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Abstract

This fMRI study examines how students extend their mathematical competence. Students solved a set of algebra-like
problems. These problems included Regular Problems that have a known solution technique and Exception Problems that
but did not have a known technique. Two distinct networks of activity were uncovered. There was a Cognitive Network that
was mainly active during the solution of problems and showed little difference between Regular Problems and Exception
Problems. There was also a Metacognitive Network that was more engaged during a reflection period after the solution and
was much more engaged for Exception Problems than Regular Problems. The Cognitive Network overlaps with prefrontal
and parietal regions identified in the ACT-R theory of algebra problem solving and regions identified in the triple-code
theory as involved in basic mathematical cognition. The Metacognitive Network included angular gyrus, middle temporal
gyrus, and anterior prefrontal regions. This network is mainly engaged by the need to modify the solution procedure and
not by the difficulty of the problem. Only the Metacognitive Network decreased with practice on the Exception Problems.
Activity in the Cognitive Network during the solution of an Exception Problem predicted both success on that problem and
future mastery. Activity in the angular gyrus and middle temporal gyrus during feedback on errors predicted future mastery.
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Introduction

Considerable research has examined the neural basis of

mathematical competence (e.g., [1–6]). The triple-code theory

(e.g., [7]) proposes that the horizontal intraparietal sulcus (HIPS)
processes numerical quantities, a left perisylvian language network

is involved in the verbal processing of numbers, and a ventral

occipital-parietal region processes visual representations of digits.

In related work, Dehaene et al. [8] identified three distinct parietal

regions of interest: the HIPS quantity processing region, the

angular gyrus (ANG) that is part of the perisylvian language

network, and the posterior superior parietal lobule (PSPL, not

part of the original triple-code theory) that supports attentional

orientation on the mental number line and other spatial

processing.

The ACT-R [9–10] models of equation solving [11–12] and

mental multiplication [13] emphasize the contribution of two

regions. One is the lateral inferior prefrontal cortex (LIPFC)
associated with retrieval of declarative facts, including arithmetic

facts and facts about algebra [14]. It is particularly involved in

more advanced tasks involving topics like algebra, geometry, or

calculus (e.g., [15–17]). The other region is the posterior parietal

cortex (PPC), which is about 2 centimeters away from each of the

three parietal regions (HIPS, PSPL, and ANG) identified by

Dehaene et al. [8]. The ACT-R theory associates this region with

operations on mental representation of things like equations.

Most of the prior research has focused on problems where

students have mastered and practiced algorithms for solving the

problems. In an attempt to go beyond such routine tasks,

Anderson et al. [18] introduced the use of pyramid problems
(Figure 1 gives instruction on pyramid problems used in our

experiment). An example of a pyramid problem is 9$3 = X which

is solved as 9+8+7 = 24. Pyramid problems involve a base (‘‘9’’ in

this example) that is the first term in an additive sequence and a

height (‘‘3’’ in this example) that determines the number of terms

to be added. Each new term added in the sequence is one less than

the previous term. As students work with pyramid problems they

quickly master the algorithm for them. Nonetheless, students can

still be placed in situations that require they extend their

knowledge, which students can do so with at least some success.

For instance, they can be presented with problems like these:

-5$4 = X

5$-4 = X

105$4 = X

5K$4 = X

X$4 = X.

The Anderson et al. study contrasted Exception Problems
like the above with Regular Problems (defined as involving

single positive digits for bases and heights). The contrast between
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these types of problems identified two patterns of activity that are

localized in different brain regions. The first pattern, which we call

‘‘cognitive’’, involves equal activity for Exception and Regular

Problems. Additionally, the activity was much greater when

solving the problem than when reflecting on the problem’s

solution, which was presented after students produced an answer.

The second pattern, which we call ‘‘metacognitive’’, involves

greater activity for Exception Problems than Regular Problems

and showed no decrease during the reflection period. More than

20% of the brain showed a significant (p,.01) correlation with one

or both of these factors.

The names of these patterns, ‘‘cognitive’’ and ‘‘metacognitive’’,

reflect basic assumptions about the processes involved in solving

these problems: Regular problems require similar processes to

those incorporated in many existing cognitive models, such as

retrieval of memories and manipulation of representations.

However, Exception problems are not as straightforward to

model. Part of that difficulty is the lack of good models of

metacognitive processing, which is likely necessary to solve

Exceptions. A person solving an Exception problem for the first

time needs to be aware of the fact that their existing strategy will

not work, and of how their objective relates to what they know

how to do. For convenience in this study, we use the term

‘‘metacognitive’’ more broadly to indicate that set of processes

which is used to understand and solve exception problems. This

likely includes the above processes, but also some that are not

usually called ‘‘metacognition’’, such as drawing analogies.

Figure 2 shows the different categories of engagement and their

distribution across the brain in this prior study, revealing what we

have called the Cognitive and Metacognitive Networks. The

prefrontal cortex displays a classic posterior-to-anterior gradient in

abstraction (e.g., [19–22]), going from cognitive to metacognitive

areas. In addition, the posterior cortex displays a medial-to-lateral

gradient. The PSPL and the PPC regions show strong cognitive

patterns; the HIPS and the LIPFC show a more mixed pattern;

while the. ANG shows a strongly metacognitive pattern. In

addition, there are strong cognitive patterns in the premotor

region and metacognitive patterns in superior prefrontal gyrus,

frontopolar regions, and the fusiform area. Note that all of these

patterns are bilateral. The mixed and metacognitive regions show

a substantial overlap with the flexibility areas in the recent meta-

analysis of executive function by Niendam et al. [23].

The Current Study
In the work of various labs, there is an emerging understanding

of routine mathematical behavior. For instance, there is an ACT-

R model of what is happening in the Cognitive Network during

the solution of Regular Problems (available at the website

associated with this paper: http://act-r.psy.cmu.edu/

publications/pubinfo.php?id = 1020). The goal of the current

study is to understand what is happening in the Metacognitive

Network and how both networks support learning to solve

Exception Problems. More generally, the goal of this research is

to understand how students extend their mathematical compe-

tence. The Anderson et al. study [18] was limited by the infrequent

appearance of Exception Problems. Thus, there were not enough

observations to determine which aspects of Exception Problems

were driving the patterns of activation. The current study contrasts

two kinds of Exception Problems: Some (like -5$4 = X) involve

unusual arguments like negative numbers, and large numbers, but

are solved by the same additive procedure. Others (e.g., X$4 = X)

require a change to the solution algorithm (guess-and-check is the

most common method for this type of problem). We will refer to

these two types of problems as involving Argument Exceptions
versus Algorithm Exceptions.

