
relationships and analogies (Bunge, Helskog, & Wendelken, 2009; Bunge, Wendelken, Badre, &
Wagner, 2005; Volle, Gilbert, Benoit, & Burgess, 2010; Wendelken, Nakhabenko, Donohue,
Carter, & Bunge, 2008), and when reflecting on task performance (Fleming, Huijgen, & Dolan,
2012). These findings suggest a general capacity of this region consistent with the function of
ACT-R’s Metacognitive module, which is to reflect on declarative representations of cognitive
procedures.

As illustrated in Fig. 1, we will focus on left hemisphere regions. Except for the motor region, sim-
ilar (if weaker) patterns are typically found in the right-lateralized homologues. While the function-
ality of these modules is probably not just achieved in these regions, having predefined regions
does allow for tests of predictions of an ACT-R model about module activity. As we will describe,
the activity of ACT-R’s modules can be converted into predictions about the temporal patterns of acti-
vations in these regions.

3. The challenge of modeling procedural extension

There has been a considerable history of ACT-R models successfully predicting activity in the
regions of Fig. 1 (other than the RLPFC; see Anderson, 2007; Anderson, Carter, Fincham, Ravizza, &
Rosenberg-Lee, 2008 for reviews of the work). This comfortable picture of research success was upset
when we decided to explore what happens when participants were asked to extend what they had
been taught to do. One such task involves what are called pyramid problems which are presented
with a dollar symbol as the operator – e.g., 4$3 = X. Pyramid problems involve a base (‘‘4’’ in this
example) that is the first term in an additive sequence and a height (‘‘3’’ in this example) that deter-
mines the number of terms to add. Each term in the sequence is one less than the previous – so
4$3 = 4 + 3 + 2. As students work with pyramid problems they quickly master the procedure of itera-
tive addition for solving these Regular problems. A Regular problem is one that involves positive single
digits for base and height. Participants typically require about an hour of practice to become proficient
in solving such Regular problems.

Interest focuses on their performance on the following day, when participants are presented with
Exception problems that require they extend their knowledge. For instance:

�9$4 = X
X$4 = X.

Perhaps the most significant observation about Exception problems is that every student we have
tested is able to solve some of them. If one views the students as having learned some fixed procedure
for solving Regular problems, they should not be able to solve the Exception problems (or for some
Exceptions, e.g., 100$201 = X, not be able to solve them in the allotted time). Thus, these students must
have some ability to change their procedures on the fly. However, simply observing an individual stu-
dent’s pattern of success or failure offers little insight into how they are modifying their procedures.
We have gathered verbal protocols and while they can indicate the method the student uses to solve
the problem, they do not indicate what the mental processes are. Consider examples of protocols that
accompanied the two problems above:
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‘‘So wait it’s one less so it’s minus ten. . .minus nine plus minus ten plus minus eleven is three and
then negative – minus 42’’

‘‘different. . . Oh, that’s interesting – x, 3x + 6’’

In both cases the ‘‘. . .’’ reflect long, pregnant pauses in which ‘‘something’’ is happening.
There were two earlier efforts at modeling pyramid problems within ACT-R. The first model (avail-

able at the website associated with Anderson, 2007) fit latency data from a few Exception problems.
That model made predictions about brain activation that did not correspond to the data that we later
obtained. A second model (available at the website associated with Wintermute, Betts, Ferris,
Fincham, & Anderson, 2012) successfully fit both the behavioral and activation data from Regular
problems but did not address Exception problems at all. To deal with Exception problems and the
imaging data associated with them, we have had to develop new analyses of the imaging data, extend
the capabilities of the ACT-R architecture, and enrich our understanding of how ACT-R relates to imag-
ing data. Fig. 2 illustrates our approach to coming up with a satisfactory model and also indicates
much of the ground that this paper will cover:

1. Discover mental states: We combined multi-voxel pattern analysis (MVPA) and hidden Markov
models (HMMs) to identify the mental states that one goes through in a problem-solving task.
MVPA identifies the stable patterns of brain activity and HMMs identify the temporal patterns
formed by these states. We call the combined methodology HMM–MVPA. We refer to the stable
pattern of brain activity associated with a state as its brain signature. While the brain signatures
for a state are assumed to be constant across problems, the duration of the state can vary from
problem to problem. The methodology provides estimates of how long the states last in different
conditions and how individual problems vary from the mean state times for their condition.

2. Guide ACT-R modeling: The information about the brain signatures and state durations proved to be
informative in determining how different problems are solved. This served to guide the construc-
tion of an ACT-R model of the information-processing steps in solving these problems.
Fig. 2. The overall plan for discovering mental states, guiding modeling, further constraining the states, and then interpreting
the data.



Table 1
Ten Types of problems used (number of distinct problems in parentheses), mean accuracies, and correct latencies.

Type Example Accuracy Latency

Adults (%) Children (%) Adults (s) Children (s)

Regular (24) 8$4 = X 89.1 82.8 8.3 9.6
Negative height (8) 4$�3 = X 83.9 67.9 10.8 13.9
Negative base (8) �2$4 = X 70.1 45.0 13.7 15.6
Large base value? (8) 208$3 = X 62.3 32.0 16.1 18.1
Unknown height (24) 5$X = 12 84.5 71.3 9.4 10.7
Unknown base (24) X$4 = 30 80.1 62.7 10.9 12.1
Double X (8) X$X = 15 64.4 46.4 13.3 13.4
LBUH (8) 110$X = 434 90.5 74.3 9.0 9.4
Fractional height (8) 5$21=3 = X 72.2 42.6 12.1 14.5
Mirror (8) 200$401 = X 61.2 31.6 9.3 8.0

Example feedback given for each problem:
8$4 = X: 8$4 = 8 + 7 + 6 + 5 = 26.
4$�3 = X: 4$�3 = 4 + 5 + 6 = 15 (or 5 + 6 + 7 if participant had chosen that solution).
�2$4 = X: �2$4 = �2 + �3 + �4 + �5 = �14.
208$3 = X: 208$3 = 208 + 207 + 206 = 621.
5$X = 12: 5$3 = 5 + 4 + 3 = 12.
X$4 = 30: 9$4 = 9 + 8 + 7 + 6 = 30.
X$X = 15: 5$5 = 5 + 4 + 3 + 2 + 1 = 15.
110$X = 434: 110$4 = 110 + 109 + 108 + 107 = 434.
5$21/3 = X: 5$21/3 = 5 + 4 + 1/3(3) = 10.
200$401 = X: 200$401 = 200 + 199 + . . .�199 + �200 = 0.
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3. Refine mental states: The ACT-R model allowed us to bring top-down computational constraints to
bear in more accurately estimating the states initially identified bottom-up in Step 1.

4. Interpret imaging data: These constrained mental states allow us to understand differences between
two participant populations, adults and young adolescents.

Before going through these four steps we will describe in more detail the pyramid experiments.
4. Pyramid experiments

We have collected data from 40 adults (ages 19–35) and 35 young adolescents (ages 12–14) solving
these problems. Although the adults were more successful and somewhat faster than children (see
Table 1), the two populations overlap (see Fig. 20). Their data are pooled but the results do not sub-
stantially change if the two populations are analyzed separately. A data set this large provides a basis
for application of the state discovery procedures. The end of this paper will address the question of
what this methodology says about the differences between the two populations. Participants practiced
solving a large number of Regular problems (adults solved 81 problems with heights from 1 to 9, chil-
dren solved 108 problems with heights from 1 to 6) on a prior day outside of the scanner. On the sec-
ond day, they were tested in an fMRI scanner with Exception problems mixed in with Regular
problems. In each scanner block, they solved 3 Regular problems and one instance of each of the 9
Exception types in Table 1. The first problem was always a Regular problem and was excluded from
analysis as a warm-up problem. Otherwise the problems were tested in a random order. There were
10 problem types consisting of the Regulars and 9 exception types. The 10 types could be further bro-
ken out into 128 different specific problems, but no participant saw all 128 problems. Our interest is in
how participants solved these problems and so we will focus on correct problems. This resulted in
anywhere from 19 to 87 solutions per participant with a mean number of 53.7.

The procedures were described in detail in the original empirical report on the adult data
(Wintermute et al., 2012).1 The only difference between the populations during the scanning session
1 The children data has not been previously published.



Fig. 3. The experimental procedure on a trial. Each trial consists of a fixation period, a problem-solving period, a feedback
period, a fixation period, and a repetition detection task.
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is that most children only completed 6 blocks in the allotted time while adults completed 8 blocks. Fig. 3
illustrates the basic procedure on a trial. The problem was presented after a 3 s fixation. Participants had
30 s to input an answer. Participants entered their answers with a physical keypad that they had been
trained on. After their response or 30 s expired, feedback was presented for 5 s. Examples of the feedback
are shown in Table 1. The feedback was in green if the participant’s answer was correct and in red if the
answer was wrong or the problem had timed out. A fixation cross was again presented for 3 s. Then par-
ticipants performed a repetition detection task for 12 s. During repetition detection, letters appeared on
the screen at a rate of 1 per 1.25 s, and participants were instructed to press Enter on the keypad when a
letter repeated. This task served to distract the participants from the main pyramid task and return brain
activity to a relatively constant level.

