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Abstract This paper examines strategic adaptation in participants’ behavior conditional on the type of

their opponent. Participants played a constant-sum game for 100 rounds against each of three pattern-

detecting computer algorithms (CAs) designed to exploit regularities in human behavior such as imper-

fections in randomizing and the use of simple heuristics. Significant evidence is presented that human

participants not only change their marginal probabilities of choosing actions, but also their conditional

probabilities dependent on the recent history of play. A cognitive model incorporating pattern recogni-

tion is proposed that capture the shifts in strategic behavior of the participants better than the standard

non-pattern detecting model employed in the literature, the Experience Weighted Attraction model (and

by extension its nested models, reinforcement learning and fictitious play belief learning).
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1 Introduction

This paper presents experimental evidence that participants strategically adapt their behavior to their

opponent’s type. In contrast to prior research focusing on marginal choice probabilities, emphasis is

placed on patterns in historical action choices, e.g., first- and second-order action choice transition

probabilities. Furthermore, it is shown that existing learning models do not adequately capture strategic

adaptation, due to their inability to recognize temporal patterns in action choices. Finally, an alternative

behavioral model is proposed using pattern recognition that predicts the observed strategic change of

participants in cross-validation data.

Pattern recognition is a relatively neglected topic in the game theory learning literature. The state

of the literature includes a handful of theoretical papers on the convergence properties of simple pattern

recognizing learning rules [3, 21, 44], a simulation study [4] and some empirical studies [36, 45, 46].

The proposed behavioral model will incorporate pattern recognition of varying sophistication, as defined

by the temporal depth of lagged action choices used, and will be shown to significantly outperform

non-pattern detecting models. Strategic adaptation of subjects’ behavior to their computer opponents’

behavior will be shown to arise as a consequence of pattern search.

Prior research [7, 18, 37, 49] has raised concerns over the statistical properties of the econometric

techniques used in the empirical game theory learning literature. Learning models require the simultane-

ous estimation of a large number of heterogenous (across subjects) parameters for the belief and decision

rules; consequently, these models exhibit low statistical power in rejecting hypotheses and comparing

competing models.

To achieve the aforementioned goals, this study uses a within-participants experimental design, a

game with high payoff curvature, and computer algorithm (CA) opponents capable of exploiting com-

monly observed patterns in human behavior. Replacing participants’ opponents with computer algo-

rithms, referred to as the human versus computer opponent methodology (HvC), will allow the system-

atic observation of strategic adaptation through the precise experimental manipulation of CA types.

An optimal experimental design requires both the exact specification of a subject’s opponent, and also

significant variation or diversity in the behavior of these opponents. Accomplishing these two goals is dif-

ficult in a human versus human (HvH) experiment because the specification of the opponent’s behavior

would not be known a priori, but would have to be imprecisely estimated from the data, and variation

in behavior would not be guaranteed. Given the practical restrictions of the experimental methodology,

such as limited scalability,1 significantly more observations of HvH play are required to obtain the same

statistical power of a HvC experiment.

1 The restriction on scalability is particularly important for repeated games, as the experimenter is constrained
by both funding, access to participants and realistic experimental times/subject fatigue. Therefore increasing
the statistical power of the relevant hypothesis tests simply by adding more participants or more rounds to an
experiment has an upper limit, and also induces a tradeoff between more participants versus more rounds.
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The remainder of the paper is structured in the following manner. Section 2 provides a detailed

discussion of the experimental setup including the design of the computer algorithms. Section 3 analyzes

the results from the experiment, documenting the degree of strategic adaptation that is present in the

data. Section 4 proposes a learning model incorporating pattern recognition and Section 5 presents the

estimation results, including a comparison with a standard learning model (EWA). Furthermore, this

section examines how close the participants came to implementing an optimal behavioral strategy (from

a set of finite state automata) against each CA. Section 6 includes an analysis of data collected from a

questionnaire conducted during the experiment. Finally, Section 7 discusses the main conclusions drawn

and future research directions. Appendix A presents detailed estimation results from models, Appendix

B details the algorithms of the computer opponents and Appendix C describes the Experience Weighted

Attraction (EWA) model in detail as it used as a baseline model. Appendix D presents general data

analyses pertaining to questions such as how the type of CA opponent or the order of presentation of

the CAs affected participants’ payoffs, and finally, Appendix E presents the experimental instructions.

2 Methodology/Experimental design

2.1 General experimental setup

A constant-sum game was chosen as social preferences (trust, reciprocity and fairness) are irrelevant,

permitting more accurate econometric estimation of pure strategic adaptation. The payoffs of the exper-

imental game are specifically chosen to abide by two criteria: the curvature of the payoff surface should

be high enough to provide significant payoff incentives to players to change strategies, thereby avoiding

the flat minimum critique [26], and the mixed strategy Nash equilibrium (MSNE) of the stage game

should be sufficiently far away from equiprobable play.

The experiment was run in a computer lab at Mediterranean College in Athens, Greece and partic-

ipants interacted via computers running the Comlab Games Software.2 Undergraduate students were

randomly recruited through the use of fliers on campus and majored in business studies, psychology or

computer science. Three sessions of eight students and one session of seven students were run for a total

of 31 participants.