Also, because of the infrequent use of Exception Problems, the

previous study could not address the role of the Cognitive and

Metacognitive Networks in learning. Any particular Exception

Problem type only appeared once and so gave no opportunity to

investigate how mastery of that type would develop and what the

accompanying activity changes would be. In the current exper-

iment participants solved 8 examples of each exception type,

enabling us to track learning.

In the first day of this experiment participants received the

instruction on Regular Problems (see Figure 1) and practiced

solving such problems (i.e., solving for X in 9$3 = X). On the

second day Exception Problems were introduced. The nine types

of Exception Problems are shown in Table 1, classified by whether

they are Argument, Algorithm, or Dual Exceptions. Argument

Exceptions just involve repeated addition but one of the arguments

is unusual. Algorithm Exceptions just involve single digit base and

height but require a change to the algorithm. Dual Exceptions

involve both unusual arguments and a change to the algorithm.

Table 1 also orders the problems within each of these categories as

to their anticipated difficulty and shows the feedback explaining

the solution for each problem type.

As illustrated in Figure 3, subjects were given 5 seconds to study

feedback on their solution. We obtained separate estimates of

activity for the period before the response was entered (Pre
response) and the period during the feedback after response (Post
response). We expected Cognitive and Metacognitive regions

would be distinguished by their differential activity in the Pre

period and the Post period and by their differential activity to

regular problems versus exception problems, following two broad

patterns:

Figure 1. Instructions for participants.
doi:10.1371/journal.pone.0050154.g001
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Cognitive Pattern. Cognitive regions should be principally

engaged during the solution of the problem and not during

reflection on feedback. There should be no difference between

Exception Problems and Regular Problems.

Metacognitive Pattern. There should be no difference in the

engagement of metacognitive regions before or after the response,

as these regions should be engaged both in problem solution and

reflection on feedback. However, they should be more engaged

when dealing with an Exception Problem.

As in Anderson et al. [18] we created a contrast between activity

during regular problems in the Pre period (PreReg) and activity

during exception problems in the Post period (PostEx) to serve as

the primary differentiation between Cognitive and Metacognitive

regions. The expectation is that Metacognitive regions should

show more activity during PostEx than during PreReg, indicating

that the region is more involved with reflecting on exceptions than

with routine mathematical cognition. In contrast, Cognitive

regions should show greater PreReg than PostEx activity,

indicating that the region is more active during routine cognition

than while reflecting on exceptions.

Methods

Participants
Fifty right-handed participants were recruited for the behavioral

portion of the experiment (21 female, 29 male, ages 18–40,

mean = 23.4). Of those 50, 39 continued to the fMRI portion of

the experiment (16 female, 23 male, ages 19–35, mean = 23.05).

Ten did not participate in the fMRI portion due to poor

performance (see below), and one participant did not show up.

Procedure: Behavioral Training Session
The first session, outside of the scanner, involved 81 Regular

problems, where the base was in the range 1–9 and the height 1–9.

Each problem was presented on the screen as shown in Figure 3

preceded by a 3 second fixation period. Participants had

30 seconds to input an answer using a numeric keypad. After

their response or 30 seconds expired, feedback was presented for

5 seconds, showing the explanation for the correct answer (see

Table 1) and indicating whether their response was correct. After

feedback, a fixation cross was again presented for 3 seconds,

followed by a simple repetition detection task for 12 seconds.

During repetition detection, letters appeared on the screen at a

rate of 1 per 1.25 seconds, and participants were instructed to

press enter on the keypad when repeated letters occurred. This

task served to distract the participants from the main pyramid task

and return brain activity to a relatively constant level.

On the first day, prior to solving the problems, participants were

trained to enter values on a numeric keypad without looking.

While solving problems, the keyboard was concealed from the

participants’ view, mimicking conditions in the scanner. Partici-

pants who solved less than 32 of the last 45 problems correctly (due

to calculation error or inability to use the concealed keypad) were

not allowed to continue to the fMRI session.

Procedure: fMRI Session
The scanner session occurred within two days of the behavioral

session. Problems were divided into nine blocks, and were

presented the same way as in training, with the same timing.

The first block, during structural image acquisition, consisted of 16

Regular Problems (base ranging from 4–9 and height from 2–5).

The remaining 8 blocks, which provide the data for the

experiment, each consisted of one Regular Problem to start,

which was not analyzed, followed by a randomly ordered mix of 9

Exception and 2 Regular Problems. Each of these blocks had

exactly one problem of each exception type. Due to time

limitations, one participant did not participate in the last block

and one participant did not participate in the last two blocks. Data

from the earlier blocks for these participants were analyzed,

however. Based on preliminary analysis of the scan data, three

participants with abnormally large changes in BOLD signal were

detected. These participants were excluded from further analysis,

leaving 36 participants.

Images were acquired using gradient echo-echo planar image

(EPI) acquisition on a Siemens 3T Verio Scanner using a 32

channel RF head coil, with 2 s. repetition time (TR), 30 ms. echo

time (TE), 79u flip angle, and 20 cm. field of view (FOV). The

experiment acquired 34 axial slices on each TR using a 3.2 mm

Figure 2. Classification of different brain regions in terms of their activation patterns (from [18]): Cognitive regions respond
equivalently to Regular and Exception Problems and respond more strongly during problem solution than during reflection on
feedback. Metacognitive regions respond more strongly to Exception Problems than Regular Problems and respond as strongly during problem
solution and as reflection. Mixed regions also respond strongly to the task, but show an average of the cognitive and metacognitive patterns. See [18]
or later in the text for an explanation of other regions.
doi:10.1371/journal.pone.0050154.g002
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Table 1. The nine types of exception problems used and mean accuracy and latency for correct answers, as well as number of
correct trials contributing to the analysis of the fMRI data.