Images were acquired using gradient echo-echo planar image (EPI) acquisition on a 3T Verio Scan-
ner using a 32-channel RF head coil, with 2 s repetition time (TR), 30 ms echo time (TE), 79 degree flip
angle, and 20 cm field of view (FOV). Both experiments acquired 34 axial slices on each TR using a
3.2 mm thick, 64 � 64 matrix. This produces voxels that are 3.2 mm high and 3.125 � 3.125 mm2.
The anterior commissure–posterior commissure (AC–PC) line was on the 11th slice from the bottom
scan slice. Acquired images were pre-processed and analyzed using AFNI (Cox, 1996; Cox & Hyde,
1997). Functional images were motion-corrected using 6-parameter 3D registration. All images were
then slice-time centered at 1 s and co-registered to a common reference structural MRI by means of a
12-parameter 3D registration and smoothed with a 6 mm full-width-at-half-maximum 3D Gaussian
filter to accommodate individual differences in anatomy.

In complex tasks like this, it is useful to perform MVPA on whole brain activity. However, as a step
of dimension reduction and to accommodate variations in anatomy over participants that may not be
dealt with in co-registration, we aggregated the voxels in each slice into larger 2 � 2 voxel regions.
There are 12,481 such regions.2 Some of these regions show an excess of extreme values for some par-
ticipants, probably reflecting differences in anatomy. These were regions mainly on the top and bottom
slices as well as some regions around the edge of the brain. Eliminating these regions resulted in keeping
8365 regions.

The BOLD response is calculated as the percent change from a linear baseline defined from first
scan (beginning of fixation before problem onset) to last scan (beginning of fixation before next prob-
lem). This is deconvolved with a hemodynamic response function to produce an estimate of the under-
lying activity signal. The hemodynamic function is the SPM difference of gammas (Friston, Ashburner,
Kiebel, Nichols, & Penny, 2011: gamma(6,1) � gamma(16,1)/6). A Wiener filter (Glover, 1999) with a
noise parameter of .1 was used to deconvolve the BOLD response into an inferred activity signal on
each scan.

The output of this process is an estimation of activity in 8365 regions during every 2-s scan. How-
ever, because of high correlation among regions this reflects nothing like 8365 independent pieces of
information. We perform a spatial principal component analysis (PCA) of the voxel activity where each
voxel is treated as a variable that varies over scans, trials, and subjects. The first 20 components of the
PCA capture 67% of the total variance in the data and we have had success working with just these.
These 20 component scores are approximately distributed as 20 independent normally distributed
variables. We standardize them to have mean 0 and variance 1 (performing a PCA and standardizing
the data is sometimes called ‘‘whitening’’).
2 This contrasts with Anderson and Fincham (2014) where we used 408 larger 4 � 4 � 4 voxel regions and kept 290 to avoid
extreme values.



Fig. 4. An illustration of HMM–MVPA producing a 4-state solution with 3 conditions. Input to the HMM–MVPA are scans
organized within trials. Each scan consists of the 20 PCA scores. Parameters are estimated for each state: 20 PCA means that
define the brain signature and distribution parameters for each condition-state combination. Also calculated are the state
occupancies (probabilities that the participant is in each state on a particular scan).
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The majority of this paper will focus on correct trials only because these are the trials where we can
be most confident of the procedures that the participant was using. However, we will also provide an
analysis of what this methodology can say about incorrect trials at the end of the paper.

5. Step 1. Discovering mental states

This section describes an updated version of the model discovery process described in Anderson
and Fincham (2014). This procedure is purely data-driven and is in no way specific to the ACT-R the-
ory. Fig. 4 provides an overview of the state discovery procedure. The inputs to this state discovery
procedure are the 20 PCA scores for each scan. The outputs are a set of parameters that describe
the states and a description of these trials in terms of their state occupancy (probability of being in
a state on a scan).

We conceive of the participant as going through a sequence of mental states during the solution of
one of these problems. These states are ‘‘hidden’’ in the sense that we do not see them but only see
their consequences in the brain signals. Because of the poor temporal resolution of fMRI, these mental
states capture many seconds of brain activity. A mental state is a period of time with a constant acti-
vation pattern, that state’s brain signature. The brain signature for a state is estimated as a set of 20
means for the 20 PCA dimensions. We assume that individual scans in the state form a normal distri-
bution around this point in a 20-dimensional space. The dimensions of this distribution for each state
are treated as orthogonal with standard deviations of 1, just like the full set of all PCA scores.3
3 The distributions around the state means do appear orthogonal and normal but they do have somewhat smaller standard
deviations (about .9). However, we choose not to estimate standard deviations to reduce the number of parameters.



Fig. 5. A search for the best HMM–MVPA solution through a space defined by different numbers of states and different numbers
of time distributions within a state.
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The duration of each state will vary from trial to trial. Some of this might be random variation, but
some of it might also reflect differences in the problems being solved. For instance, states could have
different mean durations for each of the 10 problem types in Table 1. Within a condition, there will be
trial-to-trial variation in the duration of the state. We characterize this distribution of state times in a
condition as a gamma distribution defined by an index parameter v and a scale parameter a (the mean
is va and the variance va2). For purposes of avoiding overfitting, we have found it better to estimate a
single scale parameter a per state and just allow the index v to vary with condition.4

To summarize, a state is defined by a single brain signature for all conditions (defined by means for
the 20 PCA dimensions), but within a state durations will vary with condition (defined by the index
parameter for the condition). Identifying a state involves estimating the means of the 20 PCA dimen-
sions, the single scale parameter a, and the index parameters for each condition. They are estimated to
maximize the probability of data (i.e., the 20 PCA scores for all scans for all problems). In approaching
a novel domain like the pyramid problems we do not know the number of states or how the problems
break up into meaningful conditions. Thus, in addition to estimating the parameters that define the
states and conditions within states, we need to discover the states and conditions themselves.

Allowing for more states or more conditions will mean more parameters and therefore a better fit
to the data, but this might just be overfitting (i.e., fitting noise rather than systematic variation).
Although there are metrics for penalizing models for their extra parameters like BIC (Kass &
Raftery, 1995), they do not extend in a straightforward manner to situations with so many parameters
(Berger, Ghosh, & Mukhopadhyay, 2003) or where observations are not independent as is true of fMRI
data (Jones, 2011). In contrast, cross-validation methods offer an effective way to assess models and
identify when the extra model complexity is justified. This paper uses simple leave-one-out cross val-
idation (LOOCV). Our application of LOOCV estimates the maximum-likelihood parameters for all but
one of the participants and then uses these to calculate the likelihood of the data for the remaining
participant. In essence, this is estimating parameters from k � 1 participants and predicting the kth
participant. LOOCV rotates this process through all k participants. One model is to be preferred over
another if it better predicts the kth participant. Note that this approach focuses on predictions that
generalize across participants rather than predictions that generalize within participants, which has
been more typical of MVPA approaches. This focus and the decision to use LOOCV rather than other
cross-validation methods reflects our goal of using what we learn from a set of participants to under-
stand/predict a new individual. This goal is central to the educational applications that set the general
context for our research.

A more complex model (more states or more conditions) is to be preferred over a less complex
model if it results in better predictions for significantly more participants. The probability that the
4 This achieves better performance than allowing both index and scale to vary as in Anderson and Fincham (2014). If we
interpret the gamma distribution as a convolution of exponential distributions, then allowing only the index parameter to vary can
be interpreted as a state varying in number of steps as a function of condition. However, only slightly worse results are obtained if
we assume a single index parameter and allow the scale parameter to vary with condition.



Fig. 6. The brain signatures of the 4 states calculated from the 20 principal component scores. Dark red reflects 1% above
baseline while dark blue reflects 1% below baseline activity. The z coordinates for a brain slice (radiological convention: image
left = participant’s right) is at x = y = 0 in Talairach coordinates.
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more complex model will better predict x of k participants by chance is upper-bounded by the prob-
ability of getting x out of k successes in a binomial process with probability .5. Thus, we have used a
simple sign test for determining when the model has gotten complex enough.5

Fig. 5 summarizes a search through a space of models varying from 1 to 8 states. We considered
models that assumed all problems had the same distribution of times in a state, models that had dif-
ferent distributions of times for each of the 10 conditions in Table 1, and models that had different
distributions of times for each of the 128 problems. Fig. 5 shows the results of the search measured
in terms of the mean log-likelihood of the left-out participant. These are all expressed in terms of aver-
age improvement over the simplest case (a single state and a single condition). For any of the choices
for number of states, the best model involves estimating a different distribution of times for each of
the 128 problems. As we will see, there are not 128 distinct distributions of times within each state,
but rather distinctions within the 10 problem types in Table 1 for some of the states.

The best model involves a sequence of 5 states with 128 time distributions. It is better than the
closest competitor (4 states with 128 distributions) for 57 of the 75 participants. We were sur-
prised to find 5 states because earlier work on these problems (Anderson & Fincham, 2014) had
indicated that a 4-state solution was optimal. We attribute the finding of 5 states to more precise
parameter estimation resulting from the greater number of participants and the finer brain grid.
However, as discussed in Appendix A, this 5-state model just creates a new transition state to bet-
ter fit the scan of transition between states 3 and 4 in the 4-state model and reflects no theoret-
ically interesting variation.6 Therefore, we will take the 4-state 128-distribution as the reference
solution for further discussion (which is significantly better than any simpler model in Fig. 5 and only
inferior to the 5-state 128-distribution model). Following the labels established in Anderson and
Fincham (2014) we call these 4 states the Encoding State, the Planning State, the Solving State,
and the Responding State, although the ACT-R model to follow will provide a more precise interpre-
tation of these states than implied by the labels.
5 Note that this claim about a binomial test and LOOCV is not general. It does apply when normal data from a single distribution
is randomly divided into two groups and we ask whether LOOCV within groups predicts better than LOOCV means estimated from
both groups.