Every subject played the 2× 2 constant-sum game presented in Table 1 one hundred times against

each one of the three CAs. The stage game MSNE strategies are playing blue and brown 30% of the

time, and yellow and white 70%. Participants were randomly assigned to one of three treatments that

varied the order of presentation of the CAs—each CA was presented exactly once as the first, second

and third opponent in the treatments.

2 This software is freely available at http://www.comlabgames.com and allows the design and implementation
of a wide variety of game theory or decision making experiments.
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Table 1 Game payoffs

Computer algorithm’s actions

Brown (br) White (w)

Participant’s actions
Blue (bl) 108, -80 -32, 60
Yellow (y) -32, 60 28, 0

Participants were informed after each round what move their opponent made, their current payoff

in that period, their average and total payoff against their opponent. Full disclosure was provided to

participants by clearly stating that they were playing against three different computer opponents; they

also knew when the computer opponent changed. This served to reinforce purely strategic behavioral

adaptation devoid of other motivations, since human participants should not care about the outcomes

of a CA.

Participants responded to an open-ended question after every 25 rounds asking what their strategy

was in the last 25 rounds. After the last (100th) round against each CA, participants were asked to state

how many times they thought their opponent played each action and how many times they thought they

played each of their own actions.

Participants’ monetary reward was dependent on the average number of points they had amassed

against all three computer algorithms. They received the average number of points in euro—the average

monetary reward for participants was AC11.56, the minimum and maximum earnings were AC4.93 and

AC15.80 respectively. As the experiment lasts roughly an hour this rate compares favorably to alternative

sources of income for students.3 Additionally, two prizes were offered to the participants who achieved

the two highest average payoffs after the completion of all experimental runs. The subject with the

highest average payoff received an additional AC30, whilst the second best performer received AC20. This

incentive scheme, and the use of negative payoffs in the game, were used to motivate participants to keep

their attention focused on the task and search for effective strategies against the different opponents—

the former by providing the opportunity of a relatively high payoff, the latter by threatening payoffs that

participants may have accrued in earlier rounds. This incentive structure may affect behavior through

its effect on the risk associated with various strategies and the asymmetry between gains and losses.

However, any such effect on behavior would be constant across all the treatments (CA opponents), and

therefore comparative statics analyses of behavior across different opponents are still valid.

3 In perspective, the minimum monthly wage for non-manual workers in Greece in 2006 was AC668 [19], roughly
AC4.18 per hour (assuming 40 hour weeks).
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2.2 Computer algorithm opponents

The studies employing a HvC methodology in the game theory literature have used a variety of types

of CA players.4 The main conclusion regarding strategic adaptation is that participants respond to the

CAs and move in the direction of best response, albeit sometimes weakly, depending on the complexity

and magnitude of a CA’s deviation from equilibrium behavior. With the exception of a few studies

[11, 29, 48], the CAs were not capable of exploiting empirically observed regularities in human behavior.

I implement more sophisticated CAs specifically designed to exploit the imperfect randomization

exhibited by participants in Rapoport and Budescu [32] and Budescu and Rapoport [5]. The fp2 and fp3

algorithms are variants of fictitious play (fp), which computes the historical probability of the opponent

playing each action, and predicts that future actions are drawn from the same distribution. The fp2

algorithm computes the frequency of occurrence of two-period strategies, generating beliefs conditional

on the opponent’s previous action; the fp3 algorithm tracks three-period strategies, generating beliefs

conditional on the two prior actions of an opponent.

The third CA exploits a simple strategy often used by humans, the win-stay/lose-shift heuristic5

[30], henceforth abbreviated to ws/ls. The single period detector (spd) CA observes whether participants

condition on the CA’s first lagged action, of which the ws/ls heuristic is a special case. The spd algorithm

keeps count of the number of times a subject’s action was consistent with the ws/ls heuristic minus the

number of times it was inconsistent. Whenever this count is positive (or negative) the CA assumes the

subject’s next response will (not) be the one prescribed by the ws/ls heuristic and best responds to

these assumptions.6

3 Evidence of strategic adaptation in the data

This section establishes that patterns of action choices are affected by the type of CA opponent. Let the

subscripts i and −i denote two matched players, and ai,t denote the action chosen by player i at time,

or round, t. Table 2 presents the empirical marginal probabilities of action choices and the first-order

Markov transition probabilities pooled by CA opponent type, and Table 3 the second-order Markov

transition probabilities.

4 These CAs include simple (non-Nash equilibrium) mixed strategies [20, 29, 40], fictitious play [11, 14, 30],
reinforcement learning [14, 39], simple heuristic decision rules [14], a mixture of minimax and a logit model
incorporating the history of play [29], a simple neural network incorporating historical play [48], a basic ACT-R
cognitive model [28] and EWA [39].

5 For 2 × 2 games, the win-stay/lose-shift heuristic dictates that a player should choose the same action in
the previous period if it led to the best outcome given the opponent’s action choice, and should switch to the
other action if it led to the worst outcome in the previous period. Note that for this game, the win-stay/lose-shift
heuristic prescribes the same action choices as the Cournot best response heuristic.