Easy Medium Hard Combined

Exception Category Argument Argument Argument Argument

Type Negative Height Negative Base Large Base Unknown Value

Example 4$-3 = X -2$4 = X 208$3 = X

Accuracy 84.40% 72.60% 63.50% 73.50%

Latency (sec.) 11.48 15.06 17.54 14.7

n 244 207 184 633

Exception Category Algorithm Algorithm Algorithm Algorithm

Type Unknown Height Unknown Base Double X

Example 5$X = 12 X$4 = 30 X$X = 15

Accuracy 85.40% 85.40% 66.00% 77.89%

Latency (sec.) 9.78 9.78 13.91 11.69 sec.

n 245 237 189 671

Exception Category Dual Dual Dual Dual

Type Large Base Unknown Height Fractional Height Mirror

Example 110$X = 434 5$2M = X 200$401 = X

Accuracy 89.90% 74.70% 62.20% 75.58%

Latency (sec.) 9.48 13.94 12.63 12.02

n 257 214 179 650

All Types

Accuracy 86.60% 76.50% 63.90%

Latency (sec.) 10.25 13.46 14.69

n 746 658 552

Example feedback given for each problem:
4$-3 = X: 4$-3 = 4+5+6 = 15 (or 5+6+7 if participant had chosen that solution).
22$4 = X: 22$4 = 22+23+24+25 = 214.
208$3 = X: 208$3 = 208+207+206 = 621.
5$X = 12: 5$3 = 5+4+3 = 12.
X$4 = 30: 9$4 = 9+8+7+6 = 30.
X$X = 15: 5$5 = 5+4+3+2+1 = 15.
110$X = 434: 110$4 = 110+109+108+107 = 434.
5$2M = X: 5$2M = 5+4+M(3) = 10.
200$401 = X: 200$401 = 200+199+…2199+2200 = 0.

Figure 3. An illustration of the sequence of events for each problem: The problem began with a 3-second fixation and then was
followed by a problem that stayed on the screen until the participant answered or until 30 seconds were up. Participants responded
by entering the answer in a numerical keypad. This was followed by feedback on the correct answer and its expansion. After seeing the feedback for
5 seconds, there was another 3 seconds of fixation. After this, participants were given a repetition-detection task for 12 seconds. In this task letters
appeared on the screen at the rate of 1 per 1.25 seconds. Participants were instructed to click a key each time they detected a pair of letters that were
the same. Also illustrated are the four regressors used for analysis – a 3 second ‘‘Fixation’’ regressor corresponding to the initial fixation period, a
‘‘Pre’’ regressor for the period from problem presentation to response initiation, a ‘‘Response’’ regressor for the period of response generation, and a
‘Post’’ regressor for the 8 seconds until the start of the repetition detection.
doi:10.1371/journal.pone.0050154.g003
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thick, 64664 matrix. This produces voxels that are 3.2 mm high

and 3.12563.125 mm2. The anterior commissure-posterior com-

missure (AC-PC) line was on the 11th slice from the bottom scan

slice. Acquired images were pre-processed and analyzed using the

NIS system and AFNI [24–25]. Functional images were motion-

corrected using 6-parameter 3D registration (AIR; [26]). All

images were then co-registered to a common reference structural

MRI by means of a 12-parameter 3D registration and smoothed

with an 6 mm full-width-half-maximum 3D Gaussian filter to

accommodate individual differences in anatomy.

fMRI Analysis
As in Anderson et al. [18], the critical analyses required

estimates of the activity before and after the response (i.e. Pre and

Post activity). To separate these two estimates from any activity

that involved preparation for the upcoming trial or response

generation, we used four regressors – one for the initial 3-second

fixation period, a Pre regressor for the variable period up to the

first keypress of the response, one from that time to response

completion, and a Post regressor for the 8 seconds after response

completion. These regressors were created by taking boxcar

functions for the four periods and convolving them with a

hemodynamic response function. We used the same hemodynamic

function as used in Anderson et al. ([18] – a gamma function with

an index parameter of six and a scale parameter of 0.75 seconds).

We obtained separate estimates of Pre and Post activity for the

Regular Problems, Argument Exceptions, Algorithm Exceptions,

and Dual Exceptions. In addition, although most of the analyses

will be on correct problems, we obtained separate estimates for

problems solved correctly and incorrectly. Finally, there were

separate regressors to deal with the cases where participants timed

out and never generated a response. Thus, there are a potential of

36 possible problem-related regressors (4 periods64 types62

correctness possibilities, plus 4 timeout regressors). However, the

fixation values were constrained to be the same for all conditions,

as were the response values, resulting in 20 regressors. Finally, a set

of regressors for a quadratic function was added to the analysis for

each block to extract any general trends. Using these regressors

allowed us to estimate measures of activity in different critical time

periods. We will refer to these as estimates of engagement.

These estimates of engagement we obtained for different

predefined and exploratory regions. For predefined regions, we

focused on the HIPS, PSPL, and ANG from Dehaene et al. [8],

and the LIPFC and PPC from the ACT-R theory [7]. These

regions have been previously used by Rosenberg-Lee et al. [13]

and Anderson et al. [18]. As in [18], the coordinates for the HIPS

region were updated to reflect the larger meta-analysis of Cohen et

al. [27]. Left and right analogs were used for each region. The

locations of the regions are:

a. PSPL: a 12.8 mm. (high) by 12.5612.5 mm2 region centered

at Talairach coordinates +/219,268,55 in Brodmann Area

7.

b. HIPS: a 12.8 mm. (high) by 12.5612.5 mm2 region centered

at Talairach coordinates +/234,249,45 in Brodmann Area

40.

c. ANG: a 12.8 mm. (high) by 12.5612.5 mm2 region centered

at Talairach coordinates +/241,265,37 in Brodmann Area

39.

d. LIPFC: a 12.8 mm. (high) by 15.6615.6 mm2 region

centered at Talairach coordinates +/243,23,24 spanning

Brodmann Areas 9 and 46.

e. PPC: a 12.8 mm. (high) by 15.6615.6 mm2 region centered

at Talairach coordinates +/223,263,40 spanning Brodmann

Areas 7 and 39.