6 Also, as noted in Fig. 2, the 5-state 128-condition solution l is not superior to a 4-state solution based ACT-R model that we will
describe.



Fig. 7. (a) Values of t’s contrasting activity in the Planning State minus the Encoding State. The z coordinates for a brain slice
(radiological convention: image left = participant’s right) is at x = y = 0 in Talairach coordinates. (b) Proportion of trials with
different durations of the Encoding and Planning State. (c) Values of t’s contrasting activity in the Solving State minus the
Responding State. (d) Proportion of trials with different durations of the Solving and Responding State.
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Each state is defined by its mean scores on the 20 PCA dimensions encoding brain activity patterns.
We can reconstruct whole brain activation from these 20 means. Fig. 6 shows the activation pattern
associated with each of these 4 states in 4 representative slices. While the 20 PCA factor means have
a mean inter-state correlation of �.13, these whole brain reconstructions of 8365 regions have an
inter-state correlation of +.82. Nonetheless, one can perceive some differences among states in
Fig. 6. One that is fairly apparent is that the mean level of activation is higher in the first two states
(.22% and .25% above the fixation baseline) than the last two states (.10% and .13% above baseline).
Fig. 7a focuses on the difference between the first two, higher-activation states and Fig. 7c on the dif-
ference between the last two, lower-activation states. Fig. 7a and c presents only those regions whose
mean activity over the whole problem-solving period is significantly (at the .01 level) above baseline.
For these regions Fig. 7a plots t-values for the activation difference of State 2 minus State 1, while
Fig. 7c plots the t-values for activation difference of State 3 minus State 4.

Regions showing greater activation for the Planning State in Fig. 7a are those that past empirical
reports (Anderson, Betts, Ferris, & Fincham, 2011; Wintermute et al., 2012) identified as the ‘‘metacog-
nitive network’’ – the superior frontal gyrus, LIPFC, RLPFC, and the horizontal intraparietal sulcus. Dar-
ker blue in Fig. 7a denotes regions significantly more active in the Encoding State than the Planning
State. They include regions in the vicinity of the fusiform, which would be expected because partici-
pants need to parse the pyramid expression that they have been shown. In Fig. 7c, the Solving State
shows greater activation in the LIPFC and RLPFC reflecting the calculations that are being performed.7

In contrast, the Responding State shows greater activation in the left motor region controlling the right
hand, which types the response, and the fusiform, which is monitoring this observable output.

Along with estimating the various parameters, the HMM–MVPA estimates a probability that each
scan is in each state (State Occupancies in Fig. 4). One can sum these probabilities over the scans to get
an estimate of the time in each state for that trial. Fig. 7b plots the distribution of durations of the
Encoding and the Planning States averaged over all problems and Fig. 7d plots the durations of Solving
7 While more active than the Responding State, these prefrontal activations in the Solving State are significantly lower than in
the Planning State.



Fig. 8. Mean state durations for the 10 conditions in Table 1. Standard deviations are calculated over different problems in a
condition.

Fig. 9. The overall flow of control in the ACT-R model for solving pyramid problems.
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and Responding states. The distributions vary considerably in their spread with the Encoding times
being narrowest and the Solving times widest.

While Fig. 7b and d show one distribution for each state, the HMM–MVPA actually estimates a dif-
ferent distribution for each of the 128 problems. Getting separate estimates for each problem might
seem disconcerting for purposes of making theoretical generalizations, but it enables a test of whether
differences among the 10 conditions (see Table 1 for these conditions) generalize over individual prob-
lems. Fig. 8 displays the mean times for these conditions and the standard errors of these means, cal-
culated over the individual problems that constitute a type. The average standard errors of the means
are relatively small compared to the differences among the means – .11 s for Encoding, .39 s. for Plan-
ning, .48 s. for Solving, and .21 s. for Responding. While the Encoding times show strikingly little dif-
ference among conditions, the other states show substantial variability. The Planning State is
particularly brief for Regular problems and particularly long for Double X problems. The Solving States
are longest for Large Base and shortest for Double X, LBUH, and Mirror. The Responding State is longest
for Negative Base and Large Base, which involve keying the most characters (including the negative
sign) and shortest for conditions that require keying only a single character (Unknown Height,
Unknown Base, Double X, and LBUH).



Fig. 10. The flow of control in the ACT-R model of the iterative addition procedure for pyramid problems. Every box
corresponds to a declarative instruction.
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6. Step 2. Guiding an ACT-R Model8

Treating each of 128 problems separately leaves open the question of what can be concluded gen-
erally about what participants are doing. To address this question, we developed an ACT-R model,
guided by the differences in state durations for individual problems. Like other ACT-R models, this
is a ‘‘full-task’’ model that addresses the visual encoding and motor processing as well as the cognitive
aspects of the task. This is critical for explaining whole brain patterns of activation, because perceptual
and motor activities drive a lot of that activation.

Fig. 9 provides a general overview of the model with different branches for different problem types.
The model begins by encoding the terms of the problem and identifying the strategy for solving the
problem. The strategy identification involves classifying the base, height, and value as to whether they
are negative, their number of digits, presence of a fraction, or a variable. Once the three terms have
been classified, the model tries to retrieve a strategy that might be appropriate for that problem. As
we will discuss later, this strategy identification is critical to successful solution and errors can result
when no strategy is identified or a wrong strategy is chosen. However, the ACT-R model only simulates
correct solutions. Thus, it always succeeds in finding a strategy that will solve the problem. The strat-
egy selection process is common to all problems and engages the Metacognitive module. In the case of
Regular problems, the strategy selected is simply to use the existing iterative addition procedure that
had been practiced the prior day and the Planning state is bypassed. However, for Exception problems
there can be a significant Planning state in which that strategy is converted into a procedure that can
be used to solve the problem. Finally, all problems end with the generation of the response, which we
associate with the Responding State.

Anderson and Fincham (2014) called the third state the Solving State but it has become apparent
that it captures a much more specific activity than ‘‘solving’’ in any general sense. In this state partic-
ipants are engaged in an iterative process of repeatedly adding terms. It is the process involved in solv-
ing Regular problems and is part of the process in solving a number of the Exception problems. We
will first discuss Regular problems and this iterative addition procedure.

6.1. Regular problems and the iterative addition procedure

The iterative addition procedure in Fig. 10 requires keeping track of the Term to add, which is
decremented on each iteration, the in-progress Sum to which Term is added, and the Count that keeps
8 The ACT-R model and instructions on how to run it is available as part of the material available on the website associated with
this paper: http://act-r.psy.cmu.edu/?post_type=publications&p=16145.

http://act-r.psy.cmu.edu/?post_type=publications%26p=16145


Fig. 11. Top: Average activation (dotted lines connecting data points) for Regular problems and the predictions (in solid lines)
based on module activity. The activation values are obtained from the regions as designated by the ACT-R HMM–MVPA analysis.
Bottom: The ACT-R swimlane representation of module activity during the solution of a pyramid problem 7$4 = X.

14 J.R. Anderson, J.M. Fincham / Cognitive Psychology 74 (2014) 1–34
track of the number of iterations. Many participants report using finger counting to keep track of the
count and this is how it is modeled in ACT-R. This off-loads holding the count from the Imaginal buffer
(ACT-R’s working memory). The current model uses finger counting for Count and so only needs the
Imaginal buffer to track Term and Sum. Each of the boxes in Fig. 10 reflects a declarative representation
of a step of the procedure that the model retrieves and interprets as discussed. This contrasts with
Fig. 9 where each of the boxes just describes the overall control and does not reflect a specific object
in the theory. Appendix B provides a discussion of some of the detail of the representation of the oper-
ators and they way they are interpreted by the model.

Fig. 11 illustrates, for Regular problems, how module activity corresponds to activity in associated
brain regions. We postpone discussion of the Metacognitive module and the RLPFC until the next sub-
section on Exception problems where they play a much larger role. The bottom of the figure provides a
‘‘swimlane’’ representation of activity in four modules during the solution of 7$3 = X which took the
model 8.9 s (participants average 9.1 s). Colored boxes in each lane represent the activity of one of
the ACT-R modules. Time moves to the right and each box reflects a period of time when the module
was engaged. The lengths of the boxes reflect the duration of the engagement. The Visual module is
engaged in encoding of the problem and monitoring of the output. The Imaginal module holds a rep-
resentation of the problem and keeps track of the accumulating sum and the current term being
added. The Retrieval module is engaged in retrieving instructions and retrieving arithmetic facts.
The Manual module is engaged in finger counting to track the Count and to generate the response.
Fig. 11 also shows the 2 s before problem onset. As preparation for the next trial, in this time the
model orients the hand to respond, retrieves the pyramid task definition to replace that of the
inter-trial letter task, and initializes a template to represent the upcoming problem.

