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Abstract 

Extending a cognitive architecture with a representation of 

physiology allows one to simulate the effects of homeostasis on 

cognitive processes. The underlying physiological substrate in 

the ACT-RΦ architecture allows one to model potential interac-

tions between homeostatic affect and cognition. In this paper, 

we describe an extension of the ACT-R utility mechanism that 

uses information from the physiological representation provided 

by ACT-RΦ. We also discuss a model that uses this new system 

to simulate the effects of homeostatic-based thirst on rule utility. 

The model completes a variation of the ultimatum game that 

used a primary reward (water) as opposed to a monetary reward. 

In the experimental version of this game, researchers induced 

thirst in some participants by administering hypertonic saline via 

an intravenous line. Our model was able to represent both the 

physiological (i.e., hypertonic saline) and behavioral (i.e., forced 

selection of a primary reward) portions of the experiment. The 

model also can potentially provide predictions of behavior dur-

ing the task that could not be observed due to the nature of the 

experimental condition. 

Introduction 

Extending a cognitive architecture with a representation 

of physiology allows one to model and simulate the ef-

fects of homeostasis on cognitive processes. Homeostasis, 

in this sense, describes the process of human physiologi-

cal systems changing to remain in a stable state. This 

physiological change can result in changes of affect that 

in turn can alter decision-making and memory processes. 

ACT-RΦ (Dancy, Ritter, & Berry, Accepted) is an ex-

tension of the ACT-R (Anderson, 2007) cognitive archi-

tecture that adds an underlying physiological substrate. In 

this paper, we describe a further extension of ACT-RΦ 

that adds a representation of homeostatic affect (subjec-

tive experience/feeling). Though there have been previous 

descriptions and implementations of cognitive and agent-

based architectures that include a representation for ho-

meostasis (e.g., Bach, 2009; Silverman et al., 2012), none 

have used a representation of bodily processes that at-

tempts to model actual human physiology. This is an im-

portant step in human behavior representation as it allows 

a modeler to more closely map simulation changes and 

results with existing empirical data. 

To keep in line with the theoretical nature of cognitive 

architectures, it is important that one has a theoretical 

account of how a physiological system may affect cogni-

tion. We have adapted theories from existing SEEKING 

(Panksepp, 1998) and incentive salience, or wanting, lit-

erature (Berridge, Robinson, & Aldridge, 2009); we use 

these theories to describe how some homeostatic process-

es affect cognitive processes. Taking this theoretical per-

spective is particularly useful in continuing to explore the 

question: “How can the human mind occur in the physical 

universe?” (i.e., Anderson, 2007).  

SEEKING, Wanting, and Incentive Salience 

The SEEKING system is a primitive affective system 

that is the driving force behind appetitive-approach ac-

tions (J. Wright & Panksepp, 2012). The neural substrates 

of this system are subcortical and evolutionarily older 

than cortical structures. Thus, the SEEKING system is 

seen as one of the most primitive affective systems.  

Wanting and incentive salience (Berridge et al., 2009) 

are very similar to SEEKING, but are typically described 

in terms of a secondary learning process (e.g., conditional 

learning; Zhang, Berridge, Tindell, Smith, & Aldridge, 

2009). Thus, incentive salience describes the process of 

learning that occurs when the wanting affective process 

brought on by unconditioned stimuli, is coupled to condi-

tioned stimuli. This higher level of inquiry is important as 

it provides a connection between the underlying primitive 

affective circuitry (and associated behavior) of wanting 

(comparable to what is denoted by J. Wright & Panksepp, 

2012, as the SEEKING system) and learning and deci-

sion-making behavior often studied in neuroscience and 

psychology. 

Though the two theoretical takes are very similar, they 

inherently focus on different levels; this makes combing 

of SEEKING and incentive salience into a cohesive 

framework an attractive prospect. Taking both theoretical 

accounts as separate entities and combining them thus 

allows one to build a cohesive computational framework 

by combining fairly atomic representations. We have cho-

sen to include these theoretical accounts in the ACT-RΦ 

architecture (Figure 1) as part of the Affect System.  
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ACT-RΦ: ACT-R with Physiology and Affect 

The ACT-RΦ architecture (Dancy et al., Accepted) 

combines the existing ACT-R cognitive architecture with 

the simulation system HumMod (Hester et al., 2011); 

HumMod contains a top-down model of human physiolo-

gy (e.g., representations of organs and hormones). ACT-

RΦ (Figure 1) extends ACT-R with new modules to 

communicate with HumMod. These modules also use the 

physiological values obtained to modulate the architec-

tures cognitive components. In turn, modelers can also 

simulate potential ways cognition can affect physiology. 