An exploratory analysis was performed using the Pre-Regular

versus Post-Exception contrast to find cognitive and metacognitive

regions.. This exploratory analysis looked for regions of at least 10

contiguous voxels that showed a voxel-wise significance of 0.00003

for the difference between Pre-Exception and Post-Regular. Using

these values results in a brain-wide significance estimated to be less

than 0.01 by simulation [24,25].

Results

Results reported here will focus on the last 8 blocks of the fMRI

session where functional imaging data are available. A major goal

of this study was to understand how students learned to master

exception problems. To examine learning trends we broke data

down into four quarters (2 blocks each).

Behavioral Results
Figure 4 shows the accuracy and latency broken down

according to type of problem and quarter (average of two blocks)

of the experiment. The latency is for correct responses only. In an

analysis that contrasts Regular Problems versus the average of all

Exceptions, there are significant effects of quarter (accuracy:

F(3,105) = 17.10, p,.0001; latency: F(3,105) = 22.18, p,.0001),

type of problem (accuracy: F(1,35) = 54.69, p,.0001; latency:

F(3,105) = 226.29, p,.0001), and an interaction between the two

(accuracy: F(3,105) = 11.58, p,.0001; latency: F(3,105) = 17.00,

p,.0001) such that the differences among conditions decreases

with practice. A contrast of the difference between Exceptions and

Regulars in the first quarter and the average difference in the last

two quarters is highly significant (accuracy: F(1,105) = 32.74,

p,.0001; latency: F(1,105) = 48.40, p,.0001) and the remaining

variance in the interaction is not significant (accuracy:

F(2,105) = 1.00, p..25; latency: F(2,105) = 1.29, p..25)

We also did separate analysis of the Exception Problems,

classifying them by type and difficulty. Table 1 presents the mean

accuracy and latency for the 363 exception types. There are again

significant effects of quarter (accuracy: F(3,105) = 33.54, p,.0001;

latency: F(3,105) = 39.92, p,.0001). With respect to difficulty,

there is a significant main effect (accuracy: F(2,70) = 50.84,

p,.0001; latency: F(2,70) = 85.16, p,.0001) and an interaction

with quarter (accuracy: F(6,210) = 2.57, p,.05; latency:

F(6,210) = 2.42, p,.05) such that the differences among difficulty

levels decreases with practice. The effects of type are of more

interest: no significant effect of type on accuracy but an effect on

latency (accuracy: F(2,70) = 1.35, p..25; latency: F(2,70) = 35.62,

p,.0001) and a highly significant interaction between type and

quarter (accuracy: F(6,210) = 4.29, p,.0005; latency:

F(6,210) = 8.48, p,.0001). This interaction is largely driven by

the large improvement of the Dual problems from the first quarter

to later quarters. The three Dual Exceptions all involve learning

algorithms that avoid adding large numbers or dealing with

fractions. In contrast, participants have to continue to add the

difficult numbers for the Argument problems, and so latency (and

to some degree accuracy) remains worse for these throughout the

experiment. Only latency shows a significant interaction between

difficulty and type (accuracy: F(4,140) = 1.76, p..10; latency:

F(4,140) = 8.87, p,.0001). The three-way interactions are not

significant for either measure.

The accuracy differences among the exception types have

disappeared by the final quarter (the three means are actually

Routine and Novel Mathematical Cognition
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identical) and latency differences have been reduced. The

differences between Regular and Exception Problems have been

reduced as well. This suggests that participants are reaching some

level of mastery of these Exception Problems. Furthermore, there

is little change in the last half of the experiment (there is no

significant effect for either measure of quarter or interaction with

quarter for the last two quarters), suggesting an end to an initial

phase of learning.

Imaging analysis: Predefined regions
Most of the imaging analyses used data from correctly answered

problems only. Table 1 gives the number of correct cases for each

exception type. The number of correct regular cases is 512. As

described in the Methods section we extracted measures of

engagement before and after the period of response generation.

To deal with issues of non-sphericity in our main statistical tests of

regional activity, we reduced all factors to binary contrasts. For the

effect of practice, we contrasted the first quarter with the average

of the last two quarters since accuracy and latency asymptote over

the last two quarters. We collapsed the exception types in the

analyses of variance, although we will report binary tests between

the different types as well. Table 2 reports the main effects of an

analysis of variance as signed t-tests (square root of F statistic) so

that the direction of the effect is apparent. A positive t indicates left

hemisphere greater than right, Pre-response activity greater than

Post-response activity, activity in the first quarter greater than

later, and activity for Exceptions greater than Regulars. The table

reports t’s for the two interactions of interest. Both look at how

other factors modulate the effect of problem type: whether the

Exception-Regular difference is greater before than after the

response, and whether it is larger earlier than later in the

experiment (while there were some interactions with hemisphere,

in all cases this took the form of the effect being stronger in the

dominant hemisphere but not changing its direction). The table

also reports tests for differences among the four types of problems

and a test for whether the activity after the response for Exceptions

was greater than the activity before the response for Regulars. A

positive value on this last test (PostEx-PreReg) indicates a

metacognitive region and a negative value indicates a cognitive

region. Finally, the table reports tests of whether the Pre and Post

activity is greater for Exception Problems incorrectly solved than

Exception Problems correctly solved. There were not enough

observations of errors to allow a similar contrast for Regular

Problems.

The PPC, LIPFC, PSPL, and HIPS show similar effects. There

is greater activity before the response to Regulars than after the

response to Exceptions. None of the t-tests for these effects reach

significance, although the effects for PSPL and HIPS would if the

conservative Holm-Bonferroni correction were not used (all four

contrasts were significant in [18]). The pattern for ANG is quite

different, showing greater response in the Post period and

therefore showing a positive Post-Exception versus Pre-Regular

contrast, indicative of a metacognitive region.

Figure 4. Behavioral results in scanner session as a function of type of problem and quarter of the experiment: (a) Percent Correct; (b) Mean response
time for correct responses.
doi:10.1371/journal.pone.0050154.g004

Table 2. Predefined Regions: Critical Statistical tests reported
as t-values.