The swimlane representation in Fig. 11 brackets off periods of time corresponding to different
states in the HMM–MVPA analysis. These periods correspond to points where the goal changes in
the model from encoding to solving and then to responding. Note that within one of these goals,
the relative mix of module activity is fairly constant. It is this stable mix of module activity that pro-
duces the constant brain signature of a state. Note also that this analysis identifies no period of time
corresponding to planning. Thus, while the 128-condition HMM–MVPA estimated brief but non-zero
times for planning regular problems (see Fig. 8), the ACT-R model predicts no Planning time. We will
see that the ACT-R model leads to better predictions in LOOCV, suggesting that the HMM–MVPA esti-
mate of non-zero Planning time for Regulars may be a matter of overfitting in parameter estimation.9
9 Because the time for a state is lower-bounded by zero, all errors in estimation would be greater than the predicted zero time.



Table 2
Correlations between brain regions and module activity.

(Fixation + 3 states) ACT-R module

Visual Imaginal Retrieval Manual

(a) Regular problems
Brain regions

Fusiform 0.948 0.623 0.533 0.214
PPC 0.822 0.949 0.722 0.551
LIPFC 0.797 0.705 0.945 �0.384
Motor 0.356 0.428 �0.033 0.930

(10 states) ACT-R module

Visual Imaginal Retrieval Manual Metacognitive

(b) All problems
Brain regions

Fusiform 0.893 0.473 0.563 �0.104 0.624
PPC 0.676 0.816 0.693 0.151 0.636
LIPFC 0.726 0.701 0.844 �0.580 0.839
Motor �0.187 �0.084 �0.277 0.942 �0.326
RLPFC 0.758 0.391 0.870 �0.472 0.924
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On the other hand, it is possible that some model like the current one but which also had some planning
would do even better.

Fig. 11 shows activity in four regions associated with these modules. The left fusiform is associated
with the Visual module, the left posterior parietal cortex (PPC) with the Imaginal module, the left lat-
eral inferior prefrontal cortex (LIPFC) with the Retrieval module, and the left motor region with the
Manual module. The 4 points on the x-axis are the fixation period and the 3 states. In earlier research
(see Anderson, 2007, for a review) we had plotted scans along the x-axis. However, because of the high
variability in how long it takes to solve problems, this raised severe challenges for averaging trials
(Anderson et al., 2008). These challenges are avoided if one averages states of constant activity.

Fig. 11 also presents predictions of the ACT-R theory. These predictions are obtained by taking the
module activity for a problem and generating a BOLD response assuming the SPM hemodynamic
response function. Then, just as with the actual BOLD response from participants, this was decon-
volved with a Wiener filter to produce activity associated with the various periods of time. These
activities were then multiplied by a parameter (1 parameter for each region) to provide a best fit to
the data. Note there is no motor activity during the Encoding period and no visual activity during
the solving period. Despite this, this procedure produces non-zero values in these states reflecting
averaging of adjacent states. There are two reasons for such averaging: First, state transitions do
not line up with scan boundaries, creating border scans. These border scans are a mix of activity of
the two states and contribute some of that mix to the estimate of each state. Second, effects spread
into adjacent states because of the non-zero noise values used in the Wiener filter to avoid ringing
effects (Gonzalez & Woods, 2002). By inspecting the swimlane traces, we could get pure estimates
of module engagement in each state, but it is not possible to do the same with our participants. To
compare model and imaging data, we subject the model to the same stream of processing.10

While the ACT-R predictions involve estimating a multiplicative parameter for each region to scale
the ACT-R activity, the basic shape of the predicted activity is parameter free.

Table 2a reports the correlations between all the regions and all the modules. The correlations are
much stronger down the main diagonal, confirming the apparent correspondence between region and
10 It would be nice if we could directly compare deconvolved activity from the data with proportion module engagement from
the model. However, because of bleeding between states in the estimation process, deconvolved activity from the model would not
match the sharp state boundaries that one can get with module engagement from the model. Therefore, one would not expect
deconvolved activity from participants to match well with module engagement.
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assigned modules. We will report a stronger test of the correspondence at the end of the next subsec-
tion when we include Exception problems and the Metacognitive module.
6.2. Exception problems

The strategies identified for Exception problems either required some change to the standard pro-
cedure or a completely different procedure. We used verbal protocols (from pilot participants, not in
the scanner) and informal participant interviews to identify some of the procedures that were being
used for each of the problem types. There was some variation in how the problems were solved both
within and between participants. Some of the alternative procedures involved modest variations on
the exception procedure that the ACT-R model implemented, and others were substantially different.
It was neither feasible nor possible to represent the complete mixture of procedures used. We believe
the implemented procedures represented common procedures, but we do not really know how each of
the 75 participants were solving each of their problems. The model assessment in this section involves
data averaged over multiple problems that the model solves by different procedures. By averaging
these different procedures, we are capturing some of the impact of procedural variation.

As Fig. 9 indicates, for some problems the model modified the well-practiced iterative procedure.
This modification involved retrieving the declarative representations of the steps in the procedure that
had to be modified, placing them into the Metacognitive buffer, and changing them. The Metacogni-
tive module also raises the activation of these modified steps. The model rehearses the step to increase
its activity so that when it gets to where a change has been made in the algorithm it retrieves the mod-
ified step rather than the original step (similar to Altmann & Gray, 2008). It was also often necessary to
add some additional steps to set up the iterative procedure or to use the results that it produced.
Declarative representations of these steps were similarly constructed and rehearsed by the Metacog-
nitive module.

Fig. 12 illustrates the procedure for negative height problems like 7$-4 = X. There are a number of
possible interpretations that have been proposed for negative height and the experimental software
was programmed to recognize all of them. However, in all but one instance in the 408 correct solu-
tions, participants interpreted negative height as counting up – thus, 7$-4 = 7 + 8 + 9 + 10 = 34. Three
edits are required to set up this procedure. The first edit, inserted before the start of the iterative
Fig. 12. The edits to the flow of control for negative-height problems. The changes need to be created and their declarative
representations rehearsed by the Metacognitive module.



Fig. 13. The edits to the flow of control for large-base problems. The changes need to be created and their declarative
representations rehearsed by the Metacognitive module.
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procedure, involves changing the sign of the height so that it represents the number of terms to add.
The other two edits are to change the step of decrementing the term into a step of incrementing the
term. Appendix B discusses some of the detail behind performing such edits. One thing that we hope is
made clear in the Appendix is that there is nothing special or privileged about such activity – it is just
like any other process in ACT-R except that it involves an additional module.

Fig. 13 illustrates the modifications for large-base problems like 257$3 = X. To avoid performing
3-digit addition the model decomposed the calculation as 257$3 = 250 * 3 + 7$3. It calculates 250 * 3
by just multiplying 25 by 3 to get 75 and then appending a 0. It uses the regular iterative addition pro-
cedure to calculate 7$3. This problem involves six edits to the basic procedure in contrast to the three
changes in Fig. 12 for negative-height. Planning time is largely a function of the number of changes
that are needed. Thus, Planning time should be greater for large-base problems than negative-height
problems, as is the case in Fig. 8.

The other possibility in Fig. 9 is that the participant will come up with a new procedure that does
not involve iterative addition. Fig. 14 illustrates the procedure for large-base unknown height (LBUH)
problems like 207$X = 618. This procedure just focuses on the hundreds digits and divides them
(dividing 6 by 2 in this example) to produce the answer (3 here). Some of the LBUH problems involved
a base with that was not close to some multiple of 100 (e.g., 157$X = 468) and an extra step of plan-
ning is required for these.11 As Table 1 indicates, LBUH problems have high accuracy and short latency,
in contrast to Large-Base problems (Fig. 13). Each of the boxes in Fig. 14 reflects a step of the procedure,
which is constructed in the Metacognitive buffer and rehearsed. Planning time is a function of the num-
ber of declarative steps, which are either 5 or 6. Since this problem is solved without iterative additions,
there is no Solving State. Fig. 8 shows that the 128-condition HMM–MVPA estimates a brief but non-zero
Solving time. We will see that the ACT-R assumption of 0 Solving time leads to better predictions in
LOOCV.

It is the strategy that is identified at the end of the Encoding stage that guides the construction of a
procedure in the Planning stage. ACT-R uses the strategy identified for a problem to index declarative
knowledge that describes how to make the changes and additions that are required to construct a suc-
cessful procedure. We think of these strategies as general schemes that people have developed for
adapting procedures. For example, the procedures in Figs. 13 and 14 reflect the result of strategies that
many people use with multi-digit arithmetic problems when the numbers allow simplifying decom-
positions. As another example, a number of the other exception procedures (see Appendix A) reflect
11 Rounding to the nearest hundred, 157$X = 468 is initially solved as 5/2 = 2 and the adjustment involves incrementing by 1.



Fig. 14. The procedure for large-base unknown height (LBUH) problems. All the steps of this procedure need to be created and
their declarative representations rehearsed by the Metacognitive module.
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application of a guess-and-test strategy. While we think of these strategies as general purpose, the
actual model specifies the application of these strategies to pyramid problems only.