 

Figure 1: A high level diagram of the ACT-RΦ architec-

ture. Dotted lines represent connections that are not yet 

completed in the software system. 

The physio module (contained in the physiology system 

in Figure 1) facilitates communication between the ACT-

R and HumMod components of the architecture so that 

they can affect each other in (simulated) real-time. This 

module can be used to retrieve and change variable values 

in HumMod. The module also contains any direct connec-

tions between a physiological variables and cognitive 

parameters (e.g., a function for epinephrine and memory 

noise; Dancy et al., Accepted). 

The SEEKING module is meant to represent the func-

tionality of the SEEKING system described in Panksepp 

(1998) and J. Wright and Panksepp (2012). This system 

(part of the Affect System in Figure 1) is modulated by 

physiological variables used to represent homeostatic-

affect (that is, hunger, thirst, and skin temperature, Table 

1) as well as a goal related value. These representations 

compete in a winner-take-all fashion and only one effect 

modulates behavior at any given time.  The SEEKING 

system is updated every SEEKING-delay seconds and this 

parameter can be changed using the ACT-R sgp function. 

Table 1: Homeostatic functionality present in ACT-RΦ 

and important related variables in HumMod 

Function HumMod 

Hunger GI-Lumen, Leptin, Glucose 

Thirst Osmo-Rec, BodyH20.vol 

Skin Temperature Skin-Temperature 

 

The winning function affects existing production utility 

via an ACT-R utility-offset function. The utility offset 

adds the value found using equation 1; this is meant to 

match the equation described in Zhang et al. (2009). In 

equation 1, a variable k represents some physiological 

factor that dynamically modulates utility. 

               (1) 

                                         (2) 

            
                           

                 
        (3) 

The sVal variable in equation 2 is some normalized value 

to represent affect; rewardmax is a parameter that can be 

set by the modeler via the normal ACT-R sgp function 

that is used to change architectural parameters. In the 

model below, sVal is a normalized representation of thirst 

found using equation 3. 

A separate Affective-Associations module is used to 

couple affective values with ACT-R productions. This not 

only affects the normal cached utility values, but also 

dynamically modulates the utility according to current 

physiological need. This functionality is contained within 

a separate module to reflect the existing neuroscience and 

psychology literature that indicates this affective associa-

tive functionality is likely separate from existing affect 

generating and memory systems (e.g., McGaugh, 2004; 

Seymour & Dolan, 2008). A user of the system can ex-

plicitly attach affect to a production rule using the spp-a 

function, an extended version of the ACT-R production-

utility function; this extended version of the spp function 

allows a user to specify an affect-based function (e.g., 

thirst) that should be coupled with a production. 

Using these modules together with a process model al-

lows one to simulate different ways bottom-up homeostat-

ic-affect may modulate human cognition and behavior. 

Though other architectures exist with representations of 

homeostatic-focused motivation/affect (e.g., Bach, 2009; 

Silverman et al., 2012), the representation of physiology 

used in ACT-RΦ is more easily mapped to physiological 

data found in experimental studies. We demonstrate this 

characteristic of the architecture with a model that dis-

plays a potential way thirst can affect cognition. We mod-

el an existing task and data that observes the effects of 

artificially induced thirst on a modified version of the 
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ultimatum game (N. D. Wright, Hodgson, Fleming, 

Symmonds, Guitart-Masip, & Dolan, 2012). 

Modeling the Effect of Thirst on Cognition 

We developed a model based on an experiment con-

ducted by N. D. Wright et al. (2012) in which primary 

rewards, i.e. water, were used as the bargaining object in 

an altered version of the ultimatum game. The ultimatum 

game is a task where one player (the proposer) proposes a 

specific division of some endowed capital to a second 

player (typically referred to as a responder). The respond-

er can then accept or reject the offer; neither player re-

ceives any portion of the endowment if the responder re-

jects the proposed offer. In their version of the ultimatum 

game, participants were induced to be thirsty through the 

injection of a hypertonic saline solution via an IV, or in-

jected with isotonic saline (control group).  Participants 

then met in a room with two other participants, interacted, 

then were taken to their own room for testing. Each par-

ticipant was then physically presented with two glasses of 

water, one that represented the proposer's offer and one 

that represented the proposer's keep. They were told that 

the proposer was another participant (that they had previ-

ously met), but the proposition was actually constant in 

the experiment; the proposition was for the participant to 

receive a glass of water that was 12.5% full, while the 

proposer received a glass of water that was 87.5% full. 

The subjects were then given 15s to respond by circling 

“accept” or “reject” on a form. Due to the inherent safety 

issues of the experimental manipulation (artificially in-

duced thirst) participants were only asked to complete one 

round. 