PPC LIPFC PSPL HIPS ANG

Main Effects Left.Right 0.68 1.15 20.87 5.27*** 4.61**

Pre.Post 5.67*** 6.73*** 3.69* 4.69** 23.60*

1.(3,4) 0.74 1.28 1.04 20.12 0

Ex.Reg 6.07*** 6.88*** 4.12** 6.97*** 4.21**

Type Difference
Effects

Pre.Post 0.02 3.73* 0.02 2.21 3.43

1.(3,4) 0.6 20.18 0.51 0.65 2.4

Exception Type
Contrast

Arg - Reg 2.29 3.75* 2.14 3.26 1.62

Alg - Arg 5.32*** 4.74** 2.75 5.70*** 4.41**

Dual - Alg 3.13 0.99 2.55* 0.14 0.44

Metacognitive
Contrast

PostEx-
PreReg

23.1 22.74 21.57 21.18 4.91**

Error-Correct
(Exceptions)

Pre 22.08 20.91 22 20.79 0.23

Post 7.07*** 5.96*** 4.60** 10.98*** 3.50*

Significance levels for a 2-tailed t-test with 35 degrees of freedom, correcting
for multiple tests by the Holm-Bonferroni method:
*p,.05.
**p,.01.
***p,.001.
doi:10.1371/journal.pone.0050154.t002
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Among the exception types, Argument Exceptions evoke the

least response and Dual Exceptions the greatest. All regions show

this same ordering, although the Dual-Algorithmic difference is

not significant for LIPFC, HIPS, or ANG. All regions show less

engagement (and at high levels of significance) for Argument

Exceptions even though these problems are the most difficult in

terms of latency.

Since the PPC shows the most negative PostEx-PreReg contrast,

Figure 5 displays it as the most cognitive pattern. As can be seen in

part (a) of the figure, there is little change in its response over the

course of the experiment. Participants are speeding up for

Exception Problems (an average of about 4 seconds), but the

engagement per unit time is not changing. Figure 5b shows that,

while there is some variation in the engagement to different types

of correctly solved problems, the larger effect is the 50% decrease

from the Pre period to the Post period.

Figure 6 shows the results for the ANG, which has the only

positive PostEx-PreReg contrast and hence exemplifies the

metacognitive pattern. Part (a) of the figure shows that the

average response of this region for Regular Problems is close to

zero. Exception Problems show a positive response that decreases

over time. Figure 6b shows that the activity increases in the Post

period. Regular problems switch from quite negative to quite

positive, resulting in a fairly strong interaction between problem

type and the Pre versus Post period. In Figure 6c, note the early

rise in estimated engagement. This estimate is for the fixation

period before the participant knows the type of problem they will

encounter. This strong early engagement occurs both for Regulars

and Exceptions. In contrast, once the response is determined and

the participant is keying it out during the response period, there is

a strong negative dip in the hemodynamic response. We have

consistently found a negative response in this region during periods

of routine behavior, including well-practiced mathematical tasks

(e.g., [13]).

The results replicate and extend the results reported in

Anderson et al. [18]. Of the 5 predefined regions, the ANG is

again the only one to show the metacognitive pattern. Also, the

ANG was the only region to show a significant reduction in the

difference between regular and Exception Problems with practice.

The region seems to be disengaging as the problems become more

familiar.

The results for the different types of Exceptions indicate that it is

a change in the algorithm that is mainly responsible for the

increased response to Exception Problems, and not a change to

more complex arguments. Even though Argument Exceptions

were the most difficult in terms of latency, the Algorithmic and

Dual Exceptions produced significantly greater activation in all

predefined areas.

We also found that these regions respond more to errors, but

only upon receiving feedback (the Post period). There was a

tendency for cognitive regions to respond less while the error was

being made. This effect was significant for the PPC. Errors also

produced less Pre activity in the cognitive regions in [18], although

the effects were not significant.

Imaging analysis: Exploratory regions
The exploratory analysis that used the contrast between Post

Exception and Pre Regular (see Table 3 and Figure 7) uncovered

10 metacognitive regions and 8 cognitive regions. The 10

metacognitive regions in Table 3a break out in to 5 pairs of left

and right homologs. This includes regions (7 & 8) that overlap with

the predefined ANG. The cognitive areas include regions (14 &

15) that border the LIPFC and regions (16 & 17) that overlap

HIPS.

Table 3 gives the locations of these regions and t’s for five

contrasts of interest:

1. Whether the Exception-Regular contrast decreases over the

course of the experiment.

2. The difference between Algorithmic Exceptions and Argument

Exceptions.

3. The difference between Dual Exceptions and Algorithmic

Exceptions.

4. The difference between Errors and Corrects for Exceptions in

the Pre period.

5. The difference between Errors and Corrects for Exceptions in

the Post period.

Each of these contrasts is orthogonal to the Pre-Regular versus

Post-Exception contrast that was used to select the regions. We

combined the average response of the metacognitive regions,

weighting their activity by the number of voxels in a region. We

similarly averaged the 8 cognitive regions. Figures 8 and 9 display

these average effects and Table 3 includes the 5 t-tests above for

the average activity. The individual regions are largely consistent

with the average effects. The differences among problem types

(Contrasts 2–3) are significant only for the metacognitive average

and not the cognitive average. There is less engagement on error

trials before the response for the cognitive regions, but no such

effect for the metacognitive regions (Contrast 4). The predefined

cognitive regions showed a similar tendency. There is more

activation after an error in both cognitive regions and metacog-

nitive regions (Contrast 5), reflecting a rather unsurprising

increased engagement to process the feedback.

For the cognitive areas in Figure 8, it is striking how little

difference there is among the different correct problem types in the

Pre-response period, and how little Post-response activation there

is. These regions appear much ‘‘purer’’ cognitive regions than any

of the predefined regions.

Predicting Future Learning
Does engagement of the cognitive and metacognitive regions

predict learning for the Exception Problems? To answer this

question we used activity in these regions on the first block to

predict performance on later blocks. The cognitive and metacog-

nitive regions uncovered during the exploratory analysis were

used. The dependent measure was the number correct solutions

for an exception type on Blocks 2–8. As there are 9 exception types

for each participant there 36*9 = 324 such measures of future

learning. The five independent variables were amount of

engagement before and after response for cognitive and metacog-

nitive regions in Block 1 (262 = 4), plus a binary variable of

whether the item was correct in that block. A stepwise multiple

linear regression was performed on the 324 cases to determine

which variables were significantly related to future performance.