Mirror problems (e.g., 200$401 = X) are the one class of problems for which most students do not
have a prior strategy for constructing a solution procedure. The insight to solving these is to recognize
that they involve a sequence of positive and negative numbers that will cancel each other out (e.g.
200$401 = 200 + 199 + . . . + �199 + �200 = 0).12 In a paper and pencil protocol study with 12 partici-
pants, Anderson (2007) found 9 could solve their first mirror problem but required over a minute to fig-
ure out a solution plan (and so would have timed out in this experiment). Only 20% of our 75 participants
correctly answered their first mirror problem in this experiment, compared to 48% first-time correct
answers for other Exception problems. The feedback on this problem displays this cancelation and suc-
cess on mirror problems jumps to over 50% on later blocks. Our analysis is restricted to correct answers
and for these the latencies are quite short (less than 9 s on average) reflecting the rather simple proce-
dure in the Appendix that takes advantage of this cancellation strategy. We believe that for this problem,
the majority of the solutions involved retrieving a strategy based on the feedback and producing a pro-
cedure based on that.
6.2.1. Fitting predefined regions
The bottom of Fig. 15 shows the ACT-R swimlane representation for the large-base problem

105$4 = X. The swimlane covers the 2 s of fixation and the 15.6 s of problem solving (participants aver-
age 17.4 s to solve this problem). This is a problem that involves all of the Encoding, Planning, Solving,
and Responding states. 80 of the 128 problems involve all 4 states in the ACT-R model. There are 24
problems that skip the iterative Solving State as in Fig. 14. Finally, there are the 24 Regular problems,
already considered in Fig. 10 that skip the Planning State. Thus, with respect to inclusion of states
there are three problem types: Plan&Iterate, Plan only, and Iterate Only. Analyzing separately the
non-zero states for the three types of problems produces 10 activity measures. In addition, we calcu-
lated the average activation for the fixation period. Fig. 15 gives these activity measures for each
region of interest, including the RLPFC, which we associate with the activity of the Metacognitive mod-
ule. Comparing the observed and predicted activity across the fixation and these 10 states provides a
stronger test of the model. Table 2b presents the correlation coefficients between modules and
regions. Again, each region is best matched by its associated module. However, it is worth noting that
the Metacognitive module almost fits the LIPFC as well as the Retrieval module. These two modules
are highly correlated in their predictions (r = .962, the next highest inter-module correlation is .703
12 Not all mirror problems had 0 as an answer. Some stopped one number short of complete cancelation (e.g. 200$400 = 200) and
some went one number beyond (e.g., 200$402 = �201).



Fig. 15. Average activation for all problems in predefined brain regions as a function of state and the predictions based on
module activity. Bottom Right: The ACT-R swimlane representation of module activity during the solution of a pyramid problem
105$4 = X.
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between Visual and Metacognitive). This is not surprising given that Metacognitive module activity
drives a significant amount of Retrieval module activity.

In summary, following the trail marked by the HMM states, we have been able to construct an ACT-
R model that is capable of solving the 128 problems. This model is based on ACT-R instruction-follow-
ing models that have been applied to simpler mathematical problem-solving tasks (e.g., Anderson,
2005). However, the current model contains a major new architectural component, the Metacognitive
Module, which plays a significant role in the planning process by enabling the model to create new
instructions on the fly. Planning for Exception problems requires modifying or replacing steps in
the established procedure for Regulars. The Metacognitive module is responsible for constructing
the representation of these new steps. In addition to assure that they will be retrieved rather than
the well-practiced steps of the standard procedure, the Metacognitive module is responsible for the
rehearsal of these steps. While the Imaginal buffer is responsible for holding the problem representa-
tion, the Metacognitive buffer is responsible for holding the procedural representation.
7. Step 3. Refining the mental states

From the ACT-R model, we can obtain time estimates for each state for each problem by noting
when the goal associated with that state was active. Fig. 16 presents a comparison of these predictions
of the ACT-R model and the estimated state times from the 128-condition HMM. There is 0 correlation
for the Encoding State because the ACT-R model predicts no variation in its duration across problems.
Correspondingly, the variation is least for this state in the HMM times (standard deviations of .55 s
among the 128 means for Encoding, 2.31 s. for Planning, 2.28 s. for Solving, and 1.23 s. for Respond-
ing). For the other states there are large positive correlations between the state durations and the
ACT-R times although in no case do the correlations approach unity.

Both the ACT-R times and the HMM times were estimated to match the mean time of the different
problems. In the case of the HMM times, there were 129 (128 index parameters and 1 scale parame-
ter) � 4 (states) = 516 parameters. These are more than enough to enable a near perfect correlation
(r = .999) with the mean total times to solve the 128 problems. In the case of the ACT-R times, as detailed
in Appendix B, there were 5 parameters set to control the retrieval times for different



Fig. 16. Plot of the times of the 128-time HMM estimates for the 128 problems against the times in the ACT-R model.
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information, a 500 ms estimate for metacognitive updates, a 100 ms estimate for Imaginal updates, and
150% scaling of motor times to reflect the problems of using the keypad in the scanner. As these round
values indicate, these parameters were not carefully optimized. Nonetheless, these 8 time parameters
served to produce a .89 correlation with mean total times for the 128 problems. ACT-R’s average total
time over the 128 problems (11.5 s) is closer to the true average (11.3 s) than the HMM (12.4 s). The
HMM over-estimate occurs because it fits whole scans and the last scan has some ‘‘dead time’’ after
the response is complete. While the ACT-R total times correlate .88 with the HMM total times, it need
not follow that particular pairs of state times will correlate. In contrast to the strong correlations dis-
played in Fig. 16, the average correlation between non-corresponding states is .01.

If the states identified in the HMM analysis do reflect the periods identified by the ACT-R model,
the estimates of the state durations for individual problems should be improved by informing the
HMM analysis of ACT-R state times for each problem type. So, instead of estimating 128 gamma index
parameters per state, one for each problem, we set the index parameters for problems to be a linear
function of the ACT-R times: v = b + c * ACT-R-time. We further constrained the gamma scale param-
eter a such that a * c = 1 so that if the index intercept b estimated to be 0, the HMM state times would
be exactly the ACT-R times. This is a considerable reduction from the 129 parameters per state in the
128-state HMM. In LOOCV the 128-state HMM necessarily fits the 74 participants better, but the ACT-
R HMM more often predicted the 75th participant better (53 of the 75 participants, p < .001, with a
mean log likelihood advantage of 4.9). The massive reduction in the time parameters appears to avoid
overfitting, while capturing systematic variation.

Table 3 reports the estimated values of the a, b, and c parameters for each state. Note that for all but
the Responding State the intercept parameter b is estimated to be 0, meaning that the average times
for the first three states are the ACT-R times. The non-zero intercept in the Responding State means
that its duration is a * b = .75 s longer than the ACT-R time. On average, the participants’ response
completes with .84 s of the last scan remaining. The 0.75 intercept likely reflects this 0.84 s. idle time.
Since we only estimate an intercept for the Responding State, this final ACT-R HMM has reduced the
129 * 4 = 516 time parameters for the 128-state HMM to 5 (plus the 8 that control the behavior of the
ACT-R model).
Table 3
The ACT-R parameters estimated to infer the distribution of brain state durations from ACT-R model times.

Scale (a) Index (v = b + c * ACT-R-time)

Intercept (b) Slope (c)

Encoding 1.26 0.00 0.79
Planning 5.04 0.00 0.20
Solving 3.45 0.00 0.29
Responding 0.91 0.83 1.10



Fig. 17. Projection of the 4 brain signatures identified by the ACT-R HMM into 3 dimensions.
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The superiority of the ACT-R HMM over the 128-condition HMM implies that the estimates of brain
signatures given by the ACT-R HMM are more accurate.13 For the remainder of the paper we will use the
parameters from the ACT-R HMM as providing a refined definition of the states. While the 4 brain signa-
tures are defined with respect to 20 PCA means and can be mapped back to 8365 activation values, since
they are only 4 points they can be represented in a 3-dimensional subspace (just as 2 points can be rep-
resented along a 1-dimensional line connecting them in a higher-dimensional space). Fig. 17 provides a
representation of the position of the states in that 3-dimensional space, choosing an origin and a set of
orthogonal axes to help reveal the nature of these states. To map points in this subspace back to the ori-
ginal space one needs to know the where the origin in the subspace is in the original space. One also needs
to know the orientations of the axis are in the original space. Therefore, Fig. 17 also shows the brain recon-
structions of the origin and the vectors that define the 3 axes. The ACT-R HMM states can be reconstructed
by weighting the vector images by the coordinates of the point and adding these to the origin image.

1. Origin (solving state): We set the origin to be the Solving state. This displays a pattern of parietal and
prefrontal activation that we have come to recognize as quite typical of routine mathematical prob-
lem solving (e.g., Anderson, 2005; Rosenberg-Lee, Lovett, & Anderson, 2009). There is high activation
in the region of PPC (mapped to ACT-R’s Imaginal module) and the LIPFC (mapped to ACT-R’s Retrieval
module).

2. Axis 1 (Orientation): This vector adds a little activation in visual areas and more activation from
default mode regions such a posterior cingulate and polar frontal (Buckner, Andrews-Hanna, &
Schacter, 2008). We consider this pattern to reflect external orientation (Mayer, Dorflinger, Rao, &
Seidenberg, 2004). The Encoding state is not on this axis, but is relatively close with coordinates of
(1.14,0.35,0.39).