6 This guards against the possibility that participants may learn to use the exact opposite heuristic i.e. changing
strategy when winning and using the same strategy when losing.
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The marginal probability of playing bl is significantly different for all three possible CA comparisons

using two-sample tests of proportions: fp2/fp3 (z = −2.42, p = 0.0155), fp2/spd (z = −6.31, p < 0.0001)

and fp3/spd (z = −3.9, p = 0.0001). However, the economic significance of the difference between fp2

and fp3 is not particularly strong, as the change in the marginal probability is only 0.03. The difference

in marginal probability is greatest between fp2 and spd, 0.08.

First-order Markov transition probabilities against the fp2 and fp3 algorithms are again similar,

however there are economically significant differences between these two algorithms and spd. The largest

change occurs for the history (ai,t−1 = y, a−i,t−1 = w), as the conditional probability of playing blue

increases from 0.24 against fp2 to 0.42 against spd. With respect to second-order transition probabilities,

again the largest strategic change appears to occur against the spd CA.

Table 2 Human participants’ empirical marginal and first-order Markov transition probabilities

Marginal First-order p (ai,t = bl|ai,t−1, a−i,t−1)

a−i,t−1

fp2 fp3 spd br w

bl 0.38 0.41 0.46
ai,t−1

bl 0.55, 0.56, 0.46 0.39, 0.38, 0.46
y 0.62 0.59 0.54 y 0.62, 0.61, 0.51 0.24, 0.27, 0.42

The conditional probability of bl against fp2, fp3 and spd respectively

Table 3 Human participants’ second-order Markov transition probabilities

Second-order p (ai,t = bl|ai,t−1, ai,t−2, a−i,t−1, a−i,t−2)

(a−i,t−1, a−i,t−2)

(br, br) (br, w) (w, br) (w,w)

(ai,t−1, ai,t−2)

(bl, bl) 0.72, 0.65, 0.62 0.48, 0.55, 0.62 0.31, 0.29, 0.53 0.40, 0.45, 0.51
(bl, y) 0.58, 0.60, 0.51 0.35, 0.48, 0.26 0.30, 0.40, 0.44 0.34, 0.35, 0.36
(y, bl) 0.46, 0.63, 0.57 0.52, 0.65, 0.52 0.36, 0.45, 0.65 0.30, 0.32, 0.39
(y, y) 0.57, 0.53, 0.60 0.70, 0.62, 0.46 0.39, 0.32, 0.42 0.17, 0.20, 0.26

The conditional probability of bl against fp2, fp3 and spd respectively

Strategic adaptation is verified using an alternative technique that is more parsimonious and con-

ducive to conducting formal statistical tests of the significance of these differences. The panel mixed-

effects logit model in Equation 1 is estimated, with the benefit of including learning in the action

probabilities, in contrast to the Markov transition probability analysis that assumed stationarity. In the

following model, Afp3 and Aspd are equal to 1 if the CA opponent is fp3 and spd respectively, and zero

otherwise. The variable H is a moving average of the ten prior choices of a player’s opponent and there-

fore captures subject’s sensitivity to changes in marginal probabilities of play. Individual heterogeneity
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is modeled using random effects for the constant αi ∼ N(µα, σα).

Pr(ai,t|Θ) = Λ
(
αi +

∑
j=i,−i

β1aj,t−1 + β2aj,t−1 ·Afp3 + β3aj,t−1 ·Aspd + β4aj,t−2

+ β5aj,t−2 ·Afp3 + β6aj,t−2 ·Aspd] + β7H + β8H ·Afp3 + β9H ·Aspd
)

(1)

The results of the estimation are presented in Table 4. The average predicted marginal probabilities

of playing yellow against the fp2, fp3 and spd CAs are 0.618, 0.597 and 0.555 respectively—note that

these are very close to the empirical marginal probabilities presented in Table 2. This indicates that the

econometric model has captured subject behavior quite well, and therefore is a suitable tool to conduct

the following hypothesis tests.

Hypothesis 1: Players’ behavior is homogeneous.

H0 : σα = 0

The null hypothesis is strongly rejected (p < 0.001) by an LR test χ2(1) = 54.36, supporting the random

effects specification implemented.

Hypothesis 2: Participants do not learn, or alter their choice probabilities, based on their opponent’s

recent action history, H (10-period moving average).

H0 : β7 = β8 = β9 = 0

Participants exhibit significant adaptation to an opponent’s recent marginal probability of play, as

exemplified by a LR test
(
χ2(3) = 18.55, p = 0.0003

)
. However, this is predominantly due to the play

against the spd CA since only β9 is statistically significant. Examining the linear time trend in H for

each computer algorithm reveals a possible explanation—the strongest trend is found for the spd CA

(0.00013), compared to fp3 (−0.000073) and fp2 (0.000076). If we assume that there is a non-linear

sensitivity of participants to changes in H, i.e., small changes may not be detected at all or very weakly,

then this would lead to the outcome observed.

Hypothesis 3: Participants’ behavior is independent of the history of play (both marginal probabilities

as captured by H and conditional probabilities as captured by lagged actions).

H0 : β±1 = β±2 = β±3 = β±4 = β±5 = β±6 = β7 = β8 = β9 = 0

The null hypothesis is clearly rejected by the data
(
χ2(15) = 662.77, p < 0.0001

)
, therefore there exist

behavioral patterns that can be exploited by the CAs.

Hypothesis 4: Participants’ behavior is independent of the prior two lags of own and opponent action

choices, beyond their influence in the historical marginal probabilities given by H.