Table 4a reports the results of this analysis: There were significant

positive contributions of being correct on Block 1, of cognitive

activity before the Block 1 response, and of metacognitive activity

after the Block 1 response.

Table 4b reports a stepwise regression analysis to localize which

cognitive and metacognitive regions might be contributing most to

this effect. We eliminated the two small cognitive regions (13 & 14

in Table 3) and averaged the left and right homologs of the

metacognitive regions. This leaves 6 cognitive regions and 5

merged metacognitive regions. This analysis revealed a similar

pattern of future success predicted by Pre activity in a cognitive

region (the thalamus) and Post activity in a metacognitive region

(the Middle Temporal Gyrus –MTG). Although these regions

Routine and Novel Mathematical Cognition
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were the ones selected in the stepwise regression, there were a

number of equivalent regions. Having entered the MTG, the Pre-

response activity in any of the cognitive regions would have

entered at p,.01. On the other hand, having entered the

thalamus, only two of the metacognitive regions would have

entered with a p,.01: Instead of the MTG, the Post response in

the ANG could enter with a nearly equivalent t of 3.23 and it

would then block entry of the MTG. Thus, all cognitive regions

are predictive of future success to some degree and the MTG and

ANG are nearly equally predictive.

To provide a converging test of the contribution of these regions

we repeated the multiple regression analyses separately on the 36

cases for each exception type. The dependent variable was the

number of correct solutions for that problem type on Blocks 2–8

and the five independent variables were correctness in Block 1,

plus Pre and Post activity in the cognitive and metacognitive

regions in Block 1. As before, the cognitive activity was the average

of 6 of the cognitive regions used in the analysis of Table 3b.

However, in this case the metacognitive activity was the average of

the ANG and MTG only, as these were the only two

metacognitive regions that were predictive in the combined-type

analysis. We performed tests of whether the coefficients returned

were reliable across the 9 exception types. There were significant

effects of correctness in the Block 1 t(8) = 4.223 p,.005), of

cognitive engagement before the response (t(8) = 3.23, p,.05), and

of metacognitive engagement after the response (t(8) = 2.71,

p,.05). Insignificant and negative coefficients were associated

with cognitive engagement after the response (t(8) = 21.86 p..1)

and metacognitive engagement before the response (t(8) = 20.57,

p..5). This serves as a test of whether these effects generalize over

problem types and do not reflect different activation patterns

selecting different problem types that show different gains. Rather,

the effects occur within each exception type.

Table 5 classifies the cases by whether the solution was correct

on Block 1 or not, and whether the cognitive engagement and

metacognitive engagements were above or below average. When

participants correctly answered the first Exception Problem of a

particular type, they are successful on about 6 or more of the

Figure 5. Activity in the PPC: (a) The mean of the Pre and Post Activity over the four quarters of the experiment for correctly solved instances of the
different problem types. (b) The Pre versus Post activity for correctly solved instances of the four problems types plus activity for Exception errors. (c)
The hemodynamic response for correctly solved Regulars and Exceptions (averaged over types) using the event locking procedure described in [13].
The boxcar lines give the average engagement estimated for the Fixation, Pre, Response, and Post periods. The points are the data and the solid line
is the predicted BOLD response obtained by convolving a hemodynamic response function with the engagement functions.
doi:10.1371/journal.pone.0050154.g005
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remaining 7 instances. There is little room for contribution of

engagement to the prediction. In contrast, if the participants failed

to solve the same problem in Block 1, they averaged almost 2 more

correct solutions when the relevant activity values were high. This

is a 25% improvement in accuracy.

While the effects in Table 5 generalize across problem types,

there remains the question of whether these Pre Cognitive and

Post Metacognitive factors predict differences among participants,

whether they predict differences within participants, or both. To

address this question we performed two analyses focused on the

problems answered incorrectly in first block (left half of Table 5).

Both analyses looked at how the sum of Pre-Cognitive and Post-

Metacognitive activity for these problems on Block 1 predicted

number correctly solved on later blocks. To test whether there

were also effects within participants we split these error Exceptions

into cases where the summed activation was greater than that

participant’s average and the cases where it was below average.

Only slightly more than half of the non-tie participants (15 out of

29) showed more correct solutions for the problems on which they

showed more activation on Block 1. Thus, there is no evidence

that activation differences within participants were predictive. To

address the question of whether there were effects between

participants, we looked at the correlation between the summed

activation for a participant and the mean number that participant

later solved correctly. As Figure 10 shows, there was a relatively

strong relationship between the summed activation and future

success across the participants (r = .54, p,.001). Thus, it seems that

the relationship between activation and future learning is

capturing differences between participants.

Cognitive engagement before a problem both predicts future

success on that problem type and success on the problem itself.

Ravizza et al. [12], who found that activity in the LIPFC predicted

success on algebra problems, interpreted the greater activation as

indicating that participants were engaged in a pattern of

processing that would lead to a correct response. Cognitive

engagement for incorrect responses may be associated with future

success for similar reasons.

Figure 6. Activity in the ANG: See Figure 5 for a description of the figure. The mean estimated engagement during the response period (not
shown in part c) drops to 2.50%,
doi:10.1371/journal.pone.0050154.g006
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The two metacognitive regions (MTG and ANG) that predict

future success are often associated with the language processing in

the left hemisphere. The activations are bilateral in this task. A

stepwise regression, given the choice between left and right

regions, will choose the right, although they are nearly equivalent.

Anderson et al. [18] reviewed the evidence that the ANG,

particularly the right, is associated with reasoning about intentions.

Also the MTG is involved in deductive reasoning [28,29],

reasoning about intentions [30], and arithmetic competence

[31,32].