3. Axis 2 (Right hand): This vector adds activation in the vicinity of the left motor region. It seems
clearly associated with actions of the right hand. While the Responding state is not on this axis
it is close with coordinates of (0.35, 1.38, and 0.16).

4. Axis 3 (Metacognition): This vector adds activation in regions that look very much like what we
described as the metacognitive network in our empirical reports (Anderson et al., 2011;
Wintermute et al., 2012). Particularly noteworthy is activation in the regions of the RLPFC and
angular gyrus, but there is also activation in other prefrontal and parietal regions. While the Plan-
ning state is not on this axis it is relatively close with coordinates of (0.39, 0.16, and 1.07).
13 The brain signatures are not that different. The biggest difference is in the Planning state where the two sets of factor scores
still correlate .958.



Fig. 18. (a) Average values for the fixation and problem states on the three dimensions in Fig. 17 Smooth lines are fitted results
obtained in a regression with ACT-R modules. (b) Weights for ACT-R modules when regressed against the values in (a).
Significant (i.e., with 95% confidence intervals that do not include 0) weights are starred.
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Fig. 18a shows how the values for the dimensions in Fig. 17 varied across the fixation and problem
types, using the same format Fig. 15. Predictably, there is relative little difference for states that are
designated to be the same for different problem types. Interestingly, the fixation period is close to zero
on the Right Hand and Metacognition vectors while being even greater on the Orientation vector than
the Encode state. This reinforces our interpretation of the Orientation vector. While the ACT-R model
does not directly make predictions about the values on these three dimensions, one can regress the
vector values against module activity and generate predictions as weighted combinations of the mod-
ules. Fig. 18a also show the predictions that arise from regressing the Visual, Imaginal, Motor, and
Metacognitive Modules (omitting the Retrieval module because of its high correlation with the Meta-
cognitive module). Given that we are estimating 4 weights and fitting 11 points, it is perhaps not sur-
prising that the ACT-R model gives such good predictions. What is more interesting are the regressor
weights14 shown in Fig. 18b. It confirms a strong connection between the Visual module and the Orien-
tation vector, but the Orientation vector has negative weights for all the other modules, consistent the
apparent default-mode pattern. The Right-Hand vector has a strong connection the Manual module.
The Metacognitive vector weights most strongly on the Metacognitive Module.
8. Step 4. Interpreting the fMRI data

Now we turn to what this imaging analysis can say about two interesting aspects of the experiment
that we have ignored to this point. First, 40 of the participants were adults at Carnegie Mellon and the
other 35 were children between the ages of 12 and 14. What were the differences between these two
populations? Second, we have only considered correct responses. What were the differences between
the state characteristics of correct and incorrect answers? To address these questions, we fit the ACT-R
HMM to all non-time-out trials, getting an estimate for the state durations of each trial.15 Because the
estimation is not informed by whether or not the participant is a child or whether or not the trial is cor-
rect, we are using the same instrument to estimate the state durations for all cases defined by these two
dimensions of interest.

In interpreting the results it is good to keep in mind that there can be multiple sources of errors. For
instance, consider 207$4 = X (answer: 200 � 4 + 7 + 6 + 5 + 4 = 822). One participant produced 821 and
another 622. The first seems produced by an error in addition and the second by an error multiplying
the hundreds. However, another answer was 828, which seems the result of 207 � 4 (i.e. a wrong pro-
cedure), while another was 654, which seems impossible to diagnose. There were also answers of 5
and 7, which may reflect a participant giving up and just entering a number.

A complication is that different participants saw somewhat different subsets of problems
(random problem selection) and, more seriously, answered different numbers of problems correctly.
14 ACT-R module activity was z-scored to give each module equal variability and make the regression coefficients comparable.
15 Because we were also fitting slower error times we did not use the parameter constraint a * b = 1 that was used when we fit the

corrects only. Thus, all 3 parameters a, b, and c were estimated for each state. The intercept parameter b still estimates to be 0 for
the all but the Responding State.



Fig. 19. Mean time per state, plotted separately for corrects and errors and for children and adults.
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A participant who was doing well would have an over-representation of hard problems among the
corrects compared to a participant who was doing less well. Therefore we regressed out the effects
of problem, treating the state time Tij for a participant i on problem j as
16 Wh
correct
Tij ¼ M þ Si þ Pj
where M is the grand mean, Si is the effect due to the participant, and Pj is the effect due to the prob-
lem. The problem estimates Pj were constrained to average 0 over the 128 problems. The estimate of
state time for participant i was calculated as M + Si.16 We used this procedure to estimate 4 state times
for correct problems and separately to estimate 4 state times for incorrect problems, thus applying 8
independent estimation processes.

Fig. 19 shows the mean time per state for the four categories. We performed a 3-way analysis of
variance on these data where the factors were population (adult or child), correctness, and state. All
effects and interactions were highly significant (p < .001) except for the correctness-by-population
interaction, which was only marginal (F(1,73) = 2.90; p < .1). The highly significant three-way interac-
tion (F(3,219) = 6.49, p < .001) suggested it would be useful to analyze separately the effects in each
state:
8.1. Encoding

The Encoding time is greater for errors (F(1,73) = 36.21, p < .0001) and longer for children
(F(1,73) = 29.07, p < .0001) with no significant interaction (F(1,73) = 2.48). These effects on Encoding
time are a striking contrast to the earlier results of no differences in Encoding times as a function of
problem type (e.g., Fig. 8). In the ACT-R model these times include the classification of the problem and
identifying a strategy for constructing a solution procedure. The effects in Fig. 19 for Encoding time
probably arise from the strategy identification phase.
8.2. Planning

The Planning time is again greater for errors (F(1,73) = 25.66, p < .0001) but adults take longer than
children (F(1,73) = 5.13, p < .05). This longer time for adults is only for incorrect problems, resulting in
a quite significant correctness-by-population interaction (F(1,73) = 8.24, p < .005). Children had a
higher probability of not producing an answer for a problem (7.2% timeouts vs. 3.5% – timeout trials
were excluded in this analysis). One explanation is that, on difficult problems, children simply failed to
ile this method deals with potential selection artifacts, the results do not change much if we just calculate averages over all
and incorrect problems for a participant without the correction.



Fig. 20. Accuracy on children and adults as a function of the sum of the encoding and solving time on correct problems.
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find a solution strategy while adults came up with strategies that resulted long planning times and
incorrect procedures.

8.3. Solving

Solving time is greater for errors (F(1,73) = 17.22, p < .0001) and longer for children (F(1,73) = 5.67,
p < .05) and the interaction was marginal (F(1,73) = 3.36, p < .10). It seems likely these effects are dri-
ven by the retrieval of arithmetic facts. There is a general speed up in arithmetic retrieval with age
(Ashcraft, 1987) and a tendency to make more errors in retrieving arithmetic facts that are retrieved
more slowly (Geary, 1994).

8.4. Responding

Errors are slightly longer (F(1,73) = 5.14, p < .05) but there is neither a significant population effect
(F(1,73) = 1.72) nor an interaction (F(1,73) = 1.04). The reason errors are slightly longer is probably
because they averaged slightly more characters (1.92 vs. 1.72). The lack of difference between the
two groups may just reflect the fact that both underwent the same keypad proficiency training before
going into the scanner.

Overall adults are more accurate than children – 77% correct versus 58% correct. We correlated
average state times for correct problems with accuracy across the participants. There are quite signif-
icant correlations with both Encoding time (r = �.56; t(73) = 5.03, p < .0001) and Solving time
(r = �.53; t(73) = 3.60, p < .0001). There are also correlations with Planning time (r = �.30, p < .05)
and Responding time (r = �29; p < .05) but they are substantially weaker. In a stepwise regression,
both Encoding and Solving time make significant (p < .0001) contributions after the other is entered.
Having entered these two, the other two state times have no significant contribution to add. Covarying
out these 2 time variables, the accuracy difference between the two populations becomes 72% versus
64%, which is reduced but still significant (t(71) = 2.09, p < .05). Fig. 20 shows how well the simple sum
of Encoding and Solving times can predict accuracy. The correlation with this sum is �.60. The graph
reveals that the relationship holds within and between the two populations.

The relationship between speed and accuracy can be related to accessing relevant declarative
knowledge in somewhat different ways for Encoding and Solving times. In the case of Solving time,
we think the effects can be explained in terms of retrieval of arithmetic facts. For instance, Lebiere
(1999) presented his ACT-R model with 20 years of simulated practice on arithmetic facts, accumulat-
ing strength with practice. When facts were weak they were not only recalled slowly but also incorrect
facts can intrude.

In the case of Encoding time, we think long latencies reflect difficulty in retrieving a strategy for
planning a solution procedure. To retrieve an appropriate strategy the student must have some rele-



Table 4
128-Condition HMM planning and solving times (seconds) classified according to whether the ACT-R
model predicted the times would be above median or not.