H0 : β±1 = β±2 = β±3 = β±4 = β±5 = β±6 = 0
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Table 4 Random effects logistic regression of action choices

Parameter Estimate Std. err. z p 95% Conf. int.

β1 0.098 0.083 1.190 0.235 -0.064 0.260
β2 0.096 0.113 0.850 0.394 -0.125 0.317
β3 -0.158 0.110 -1.440 0.150 -0.374 0.057
β4 0.133 0.081 1.640 0.102 -0.026 0.293
β5 0.163 0.110 1.480 0.138 -0.053 0.378
β6 0.481 0.108 4.440 0.000 0.269 0.693
β−1 1.254 0.092 13.680 0.000 1.075 1.434
β−2 -0.061 0.127 -0.480 0.630 -0.310 0.188
β−3 -1.028 0.129 -7.940 0.000 -1.282 -0.774
β−4 0.131 0.095 1.380 0.169 -0.056 0.318
β−5 0.038 0.132 0.290 0.775 -0.221 0.297
β−6 0.305 0.130 2.340 0.019 0.050 0.561
β7 0.269 0.220 1.220 0.221 -0.162 0.701
β8 -0.090 0.283 -0.320 0.752 -0.645 0.466
β9 0.692 0.288 2.400 0.016 0.126 1.257
µα -1.112 0.067 -16.720 0.000 -1.242 -0.982
σα 0.226 0.038 0.163 0.314

Wald χ2(15) 662.77 p < 0.0001

Participants’ behavior is found to be significantly conditioned on the prior lags
(
χ2(12) = 470.51, p < 0.0001

)
beyond what occurs from adaptation to an opponent’s marginal probability of play. This provides clear

evidence that behavioral patterns exist in participants’ historical action profiles.

Hypothesis 5: Behavior is independent of the type of CA participants are playing against, i.e., no

strategic adaptation.

H0 : β±2 = β±3 = β±5 = β±6 = β8 = β9 = 0

There is evidence that participants strategically alter their behavior according to the type of CA(
χ2(10) = 145.10, p < 0.0001

)
. Specifically, participants are found to behave similarly against the fp2

and fp3 CAs, i.e., H0 : β±2 = β±5 = β8 = 0
(
χ2(5) = 5.13, p = 0.399

)
, very differently comparing the

fp2 and spd CAs, i.e., H0 : β±3 = β±6 = β9 = 0
(
χ2(5) = 112.95, p < 0.0001

)
and comparing fp3 and

spd H0 : β±2 − β±3 = β±5 − β±6 = β8 − β9 = 0
(
χ2(5) = 89.60, p < 0.0001

)
.

Concluding, considerable evidence has been presented that strategic adaptation does exist in this

dataset, and is both economically and statistically significant. Also, the importance of modeling pat-

tern detecting behavior by participants was corroborated by the questionnaire answers, as participants

explicitly stated searching for patterns (detailed analyses can be found in Section 6). This paper now

proposes and empirically validates a learning model with the capability of capturing strategic adaptation

in the marginal, first- and second- order action transition probabilities.
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Table 5 Table of symbols

Symbol Explanation Page

General

t Time measured by the number of rounds 5
i Indexes players 5
−i Indexes the matched opponent of player i 5
ai,t Action played at time t by player i 5

Memory system

n Depth of pattern recognition 10
ωt A vector of the context (history of play) at time t, elements indexed by m 10
πi The realized payoff of player i at time t 10
cj A memory chunk, indexed by j 10
Aj Total activation of chunk j 11
Bj The base-level activation of chunk j 11
tq The time (or rounds) elapsed since a chunk was observed 11
γ The rate of chunk activation decay 11
wm Attention weight for element m in the context vector 11
∆j Dissimilarity between the current context ωt and a chunk’s encoded context 11

Decision process

θ The threshold value at which an action choice is made 12
δ Instantaneous strength of evidence, or drift of OUP process 12
τ Time during the decision rule (OUP process) 12

W (τ) Wiener process 12
σ2 The variance of the diffusion process 12
X(τ) The state, accumulated evidence, of the OUP process at time τ 12

4 Modeling strategic adaptation using pattern recognition

This section proposes a learning model using theories from the mathematical and cognitive psychology

literature found to approximate real cognitive processes and neural behavior. The model is based on an

underlying declarative memory system, the Rational Analysis of Memory (RAM) [38] used in the ACT-R

cognitive framework [2], capable of similarity-based pattern recognition of arbitrary depth. The output

of the memory system is transformed into action choices by a decision rule, the Ornstein-Uhlenbeck

diffusion process (OUP). Evidence from memory in favor of each action race toward a threshold—the

chosen action is the one that first reaches the threshold. These two systems are explained in detail in

the following sections. The reader can refer to Table 5 at any time for a complete list summarizing all

the parameters and symbols used throughout the paper. This model is henceforth referred to as the

RAM/OUP model of decision making, stemming from the abbreviations of the two subsystems that it

incorporates.
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Table 6 Representation of an instance as a memory chunk

πj aj ωj

Slot ID Payoff Choice 1 · · · n− 1 n · · · M = 2(n− 1)