Their results are interesting, because the objective 

measure of thirst (osmolarity) did not directly correlate 

with the acceptance rate of the offered water. Rather, the 

subjective measure of thirst (1-10 scale) correlated strong-

ly with the acceptance rate. This indicates (in their word-

ing) a “dissociative” gap between objective and subjective 

perception, which is similar to an affective valuation in 

our terminology. For this reason, we chose their scenario 

for modeling affective moderation of cognitive decision-

making. 

The Model 

This model implements the experimental condition of 

the Ultimatum Game with primary rewards (Wright et al. 

2012). The model is "injected" with hypertonic saline, is 

presented with an offer, makes a consideration of the fair-

ness of the offer, and then accepts or rejects it, all as in 

the normal game scenario. A few specific details of the 

model differ from the original experiment; for example, 

the model does not directly observe a glass of water, but 

is presented with a GUI which displays the numeric per-

centage being offered.  This percentage is the ratio of the 

offered volume of water over the total water times 100 

(12.5% for the purposes of this task).  

 

Figure 2: A diagram of the ACT-RΦ model. The thicker 

lines represent a continuous communication. 

Once the offer has been processed through visual in-

puts, the fairness of the offer is evaluated by a pair of 

competing productions which determine the fairness of 

the offer. These productions compare the offered value to 

a computed fair value (at least an equal distribution of the 

water), and if the offered value is less than fair, one pro-

duction rejects the offer, otherwise the other matches and 

accepts. However, these productions use the similarity 

and utility functionality in ACT-R, such that the applica-

tion of the productions can be influenced by subjective 

valuation moderators. When moderated in this way, the 

effective level of fairness can be raised or lowered. The 

integration of the ACT-RΦ modulators discussed earlier 

allow an underlying homeostatic process to affect proce-

dural memory selection. The accept and reject produc-

tions use the partial matching and utility mechanisms in 

ACT-R to determine rule selection with the accept rule 

receiving an "affective boost" when the model is thirsty 

(see figure 4). The model also did not have extraneous 

social knowledge about the other “player” in the Ultima-

tum Game, but the fairness appraisal productions were 

designed to replicate basic unfairness rejection behavior 

nonetheless, rather than being economically rational and 

accepting any offer. 

Model Results 

Running the model 1000 times yielded results similar to 

those exhibited in the original task (Table 2); running the 

model also yielded standard error mean (SEM) values that 

fit the criteria suggested by Ritter, Schoelles, Quigley, 
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and Klein (2011). The model produced an average subjec-

tive thirst of 7.29 with a standard deviation of 1.71; these 

results were very close to the results found in the original 

experiment (7.3 and 1.60). The specific osmolarity of the 

accept and reject groups was not reported by N. D. 

Wright et al. (2012). 

Table 2: Results from the ACT-RΦ model 

Decision Osmolarity (sd) Subj. Thirst (sd) 

Acceptexperiment Not Reported 8.90(1.7) 

Acceptmodel 306.37(0.2) 7.94(1.2) 

Rejectexperiment Not Reported 5.60(1.6) 

Rejectmodel 305.86(3.74) 4.82(1.2) 

Bothexperiment 310(5.0) 7.30(1.6) 

Bothmodel 306.27(1.7) 7.29(1.7) 

 

Though mean subjective thirst results for the combined 

(accept and reject) results were similar between the exper-

iment and model, the categorized subjective thirst values 

were lower on average in the model as compared to the 

experimental data (Table 2).  An explanation may be the 

significantly higher number of data points from our model 

as compared to the original experiment.  This illustrates a 

potential advantage of using ACT-RΦ to simulate an ex-

periment that requires a high setup and run cost. 
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Figure 3: A histogram of the subjective thirst results pro-

duced by the model. The lines represent the mean for sub-

jective thirst for models that accepted the offer, rejected 

the offer, and the two combined. 

As expected (from equation 1) a plot of subjective thirst 

vs. utility of the acceptance production rule (figure 4) 

produces a logarithmic curve. Accordingly, as the model 

gets thirstier, the effect of homeostatic affect on cognition 

increases and accelerates. 
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Figure 4: A plot of subjective thirst vs. acceptance pro-

duction rule utility. 

The model had a higher acceptance rate (79%) than the 

acceptance rate reported from the original experiment 

(50%). A likely reason for this disparity is that the fair-

ness representation in the model does not have enough 

weight on the outcome. Developing a more complex fair-

ness motivation representation will likely decrease the 

acceptance rate of the model. However, it is not clear 

whether the model should need to decrease to a 50% re-

jection rate as this number may also be representative of 

the small sample size and could change with an increase 

in participants. 