Patterns of Problem solving Engagement
The exploratory analysis (Figure 7) revealed regions that showed

relatively pure cognitive and metacognitive profiles. The prede-

Figure 7. Exploratory regions showing a significant effect of the contrast between activity before the response for Regulars and
after the response for Exceptions. Red regions show the metacognitive pattern of greater engagement reflecting on the solution to Exception
Problems. Blue regions show the cognitive pattern of greater activity solving Regular Problems.
doi:10.1371/journal.pone.0050154.g007

Figure 8. Average activity in the cognitive areas (Table 3 & Figure 6). See Figure 5 for a description of the figure.
doi:10.1371/journal.pone.0050154.g008
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fined regions all showed a mixture of these profiles. Our earlier

work (Figure 2) had revealed that there was actually a gradient of

profiles across the brain. The current study offers added power to

investigate the existence of such a gradient. To pursue this analysis

requires specifying a complete Cognitive Pattern and Metacogni-

tive Pattern for the current experiment. Figure 11 a&b provides

such a specification in terms of the amount of engagement defined

by crossing three variables:

1. Pre versus Post: activity before or after the response.

2. Correctly solved Regular Problems, correctly solved Excep-

tions, and incorrectly solved Exceptions, (not enough observa-

tions of incorrectly solved Regulars).

3. Early in practice (first two blocks) versus late in practice (last

four blocks).

The exact values in the figure are somewhat arbitrary but they

capture our qualitative assumptions: The Metacognitive Pattern

only involves engagement for Exception Problems, which is

reduced by 50% in the second half of the experiment. The Post

engagement is equal to the Pre engagement for correct problems

but increased by 50% if there is an error. The Cognitive Pattern is

largely one of a simple engagement in the Pre Period and no

engagement in the Post period. We assume that feedback on an

error requires some cognitive engagement in the Post period. The

exact amount (.375) was chosen to make the Cognitive and

Metacognitive Patterns completely orthogonal.

We extracted measures of Pre and Post engagement for each

voxel and calculated the correlation of these values with the

Cognitive and Metacognitive Patterns in Figure 11a&b. Figure 11c

shows the space of possible correlations. The radius of any point in

this space reflects the combined correlation obtained with the two

factors. The outer boundary in this scatter plot reflects the

theoretical bound of 1 (the maximum combined correlation with

two orthogonal factors). Figure 11c presents only those voxels with

mean engagement greater than zero and radius greater than .8

(corresponding to an R2..64 and a significance of p,0.01). Of the

40,429 positively responding voxels, 18,219 of these have radius

greater than 0.8. Since we would only expect about 404 voxels by

chance, it is apparent that these two patterns are accounting for

real variance in the brain.

Using the convention in Anderson et al. [18], Figure 11c breaks

these voxels into 6 color-coded 60-degree regions:

1. Cognitive: The 60-degree region from 245u to +15u where

the correlation with the Cognitive Pattern is near 1.

2. Mixed: The 60-degree region from +15u to +75u where the

correlations with the Cognitive and Metacognitive Pattern are

about equal.

Figure 9. Average activity in the metacognitive areas (Table 3 & Figure 6). See Figure 5 for a description of the figure.
doi:10.1371/journal.pone.0050154.g009
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Table 4. Results of the stepwise multiple regression analyses predicting number correct on Blocks 2–8.

(a) Average Cognitive and
Metacognitive Activity

Variables included Beta t Sign.

Block 1 (Correct?) 0.751 9.20 0.0000

Pre Cognitive 0.252 3.07 0.0023

Post Metacognitive 0.223 2.73 0.0067

Variables excluded Beta t Sign.

Post Cognitive 20.172 21.52 0.1292

Pre Metacognitive 20.007 20.06 0.9541

(b) Activity of Individual Regions

Variables included Beta t Sign.

Block 1 (Correct?) 0.738 9.17 0.0000

Pre Thalamus 0.317 3.93 0.0001

Post Mid Temp. 0.277 3.44 0.0007

Variables excluded Beta t Sign.

Pre Occip./Temp. 0.738 20.42 0.6721

Post Occip./Temp. 0.317 1.22 0.2246

Pre Mid Temp. 0.277 21.56 0.1188

Post Thalamus 20.041 1.29 0.1969

Pre Caudate 0.107 21.70 0.0898

Post Caudate 20.139 1.48 0.1408

Pre Frontpolar 0.113 0.67 0.5053

Post Frontopolar 20.166 1.82 0.0689

Pre Frontal 0.137 20.63 0.5309

Post Frontal 0.065 1.81 0.0715

Pre Angular Gyr. 0.153 0.05 0.9582

Post Angular Gyr. 20.056 1.24 0.2148

Pre Parietal Lob. 0.151 20.54 0.5897

Post Parietal Lob. 0.005 3.44 0.0896

Post Cent.l Gyr. 0.103 1.90 0.0585

Pre Cent.l Gyr. 20.051 0.58 0.5635

Pre Medial Frontal 0.147 0.46 0.6446

Post Medial Frontal 0.157 1.21 0.2266

Pre SPFG. 0.055 0.59 0.5543

Post SPFG 0.041 21.03 0.3018

doi:10.1371/journal.pone.0050154.t004

Table 5. Number Correct out of 7 on Blocks 2–8 as a function of Correctness on Block 1, Cognitive Engagement and Metacognitive
Engagement.

Wrong on Block 1 Wrong on Block 1 Correct on Block 1 Correct on Block 1

Lo Post Meta Hi Post Meta Lo Post Meta Hi Post Meta

Lo Pre Cognitive 3.69 4.49 6.04 5.91

Hi Pre Cognitive 4.83 5.44 6.10 6.40

doi:10.1371/journal.pone.0050154.t005
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3. Metacognitive. The 60-degree region from +75u to +135u
where the correlation with the Metacognitive Pattern is near 1.

4. Anti-Cognitive. The 60-degree region from +135u to +195u
where the correlation with the Cognitive Pattern is near 21.

5. Negative: The 60-degree region from +195u to +255u where

the correlation is about equally negative with the Cognitive and

Metacognitive Patterns.

6. Anti-Metacognitive. The 60-degree region from +255u to

+315u (or 245u) where the correlation with the Metacognitive

Pattern is near 21.

Many of voxels in the Anti-Cognitive to Anti-Metacognitive

range that had a radius greater than 0.8 were eliminated in

Figure 11c because their mean engagement was negative.

Figure 11d shows the locations of all voxels with radius greater

than 0.8, whether positively or negatively responding. The

positively responding regions use the same color-coding as in

Figure 11c, while the negatively responding voxels are in black.