Chunk cj πi(ai,t, a−i,t) ai,t ai,t−1 · · · ai,t−n+1 a−i,t−1 · · · a−i,t−n+1

4.1 The Rational Analysis of Memory system

The RAM declarative memory module is a symbolic system represented by chunks, each comprised

of a number of slots capable of storing a single symbol or piece of information. The complete set of

information stored in a memory chunk is referred to as an instance; it is comprised of a player’s action

choice, the associated payoff and the context (a function of the history of play) within which it occurred.7

The depth of pattern recognition is denoted by n and implies conditioning on the (n− 1) prior lags

of play, e.g., n = 2 denotes patterns of two consecutive time periods, or equivalently conditioning on

the most recent lag, t− 1. Define the context ωt at time t ≥ n8 (prior to making and observing action

choices of round t) as the 2 · (n− 1)-tuple (ai,t−1, . . . ai,t−n+1, a−i,t−1, . . . a−i,t−n+1) and define ωmt as

the mth element of ωt. The depth of pattern recognition, and by extension the context, is constrained

by the size of working memory—in order to encode a chunk the current context must be available

in working memory. Cowan [12] concludes from a wide survey of the relevant literature that working

memory is generally constrained to 4 ± 1 items. Each chunk encoding an n-period pattern requires a

working memory capacity of 2 · (n − 1) + 2—given the above constraint on items in working memory

n = 2 or possibly n = 3 appear to be the greatest depths that can be supported.9

Table 6 presents a memory chunk in tabular form as the concatenation of a player’s action at time

t, ai,t, the realized payoff πi(ai,t, a−i,t) and the current context ωt. Each of the elements of the current

context are encoded in one of M slots. The stored context in a chunk cj is denoted as ωj , and is equal

to ωt̄j where t̄j is the time period the chunk was first created.

The declarative memory system starts at t = 1 with no chunks at all, and after each round t memory

chunks are either created, if it is the first time that the realization of the current instance occurs, or

the relevant chunk’s activation is updated if it already exists (to be explained below). At any time t,

the memory module will hold the set of chunks created in all the previous rounds. Note, the stored

information in each chunk does not change over time.

7 This instance-based approach has proved successful in a wide range of problems [23–25]—our model shares
the same memory system with this prior work, but differentiates itself in various ways, particularly with respect
to the decision rule. This prior work has employed a blending procedure as a decision rule, which basically uses
a weighted average of the memory chunks according to their probabilities of retrieval, instead of the diffusion
process employed in this paper.

8 This constraint ensures that sufficient time has lapsed for the observation of at least one n-period context.
9 In general, n-period patterns require the following items in working memory: n − 1 prior lags of a subject’s

historical action profile, n − 1 prior lags of the opponent’s historical action profile, the player’s current action
choice ai,t and the realized payoff.
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Each memory chunk has an activation level that reflects the likelihood that it will be needed in

the future based on the history of use of the chunk. The total activation of chunk j, Aj , is comprised

of two different types of activation. The first is the base-level activation denoted as Bj , specified in

Equation (2), where q represents the number of times the instance of the chunk has been observed and

tq represents the time elapsed since this chunk was observed in the environment for each of q times in

the past. Finally, let γ = [0,∞) be the rate of activation decay—an extreme value of γ = 0 implies

no memory loss, whereas as γ → ∞ only the observations in the immediately prior time period have

non-zero activation.

Bj = ln
∑
q

t−γq (2)

The second type of activation of a chunk is the context-dependent component that depends on the

degree of matching between the current context and the stored context of each memory chunk. To allow

for non-exact matching, i.e., context-dependent activation of chunks that may have a similar but not

identical historical context, a similarity function must be defined. Let the attention weights wm denote

the attention a subject pays to each element in the context, where wm = [0, 1] and
∑
wm = 1. The

dissimilarity function, ∆j between the current context ωt and the context encoded in a memory chunk

ωj , is given by Equation 3. This is a distance function employing the city-block metric, as recommended

for separable dimensions [22].

∆j =
∑
m

wm|ωmt − ωmj | (3)

The total activation of a chunk Aj is equal to the base-level activation minus the product of the

dissimilarity function and the matching penalty parameter µ = [0,∞) determining the importance of

exact matching, see Equation 4. If µ = 0 then the total activation of all the chunks is independent of the

context, determined only by the base-level activation, whereas as µ → ∞ only chunks which are exact

matches to the current context will have non-zero activation.

Aj = Bj − µ∆j (4)

4.2 The Ornstein-Uhlenbeck diffusion process decision rule

With the memory system defined, a decision rule is required that describes how the information from

memory is mapped into a final decision by the player. Diffusion process models of decision making have

become one of the main paradigms in the mathematical/cognitive psychology literature [6, 33, 42, 43, 47].

These models assume that cognitive systems are inherently noisy and that the process of arriving at a
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decision occurs through the accumulation or integration of noisy samples of evidence until a decision

threshold is reached. One of the main advantages of diffusion models is the clear identification of the

underlying process mechanism and the simultaneous modeling of both choices and response times.

In this spirit, I propose the existence of two leaky accumulators, each of which integrates a continuous

stream of evidence over time from the memory system regarding the desirability of each action. The first

accumulator to reach the decision threshold, θ, triggers the corresponding action choice by a player.