Discussion and Conclusions 

With this model, we were able to display one way that 

one can simulate bottom-up homeostatic affect. As op-

posed to explicitly changing goal behavior, the model 

featured an underlying change in utility based on a thirst 

that controlled an underlying motivational SEEKING or 

wanting system. Using a more realistic underlying physio-

logical substrate to drive homeostatic-affective change 

gave the opportunity to explicitly model the thirst induc-

tion (intravenous hypertonic saline injection) portion of 

the experimental task protocol. 

Though we have offered a partial explanation for some 

of the effects shown in the experiment conducted by N. D. 

Wright et al. (2012), there are several areas that both the 

model and architecture can be expanded to provide a 

deeper explanation of this task and others. We offer a 

brief discussion on potential areas of exploration related 

to simulating homeostatic-affect and implications for such 

work. 

Expanding the Ultimatum Model 

Though we provide a new representation of implicit 

physiological value with our model, it could be expanded 

to better encompass the cognitive and social aspects of a 

person completing the ultimatum game. The model could 

have a more complex explicit valuation system to make 
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the determination of whether to accept or reject an offer; 

we chose to exclude this in the current work as the origi-

nal experiment only had participants make one choice 

(accept or reject) as a responder. Similarly, the model 

could provide a more expanded declarative representation 

of the task that would not only add to the cognitive por-

tions of the model, but also to add homeostatic-based (af-

fective) declarative memories. Previous models of similar 

tasks (e.g., Juvina, Lebiere, Martin, & Gonzalez, 2011; 

Lebiere, Wallach, & West, 2000) offer insights into the 

particulars of model expansion. 

As detailed previously, participants were only asked to 

make one choice and only as the game responder. This is 

mainly due to the difficulty in artificially inducing thirst 

by physiological manipulation safely; it can be unsafe for 

the experimenter to induce thirst long enough to play an 

entire game. However, with an expanded model, our work 

will provide predictions for such an experimental protocol 

nonetheless as we are able to follow the exact physiologi-

cal manipulations present in the experimental procedure. 

A particular advantage of providing a more realistic phys-

iological substrate is that one can then explore potential 

experimental effects that would be dangerous in a normal 

human experiment. Such an expansion would also give 

one an opportunity to explore the implications of using 

the more neuroscience-friendly reward equation (Fu & 

Anderson, 2006) in conjunction with the incentive sali-

ence offset (       ). 

Explicit Homeostatic-Affect 

With the model presented, we provide a representation 

for bottom-up implicit homeostatic affect. While the 

model and system implement connections important for 

affective memory, there is a declarative affective memory 

system that is not currently represented in this work. Add-

ing an affective association to the declarative module 

should be explored in future work. 

Past work with modeling emotional declarative 

memory will likely provide a good starting point for add-

ing explicit homeostatic-affect. Cochran, Lee, and Chown 

(2006), for example, discuss representing the impact of 

emotion and arousal on declarative memory. Though that 

work would need to be expanded to encompass homeo-

static-based affect, it nonetheless provides insights into 

the possible mechanisms for affective change.  

Homeostatic-Affect and Performance 

With these expansions one can begin to provide predic-

tions of the performance change during a task that may 

accompany homeostatic need. Representing the effects of 

homeostasis on performance during normal daily task 

allows one to examine important points of time when the 

effects of homeostatic-need can severely impeded the 

completion of a task. One could for instance use results 

from existing studies (e.g., Lewis, Snyder, Pietrzak, 

Darby, Feldman, & Maruff, 2011; Tuk, Trampe, & 

Warlop, 2011) to simulate the effects of need to void on 

driving performance; a related model was made to repre-

sent the effects of sleep-loss on driving (Gunzelmann, 

Moore Jr, Salvucci, & Gluck, 2011). 

A particular advantage of using this architecture to look 

at these effects is the ability to enact several different 

types of homeostatic need (and other physiological sys-

tems) at one time to see the inter-physiological effects and 

see how these connections potentially affect cognition. 

The best method to determine a winning homeostatic need 

as these physiological processes interact remains an open 

problem. Nonetheless, examining the interaction of these 

processes on a physiological and cognitive level remains 

important as these factors continuously affect human task 

performance over the course of a day. 

Final Remarks 

This work explores a way to integrate homeostatic-

affect into an architecture with a unified theory of cogni-

tion and an underlying physiological substrate. Though, 

there are other manners in which homeostasis can affect 

cognition (e.g., explicit affective memory), this work still 

provides an important stepping stone towards including 

an integrated account of homeostatic-affect on cognition. 

The use of a computational architecture with more realis-

tic representations of integrated physiology also gives one 

the opportunity to explore how interaction between phys-

iological processes can modulate cognitive processes. 
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