Model’s planning state

Short Long

(a) Participant’s estimated planning time
Model’s solving stage

Short 2.93 3.95
Long 2.73 4.70

(b) Participant’s estimated solving time
Model’s solving stage

Short 2.20 2.97
Long 4.77 5.15
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vant knowledge. Consider the protocol of the college student in the introduction who was solving
X$4 = X:

‘‘different. . . Oh, that’s interesting. . .x, 3x + 6’’
This student was probably solving this as a successive integer problem (which is a common high
school problem) and reasoning (with a sign error) as follows:
X þ ðX � 1Þ þ ðX � 2Þ þ ðX � 3Þ ¼ X

4X � 6 ¼ X

3X � 6 ¼ 0
This is the reasoning pattern in the ACT-R procedure for this problem (see Appendix B). Reconceptu-
alizing this problem as a successive integer problem is easily accessible if one has experience with
such problems. Many of the participants (particularly the children) would have had little or no such
experience. Their long Encoding times reflect difficulty in retrieving such a basis. If they failed to
retrieve a basis, they may give up and perhaps resort to a strategy of just guessing an answer, resulting
in a shorter Planning time. This may produce the crossover (Fig. 19) in the incorrect times for adults
and children going from Encoding to Planning.

9. Conclusions

Our past experimental studies (e.g. Anderson et al., 2011; Wintermute et al., 2012) had shown that
a wide network of regions becomes active when participants are challenged to extend their knowledge
to solve a problem. The current research has shown that this pattern is not constant throughout prob-
lem solving but is concentrated around the period of time when participants retrieve a solution strat-
egy and plan their procedure based on that. The ACT-R model has codified one sense of
‘‘metacognition’’ from the many things the term can refer to in the study of cognition. The Metacog-
nitive module creates, modifies, and rehearses declarative representations of cognitive procedures.

The work focused on the RLPFC as representative of this metacognitive activity. There are a number
of other regions we could have chosen. For instance, the angular gyrus shows similar patterns of activ-
ity for pyramid problems. However, it is less reliably activated in other knowledge-extension tasks
that we have studied (Lee, Fincham, Betts, & Anderson, 2014) and seems to be associated with a rather
wide range of disparate functions (Seghier, 2013). In contrast, the RLPFC seems always activated when
participants must extend their knowledge. As reviewed earlier, considerable other research relates the
RLPFC to reflective functions. While the functionalities of all ACT-R modules are probably achieved by
a distributed set of regions, one can perform stronger tests of the theory if there is a predefined region
whose activity is expected to reflect the activity of each module.
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In the theory-free exploration of the state space, the best performing HMM was one that treated
each of the 128 problems separately. However, the HMM based on the ACT-R model revealed that this
apparent complexity was largely driven by three properties of these problems – the number of chan-
ged or new steps in planning, the number of iterations of repetitive adding, and the number of char-
acters that had to be entered to produce the answer (Fig. 17). While these factors are specific to our
class of problems, they illustrate the principle that the apparent diversity of complex problem solving
becomes systematic when analyzed with a cognitive model that addresses in detail how these prob-
lems are solved (e.g., Lee & Anderson, 2001).

Critical to the goals of this paper, the individual problems varied in their predicted Planning times
and Solving times. We classified the predicted Planning and Solving times as above or below median
for the 80 problems for which the ACT-R model predicted both a non-zero Planning time and a non-
zero Solving time. These 80 problems divided nearly evenly into the four possible categories: 21 prob-
lems had both short predicted Planning and Solving times, 19 had short Planning times and long Solv-
ing times, 21 had both long Planning and Solving times, and 19 had long Planning and short Solving
times. Table 4 shows the estimated times for the states from the 128-condition HMM (same HMM as
in Fig. 16. Since we are using the 128-condition HMM, the estimation is not informed by the model.
We did ANOVAs of the estimated Planning and Solving times, using the individual problems to get an
effect of variability. With respect to Planning time, the large effect of predicted Planning difficulty is
highly significant (F(1,76) = 44.93, p < .0001) and the effect of predicted Solving difficulty is not
(F(1,76) = 0.71) nor is the interaction (F(1,76) = 2.12). Conversely, with respect to Solving time, the
large effect of predicted Solving difficulty is highly significant (F(1,76) = 35.74, p < .0001) and the
effect of Planning difficulty is not (F(1,76) = 2.12) nor is the interaction (F(1,76) = 0.24).

Through the combination of the HMM–MVPA and ACT-R modeling we were able to analyze the
source of individual differences in problem solving. The same model fit both adults and children
equally well.17 Overall, the children took longer but these time differences were concentrated in the
Encoding and Solving phases of the tasks. This pattern suggested that the differences in success depend
on identifying a solution strategy and successfully performing the calculations. These inferences could
not be achieved without combining the HMM–MVPA and modeling approaches.

To repeat the NCTM goal from our introduction (Romberg, 1992), students should be able to ‘‘gen-
erate new procedures and extend or modify familiar ones’’. The conclusion of this paper is that this
ability depends on having access to a declarative representation of one’s procedures and the resources
(modeled in ACT-R’s Metacognitive Module) to reflect on these procedures and change them. The
activity of this module seems concentrated in the planning phase of problem solving. A striking result
of this research is that the children showed no deficit in planning relative to adults. While the planning
process varied widely among problems, it did not seem to vary between the two populations when the
problem was correctly solved (Fig. 19). If the children could retrieve a strategy, they seemed perfectly
capable of planning a procedure based on that strategy.

To further illuminate population similarities and differences, an analysis of activity in the ACT-R
predefined regions was conducted, averaging for the mean activity in each state for the two popula-
tions (see Fig. 1). The analysis was restricted to the 80 problem types that the ACT-R model assumes
have all 4 states. In the RLPFC, associated with ACT-R’s Metacognitive module, there is a highly signif-
icant effect of state (F(3,219) = 43.04, p < .001) but no difference between adults and children
F(1,73) = .02) nor is there a significant interaction (F(3,219) = 1.60). The absolute difference in the size
of the RLPFC response was small (mean of 0.38% for adults and 0.37% for children). In contrast, two
other predefined regions (Fig. 1) showed quite significant differences between the populations. Adults
show higher activation in the fusiform (0.35% versus 0.14%, F(1,73) = 12.02, p < .001) which corre-
sponds to developmental trends in the fusiform (Peelen, Glaser, Vuilleumier, & Eliez, 2009). Adults also
show greater activation in the PPC (0.71% vs. 0.56%, F(1,73) = 8.18, p < .01), which again corresponds to
developmental trends in this region (Rivera, Reiss, Eckert, & Menon, 2005).

In conclusion with respect to developmental effects, we see no difference between our young ado-
lescents and adults in their ability to construct a solution procedure if they know a strategy for
17 However, children younger than our population (ages 12–14) might have produced different results.
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constructing such a procedure. The differences between the populations were in their Encoding and
Solving processes. Children’s slower Encoding times reflected the fact that they often did not have
as ready access to a strategy for modifying their procedure. Their slower Solving times reflected less
practice with basic arithmetic facts. Fig. 20 shows that, controlling for the speed of Encoding and Solv-
ing, there is relatively little difference between the populations and that the two populations overlap.
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Appendix A. The 5-state solution

The analysis in Fig. 5 found best solutions for the 128-condition 5-state solution, but we chose to
focus on the 128-condition 4-state solution. Table A1 shows the correlations of the factor means for
these two solutions. States 1–4 of the 4-state solution correspond to States 1, 2, 3, and 5 of the 5-state
solution. State 4 of the 5-state solution appears to be a combination of states 3 and 4 of the 4-state
solution. Also the factor scores of State 4 of the 5-state solution can be fit quite well as a combination
of the adjacent States 3 and 5 (r = .91) – much better than any other factor score can be fit as a com-
bination of its adjacent states.

State 4 in the 5-state solution has a curious temporal distribution. As can be seen in Fig. A1 85% of
the cases are at 2 s and 15% are at 0 s. Fig. A1 involves a binning of durations to the nearest half second.
As might be expected, the actual times in States 1, 2, 3, and 5 average about .12 s from the nearest half
second. In contrast, the durations of State 4 average less than .01 s from exactly 0 or 2 or, very rarely,
4 s. Looking at the state occupancies it is apparent that State 4 is being assigned either zero or one
whole scan. The estimation process is capturing the fact that most problems involve a scan during
Table A1
Correlations between the brain signatures of the 4-state and 5-state solutions with 128 conditions.

5 State solution

State 1 State 2 State 3 State 4 State 5

4 State solution
State 1 0.998 0.079 �0.434 �0.392 �0.259
State 2 �0.028 0.996 0.227 0.120 �0.306
State 3 �0.481 0.112 0.984 0.460 �0.063
State 4 �0.296 �0.231 �0.129 0.842 0.990

Fig. A1. Proportion of trials involving states of various durations rounded to the nearest half second.



Fig. A2. Swimlane representations of snippet of the model activity when executing a step (a) and when creating a new operator
(b). The identities of the declarative retrievals are indicated and the production firings numbered for reference in the text. Each
gray bar marks off 50 ms.
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which the solution process is completing and the response process in starting. Variance can be max-
imized by creating a transitional state for this mixture and having low variability in the expected dura-
tion of this state. In fact, for the 128-condition model the estimation process estimates nearly zero
means for 19 of the 128 problems,18 2 scan means (4 s) for 1 problem, and 1 scan means (2 s) for the
remaining 108. Because there is no variability in state duration, it does not contribute to an understand-
ing of how state duration varies with problem characteristics. This is one example of the fact that an
analysis that maximizes explained variation does not necessarily maximize explanation.