The integration of evidence over time is modeled as an Ornstein-Uhlenbeck process (OUP). Define the

instantaneous flow of evidence for the accumulator associated with a specific action a = {blue, yellow}

as the summation of the product of the activation of all chunks where a = aj and the encoded payoff

of that chunk πj . Therefore, denoting the instantaneous flow of evidence for each action, δbl and δy

(dependent on the chunks in memory at time t—the subscript t is dropped for convenience):

δai =
∑

cj :aj=a

eAj · πj (5)

In the case of binary choice, it is possible to model the evolution of the two accumulators as a uni-

dimensional OUP with absorbing thresholds at ±θ and mean drift δ = δbl − δy. Let the position of this

process, i.e., the accumulated evidence, at decision time τ10 be denoted as X(τ); the starting evidence

level X(0) is possibly different from zero indicating an initial preference for one of the actions. Let dτ

be the time step, λ be the leakage parameter of the accumulators,W (τ) be the standard Wiener process

and σ2 be the variance of the diffusion process. The OUP is then given by the following equation (see

Figure 1 for an illustration):

dX(τ) = δdτ − λX(τ)dτ + σW (τ + dτ) (6)

Analytical solutions do not exist for the first passage probabilities (equivalent to the probability

distribution over action choices in this application) and mean time for first passage; however, the OUP

can be approximated by a birth-death Markov chain yielding simple solutions using standard linear

algebra techniques. The interested reader is referred to Diederich and Busemeyer [13] for a detailed

discussion of the approximation and relevant derivations.

Summarizing, the complete model is referred to as RAM/OUP(n), stemming from the abbreviation of

the two systems and the chosen pattern depth n, and requires the estimation of the following parameters:

γ, wm, θ, λ, σ, and X(0).

10 Decision time τ is the time since the accumulation process of the decision rule was initiated.
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Fig. 1 Discrete-time approximation of the OUP diffusion process
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5 Estimation technique and results

Two variants of the proposed model are estimated, RAM/OUP(2) and RAM/OUP(3),11 plus two base-

line models—the first is simply the empirical marginal probability of the observed action choices and the

second is a non-pattern detecting baseline, the Experience Weighted Attraction learning model [9]. The

rationale behind the latter choice is that it has been widely studied in the literature, but also has the

desirable property of nesting both reinforcement [34] and fictitious play learning models [10], thereby

simplifying the model comparison procedure (see Appendix C for an introduction to EWA).

Each model allows for subject heterogeneity by estimating individual parameters for each player i

given by the set Ψi. Let Pi (t|Ψi) be the probability that player i plays the observed action at time t

given the parameter set Ψi. Estimation of the model is achieved by maximizing12 the joint log likelihood

11 The saturated RAM/OUP(3) model has four lagged variables and attention weights. To reduce the number of
parameters in the estimation process only two attention weights are estimated—the attention given to a player’s
own lagged variables (or opponent’s) w (1− w) and the attention given to the first (or second) lagged variables
wl1 (1− wl1).
12 Optimization is performed using a hybrid algorithm starting with a global search over a population of 10,000
observations of randomly generated parameters to find the best candidate to serve as an initial starting point
for a local search. This hybrid algorithm is used to avoid settling on a local minimum of this highly non-linear
learning model.
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function in equation 7 conditional on the complete parameter set Ψ =
⋃31
i=1 Ψi starting from t = 11

onwards for a total of N = 31× 290 = 8990 observations.13

max
Ψ

ll(Ψ) =
31∑
i=1

300∑
t=11

Pi(t|Ψi) (7)

Model comparison can be performed using the Akaike and Bayesian information criteria on the

estimation data,14 and the 10-fold cross-validation likelihood criterion, llcv, obtained using the following

procedure:

1. For each player, randomly assign the rounds t = 11 to t = 300 into 10 folds (or sets) of 29 observations

each, denoted by Fi,f , where f indexes the folds.

2. Estimate the model on nine of these ten sets, and then calculate the out-of-sample, or cross-validation

log likelihood of the observations in the remaining fold, ll(Fi,f ).

3. Repeat this procedure ten times for each player, each time withholding a different set of observations

as the cross-validation set. The sum of the log-likelihood of all the cross-validation folds is the cross-

validation criterion, llcv =
∑
i

∑
f ll
(
Fi,f

)
—the higher llcv is, the greater the predictive power of a

model.

4. The set of ll(Fi,f ) for each competing model are matched by subject i and fold f ; therefore, it is

possible to use paired tests to compare the distributions of ll
(
Fi,f

)
for each model and calculate the

statistical significance of performance differences.

The best performing model according to llcv and BIC is RAM/OUP(2), whereas according to AIC

it is RAM/OUP(3) because it penalizes the number of parameters less—according to all criteria, the

EWA model is a distant third. Tests of the differences between the models’ cross-validation perfor-

mance are performed using two paired tests: the non-parametric Wilcoxon signed-rank test and sign

test, henceforth reported in this order. The difference between the RAM/OUP(3) and RAM/OUP(2)

models is not statistically significant (p = 0.793, p = 0.691); since the former has the lowest llcv and

fewer degrees of freedom, the RAM/OUP(2) is regarded as the best performing model for the rest

of the analysis. The difference between the RAM/OUP(2) and EWA model is statistically significant

(p < 0.0001, p < 0.0001)—72.9% of the ll
(
Fi,f

)
criteria were lower in the RAM/OUP(2) model com-

pared to the EWA model.