The similarity with the pattern in Figure 2 is quite striking. The

greater power of this study (more participants, 12 rather than

8 points for the correlations) has resulted in somewhat more

structure being revealed than our previous study. It is even more

apparent that as one goes from the back to the front of the

prefrontal cortex the activity changes from cognitive to metacog-

nitive. In addition, in the posterior cortex there is a cognitive-to-

metacognitive gradient going from medial to lateral regions. The

negatively responding black regions often appear to be an

extension of the metacognitive regions. These negatively respond-

ing voxels are in classic default network regions (e.g., [33,34]) such

as the medial prefrontal and posterior cingulate. The positively

responding voxels include many of the regions already identified in

the predefined or exploratory analyses. It is also striking just how

much of the brain’s activity correlates with the cognitive and

metacognitive patterns. The challenging nature of the task means

that it engages many processes.

Discussion

This research replicates the earlier finding that these pyramid

problems produce two neural patterns in a widely distributed set of

regions. The cognitive pattern shows only shows high engagement

while solving the problem and does not distinguish between

Regular Problems and the different types of Exception Problems.

While Exception Problems take longer and so evoke greater total

Figure 10. The relationship between participants’ average Pre-
cognitive engagement and Post-metacognitive engagement
for incorrect Exception Problems in Block 1 and their success
on those exception types in later blocks.
doi:10.1371/journal.pone.0050154.g010

Figure 11. Correlation with metacognitive and cognitive patterns. (a) Metacognitive Pattern. (b) Cognitive Pattern. (c) Color coding of
categories for 18,219 positively responding voxels with radius .8. (d) Brain distribution of voxels with radius ..8. Negatively responding voxels are in
black and positively responding voxels use the color coding in (c). The value of z at each brain slice (shown in radiological convention: image
left = participant’s right) is at x = y = 0 in Talairach coordinates.
doi:10.1371/journal.pone.0050154.g011
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activation, the amount of cognitive engagement per unit time does

not differ among the problem types. In contrast, metacognitive

regions tend to be engaged more after the problem is solved when

feedback is presented. There are substantial differences in

metacognitive activity among the problem types both before and

after the response is given. These regions are found across the

brain with the metacognitive regions more anterior in the

prefrontal cortex and more lateral in the posterior cortex. Among

the regions Anderson [11] and Dehaene et al. [8] associate with

mathematical and algebraic problem solving, only the ANG shows

the metacognitive pattern.

The current study also indicates that degree of metacognitive

activation is not just a reflection of problem difficulty. In terms of

accuracy, the three exception types were equally difficult and, in

terms of latency, the Argument Exceptions were most difficult.

However, Argument Exceptions, which require participants apply

the same algorithm to more difficult numbers, produce the least

metacognitive activity. The problems that produced greater

metacognitive activation were problems that required changes to

the algorithm, such as doing generate and test or not doing

repeated addition at all (as in the mirror problems). These

problems require participants to reflect on their algorithm for

solving pyramid problems and to decide how to modify that

procedure.

The current study found that metacognitive engagement for

Exception Problems reduced with practice, although only for the

Argument Exceptions did it go down to the level of activity

associated with Regular Problems by the end of the 8 blocks. This

is consistent with the assumption that these regions are related to

developing mastery over these problems. As that mastery develops,

the metacognitive engagement decreases.

Most significantly, engagement in the metacognitive regions

after the response predicted future learning as did engagement in

cognitive regions before the response. Given that cognitive

engagement before the response also predicts success on the

problem itself, it seems likely that it reflects the kind of problem

solving that will lead to success. The metacognitive activation after

the response presumably reflects successful processing of the

feedback. Metacognitive activity before the response also signifi-

cantly predicts successful learning, but its contribution is covered

by the other two factors. On the other hand, there is no

relationship between cognitive activity after the response and

future learning.

With respect to the metacognitive regions, future success is only

predicted by metacognitive activity in the MTG and the ANG.

The Post-response activity in the other metacognitive regions does

not have a significant relationship to future success. As we noted,

left MTG and the ANG are associated with language processing

and reading. While there is no verbal instruction in the feedback,

making use of the feedback is a comprehension challenge.

However, as we also noted, activity in the right homologs is at

least as strongly predictive of future learning as the left activity.

Although the language comprehension involvement of MTG and

ANG tends to be associated with the left, the meta-analysis of

Binder et al. [35] reports weaker activity in homologous right

regions.

Anderson et al. [18] did not find a metacognitive region in the

vicinity of the MTG but did find a similar pattern in the ANG.

Thus, we should have more confidence that the ANG does play a

critical role in solving these problems. The right ANG tends to be

about two centimeters away from the center cited by Decety &

Lamm [36] for the temporoparietal junction (ANG is a little

higher and more posterior). Its coordinates do overlap with some

studies reported in their meta-analysis. One theory-of-mind study

found this region was more active when participants took

another’s perspective rather than their own [37]. This suggests

that activation in the region might reflect trying to understand the

experimenter’s intentions in the definition of pyramid problems in

order to correctly extend the definition to these Exception

Problems. In addition, a right ANG region, basically identical to

the predefined region, is activated by a mismatch between one’s

actions and the consequences of these actions [38]. Under these

various interpretations it makes sense that the ANG should be

engaged when reflecting on feedback for an Exception Problem.

More generally much of the area identified in Figure 11 seems is

part of the fronto-parietal network that is engaged in many

cognitive tasks [39]. There is considerable evidence that develop-

ment of proficiency in mathematics is related to development of

this network [40,41]. With respect to kinds of problems studied in

this paper, this developmental research involves relatively routine

mathematical tasks that would activate the Cognitive network. It is

an interesting question whether development of the cognitive-

metacognitive gradient in Figure 11 is related to development of

competence in more abstract mathematics.

The major focus of this research is on the metacognitive regions

that become engaged with exception problems. The fact that they

are more active for Algorithm Exceptions than Argument

exceptions indicates that they are mainly driven by the need to

reflect on changes to an established algorithm. Individuals who

show greater levels of such activation are more successful in

learning. The association of the predictive metacognitive regions

with language comprehension suggests that language may be in

some way the ‘‘carrier’’ of the reasoning required to master these

novel concepts.
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