There are two possible interpretations of what might have created this state. The first is that it is an
artifact of the fact that the points at which states change do not correspond to the 2-s scan boundaries.
The second is that there may be a period of time when motor planning and problem solving are inter-
mixed, perhaps when participants are confirming the answer they calculated. It is not possible to dis-
tinguish these two explanations given the temporal sloppiness of fMRI.
Appendix B. Module interaction during operator execution and operator creation

The actual model is available at http://act-r.psy.cmu.edu/?post_type=publications&p=16145. The
purpose of this Appendix is to illustrate the interactions among the modules that occur when execut-
ing a declarative operator and when creating a new operator. Fig. A2 presents expansions of two small
portions of swimlane representations like those in Figs. 11–14. Production firing in the Procedural buf-
fer has been added to Fig. A2 to provide a more complete picture of the module interactions.

B.1. Executing a declarative operator (Fig. A2a)

According to the ACT-R theory of declarative procedure following, learners start out with declara-
tive representations of procedures called operators, which consist of preconditions, primitive actions
that ACT-R can perform, arguments for these actions, and post-actions. For instance, the step of decre-
menting the term in Fig. 10 is represented:

Operator7:
precondition iterate
action decrement
arg1 term
post-action term-updated
18 These 19 problems have significantly shorter answers (1.26 characters versus 1.68 characters (t(126) = 2.77, p < .01) and so
have less of a response period to divide up.

http://act-r.psy.cmu.edu/?post_type=publications%26p=16145
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The operator states that when a decision has been made to iterate again (precondition iterate) then
decrement then term. Production 1 in Fig. A2 requests retrieval of the operator. In response to the
retrieval of this step the following production makes a request to retrieve the digit that is one less than

term:

Production 2:
If the operator requires decrementing a variable

And num1 is the current value of the variable
Then retrieve the number one less than num1

And note retrieving a fact
Fig. A2a illustrates 6–1 = 5 being retrieved in response to such a request. Then the following pro-
duction harvests the result of the retrieval and makes this the new value of term.

Production 3:
If retrieving a fact to change a variable

and num2 is the value retrieved
Then set the variable to num2

And note ready to do the next step
Production 4 in Fig. A2a is the same as Production 1 and requests retrieval of the next operator to
interpret.

B.2. Creating a new operator (Fig. A2b)

One function of the Metacognitive module is to create operators to replace an operator like the
Operator7 above. For instance, in Fig. 12, the step of decrementing is changed to incrementing. The
implementation of the change begins by a production noting that the operator to apply at the iterate
state needs to be changed:

Production5:
If changing the step at a state
Then try to retrieve a specification for a change at this state
The following chunk is retrieved as the specification of the change:

Negative-Height-Change3:
State iterate
new-action increment
new-arg1 term
post-action decrement-done
which states to change decrementing of the term to incrementing and then continue on as if it had
decremented. When this is retrieved yet another production sends this information to the Metacogni-
tive module to construct a new step:

Production6:
If a state change has been retrieved
Then move the specification to the metacognitive module
As Fig. A2b illustrates, the Metacognitive module is then engaged for 500 ms. In this time it con-
structs the new a new operator:
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OperatorNew:
precondition iterate
action increment
arg1 term
post-action term-updated
The Metacognitive module then rehearses the chunk by repeatedly placing it in the Retrieval module
(in Fig. A2b this is shown by the extended period of this chunk in the retrieval module). Productions 7
and 8, which fire during this time, are principally responsible for updating the Imaginal buffer. Since
this is the last of the 3 changes for negative height, the last production in Fig. A2b, Production9, starts
the actual execution of the procedure.

Appendix C. ACT-R details

The full ACT-R model and instruction for running it are available at http://act-r.psy.cmu.edu/
?post_type=publications&p=16145. Here we will discuss the parameters that control the behavior
of the model and the exception procedures not described in the body of the paper.

C.1. Parameterization of model

While the parameters for the ACT-R model were not set by a careful optimization process, they
were set with the mean problem times in mind. Below we review parameters that were set:

C.1.1. Retrieval module
Retrieval times are exponential functions of activation, A:
t ¼ Fe�A
The latency scale factor F was set to 0.1 s. Different types of facts were given different levels of
activation:

1. The declarative representation of steps of the pyramid procedure supporting information (such as
the use of a dollar sign) had activation 2, reflecting their high level of practice.

2. New steps rehearsed by the Metacognitive module were temporarily given an activation level of 4
so that they would be retrieved instead of the regular steps but they then decayed to a sufficiently
negative value that they would not be retrieved.

3. Addition facts involving the operands 1–9 where given an activation that reflected the size of the
arguments: 3.5 � log(operand1) � log (operand2) – such that 1 + 1 = 2 had an activation level of 3.5
while 9 + 9 = 18 had an activation level of �0.9.

4. Other odd facts (e.g., square root of 25, 33 divided by 5 rounded to the nearest integer) were set to
have activations of �1.5. These might better have been modeled with some computational
procedure.

Overall, this amounts to 5 retrieval parameters – the latency scale 0.1, the default activation level of
2, the activation level of 4 set by Metacognitive module through rehearsal, the 3.5 as the highest acti-
vation value for addition facts, and the �1.5 as the activation level for odd facts.

C.1.2. Metacognitive module
The Metacognitive model spent 0.5 s to transform and rehearse each procedural step.

C.1.3. Imaginal module
Each update to ACT-R’s Imaginal buffer (its working memory for partial results) took .1 s.

http://act-r.psy.cmu.edu/?post_type=publications%26p=16145
http://act-r.psy.cmu.edu/?post_type=publications%26p=16145
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C.1.4. Manual module
Participants response rate was slower in the scanner, probably because they could not see the key-

pad and where on their back while using it. To model the slower response times we added 50% to the
default motor times in ACT-R.

In addition to these processing times, we needed to calculate predicted BOLD functions. The BOLD
response associated with any module is calculated by convolving a hemodynamic response function
with a boxcar function that is 1 whenever the module is engaged and 0 otherwise. The hemodynamic
response function is the SPM function: gamma(6,1) � gamma(16,1)/6 (Friston et al., 2011).

C.2. Other exception procedures

Fig. A3 presents the other 10 procedures implemented in the ACT-R model for different Exception
problems. Here we discuss each briefly. The first 4 are implemented as modifications to the standard
iterative procedure and the last 6 are new procedures that bypass the iterative procedure:

(a) Unknown height: This is the simplest of all the edits – it just requires changing the test for ter-
mination (to be that the sum equal the value) and changing the response (to be the count).

(b) Fractional height: The procedure extends the original procedure to add in a fraction of the next
term. For example, 6$31=3 = 6 + 5 + 4 + 1=3(3) = 16.

(c) Negative base: To avoid doing signed arithmetic, the procedure switches the sign on the base
before iterative addition and then switches it back afterwards. The other changes involve incre-
menting the term rather than decrementing it.

(d) Unknown base: The procedure divides the value by the height and adds 1 to provide a possible
value for the base. Then the iterative procedure is applied. If it produces an answer smaller than
the sum, the base is incremented again and given as the answer.

(e) Mirror: To compute the height at which the positive and negative values will cancel, the proce-
dure doubles the base and adds 1 (e.g. 200 * 2 + 1 = 401). If this breakpoint equals the height, it
returns 0. If it is one less it returns the base. If it is 1 more it returns �(base + 1).

There are three possible types of double-X problems and a different procedure is required for each:

(f) V$X=X: Because the base is known the procedure runs something similar to the standard itera-
tive procedure.

(g) X$V=X: The procedure implements the same procedure as attempted by the student whose pro-
tocol was discussed in the main paper. Basically, it represents X$V = X as
X + (X � 1)+. . .+(X � (V � 1)) = X, which leads aX � b = X which leads to X = b/(a � 1). For
instance, for X$4 = X this leads to X = 6/(4–1). The first 6 boxes in the figure calculate the sum
of the first (V � 1) integers, which is b. The next two boxes calculate the a � 1. Then the division
is performed, the base and value are assigned, and the answer returned.

(h) X$X=V. The procedure guesses a height 1 that is more than the square root of the base. It then
uses the same procedure as in (i) below for unknown-base problems.

To model the students who guessed the base for unknown-base problems and the height for
unknown-height problems, we implemented procedures that bypass iterative addition. The model
uses an equal combination of the iterative procedures in parts (a) and (d) and the guessing procedures
in parts (i) and (j). The procedures in parts (i) and (j) rely on the insight that b$h is close to but smaller
than b * h, (where the approximation is proportionately better for larger bases and smaller heights).

(i) Alternative procedure for unknown base: For Unknown base, the base is guessed to be 1 bigger than
the integer result of dividing the value by the height. If the height is 4 or 5 this is incremented once
more.



Fig. A3. (a–d) Modifications to iterative procedure for different problem types. (f–j) Alternative procedures for other problems
types.
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(j) Alternative procedure for unknown height: The height is similarly guessed to be 1 more than the
integer part of dividing value by height. If the result is 2, the procedure stops and returns 2 as
the answer. If the result is 3, the actual height might be either 3 or 4. If it is 3, the value should
be 3 times the base minus 1. If the result is 4, the height might either be 4 or 5. If it is 5 the value
should be the height times the bases minus 2.
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