The RAM/OUP models were also estimated with the following difference—at the end of every round,

instead of only encoding a memory chunk relating to the realized payoff given the action a subject chose

and the context, another memory chunk was encoded with the foregone payoff that a subject could have

13 Each parameter set Ψi estimates the behavior of a single subject against all three CAs. The first ten observa-
tions for each subject are not included in the objective function as pattern detection requires an initial number
of observations; however, these observations are used in the accumulation and encoding of memory chunks.
14 These are computed using the following equations: AIC = −2 · ll(Ψ)+2k and BIC = −2 · ll(Ψ)+k · log(N)



Strategic adaptation of humans playing computer algorithms in a repeated constant-sum game 15

Table 7 Model estimation results and comparison

Calibration Information criteria Validation

Models df ll AIC BIC llcv

Baseline 31 -6016.73 12095.47 12315.69 -6053.28
EWA 186 -5736.932 11845.86 13167.18 -5870.70

RAM/OUP(2) 217 -5322.09 11078.18 12619.72 -5475.05
RAM/OUP(3) 248 -5268.22 11032.44 12794.20 -5488.69

achieved by choosing the other action. These models were found to perform worse and for the sake of

brevity have not been discussed here in detail; for example, the llcv performance of an RAM/OUP(2)

model with forgone payoff encoding decreased to -5503.4.

5.1 Comparison of EWA and RAM/OUP(2)

The performance of the EWA model has been shown to be inferior to RAM/OUP(2) in terms of cross-

validation performance. Table 8 verifies that the RAM/OUP(2) model fits the marginal probabilities

of play, pooled by CA opponent, better than the EWA model. This section tests the hypothesis that

the poor performance of EWA is primarily due to its lack of sophisticated pattern detection. This

is accomplished by estimating identical population-averaged GEEs (generalized estimating equations)

on the experimental data, and the predicted probabilities of action choice derived from the estimated

models15—results are reported in Table 9.

The average absolute difference between the parameter estimates obtained from the experimental

data and from the EWA model is 0.272, whereas for the RAM/OUP(2) model it is considerably less,

0.137. More importantly, this difference is more pronounced for variables with coefficients that are

statistically significant at the 5% level in the empirical data estimation—0.512 for EWA and 0.201 for

RAM/OUP(2). The most important differences are found in the parameter estimates β6, β−1, β−3, β9.

This verifies that the problem with EWA is predominantly its inflexibility in modeling general patterns,

although it also fails to model adaptation to an opponents’ moving average against the spd CA, as

captured by β9. Note, that the EWA model is still able to emulate limited pattern detection if it has a

low memory parameter, leading it to make predictions using only the most recently observed history of

play.16

Appendix A includes tables of the predicted marginal, first- and second-order transition probabilities

of the RAM/OUP(2) model. Comparison of these more detailed results with the analogous empirically

15 Papke and Wooldridge [31] show that this model is valid in estimating the average partial effects not only
for binary dependent variables (for the model estimated on the experimental data) but also fractional response
variables (for the models estimated from the outputs of the fitted models).
16 An extreme example of this is if memory retention is zero, so that the EWA prediction is only dependent on
the immediate prior lag.
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Table 8 Marginal probabilities of play—empirical and model predicted

Empirical EWA RAM/OUP(2)

fp2 0.380 0.462 0.387
fp2 0.410 0.461 0.379
spd 0.460 0.498 0.458

Table 9 GEE panel regressions on the experimental data and predictions of the estimated models

Data EWA RAM/OUP(2)

β1 0.094 0.212 0.095
β2 0.097 -0.073 -0.029
β3 -0.150 0.010 0.064
β4 0.129 0.160 0.129
β5 0.163 -0.032 0.048
β6 0.480 0.077 0.248
β−1 1.236 0.640 0.891
β−2 -0.059 -0.048 -0.010
β−3 -1.014 -0.052 -0.697
β−4 0.130 0.164 0.382
β−5 0.036 -0.022 0.015
β−6 0.299 -0.043 0.031
β7 0.280 0.244 0.432
β8 -0.094 0.136 -0.137
β9 0.669 0.131 0.666

constant -1.088 -0.625 -1.036
Wald χ2(15) 662.55 357.98 578.65

estimated probabilities presented in Section 3 verify the conclusions reached by the above more concise

comparison.

5.2 Further discussion of RAM/OUP(2)

Individual parameter estimates of the RAM/OUP(2) model can be found in Appendix A, whilst Figure

2 below provides a graphical representation of the distribution of individual parameter estimates and

Table 10 exhibits the relevant distributional statistics.

Table 10 Descriptive statistics of the distribution of individual parameter estimates

Parameter θ λ σ Bias γ µ w

Lower quartile 13.73 34.55 178.55 0.16 0.52 3.53 0.35
Median 26.9 50.9 258.7 0.3 0.84 7.56 0.81

Upper quartile 39.2 79.6 376.6 0.4 1.24 17.41 0.97

Since the value of X(0) is not comparable across participants due to the value of the threshold

parameter varying, a transformation of this variable is reported that gives a relative measure of the

starting point, Bias = 0.5 + X(0)/2θ. If Bias = 0.5 then an equal amount of evidence needs to be
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accumulated for both action choices, whereas approaching the extreme values of zero and one implies

an asymmetry in the amount of necessary evidence. The estimated bias shows a tendency for most

participants to require less accumulated evidence to make a decision to play yellow than blue. Very

few participants have λ estimates close to zero, defending the choice of an OUP to model the decision

process instead of a Wiener process.17

The estimates of the memory parameter are clustered between zero and two, which is in accord

with studies using ACT-R in other types of decision tasks [50]. There were only three participants

whose estimated γ was high enough to imply that they almost exclusively placed weight on the most

recent observations only. The matching penalty parameter estimates capture a wide range of behavior—

there exist participants with high µ implying that they penalize mis-matched chunks heavily, i.e., they

accumulate evidence only from chunks which are a perfect match to the current context. However, many

participants are also found to use information stored in similar, but not exact chunks.

Finally, we observe there is a clustering of two groups of participants with respect to the relative

weight given to own and opponents’ lagged action choices, where w is the weight assigned to the latter.

Only a few participants concurrently used both own and opponents’ actions to encode the state, or

history, of play—participants tend to fall either at one extreme or the other as two modes exist at values

of zero and one.

5.3 Optimality of participants’ behavior

This section examines the optimality of participants’ behavior against each of the 3 CAs on the basis of

payoff performance.18 The set of permissible strategies is defined as the set of finite automata [1, 17, 35],

Ξn, where n is the depth of pattern recognition; equivalently, the state of an automaton depends on

the previous n − 1 lagged actions. States are identical to the context as defined previously, i.e., for

n = 3 the states are given by the context vector ωt = (ai,t−1, ai,t−2, a−i,t−1, a−i,t−2). An output

function maps all possible 24 contexts to the action space {blue, yellow}, culminating in 216 possible

deterministic automata for n = 3. Finally, the automata are assumed to make an error in applying the

17 As the parameter λ→ 0 the Ornstein-Uhlenbeck process collapses to the Wiener process for which accumu-
lators are not leaky and evidence accumulation is not mean-reverting.
18 Payoff comparisons between humans and automata are more relevant measures of the optimality of humans’
learned strategies than direct comparisons of behavioral statistics (such as conditional probabilities) since they
automatically accommodate for the possibility of low incentives to search for better alternatives. For example,
even if a player’s transition probabilities are far from optimal, if this strategy yields near optimal payoffs, the
incentive to search is severely reduced.
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output mapping function, leading to the wrong action with probability εξ = 0.3.19 Simulations results

are reported for the set Ξ3, which implicitly includes sets of simpler automata Ξ1 ⊂ Ξ2 ⊂ Ξ3. 20

A comparison of the payoffs of these automata against the 3 CAs to the payoffs achieved by human

participants is biased in the direction of finding human behavior to be suboptimal; human participants

are learning throughout the 100 rounds of play against a CA, whereas the automata employ a stable

mapping representation throughout. It is still informative however to compare the human payoffs to this

ideal range to evaluate how effectively participants learnt to exploit the CAs.

Figure 3 presents Epanechnikov kernel density estimates of the probability distribution of the mean

payoffs achieved over the last 50 rounds of the automata in Ξ3, the first and last 50 rounds of the human

participants, grouped by their CA opponent. Similar distributions imply that participants were not

generating payoffs that were significantly different from those achieved by randomly choosing a strategy

from the set of automata. If the distribution of human payoffs is shifted to the right of the automata

distribution, this indicates that participants have strategically adapted to their opponent. Furthermore,

a comparison of the human subject distributions for the first and last fifty rounds is a reflection of

learning as reflected by payoff performance. Readers should keep in mind that by randomizing at the

MSNE, participants could attain average payoffs of 10, regardless of the CAs’ behavior.

Firstly, against all CAs, human subject payoffs for the last fifty rounds are more heavily distributed

at the right tails than for the first fifty rounds, and the whole distributions are shifted towards the

right. Similarly, except against the fp3 CA, human participants payoffs are less heavily distributed at

the left tails—although most participants learned to perform better against the fp3 CA, a significant

proportion of participants ended up performing worse in the last fifty rounds. Note, that the automata

distribution against fp3 is shifted significantly to the left, compared to other CA opponents, indicating

that the majority of automata perform very poorly against this algorithm (indeed well below the MSNE

payoffs equal to ten). Therefore, pattern search is more likely in this case to lead some participants to

less desirable outcomes, from which they may not have enough experience (number of rounds) to recover

from.

Comparing human payoffs in the last fifty rounds against the fp2 and fp3 algorithms to the automata

distributions, participants played significantly better than the bulk of automata. Subject payoffs against

the spd CA are slightly shifted towards the left, however note that the majority of observations are

already at very high payoff levels, therefore the incentive to further optimize behavior is relatively small.

19 Simulations were run for values of εξ ∈ {0.5, 0.4, 0.3, 0.2, 0.1, 0} leading to 6 ·216 possible automata. In praxis,
very low error rates for εξ are not feasible models of human behavior given the large number of mappings–although
this is reduced since the possible number of observed contexts is much smaller–and it should be expected that
considerable error would enter their action choices. The results were qualitatively similar for the various εξ values,
therefore we present the results from the intermediate value εξ = 0.3.
20 For example Ξ3 includes automata whose states depend only on the previous lagged history of play Ξ2, and
the degenerate set of automata Ξ1 that prescribe the same action regardless of the history of play; however, the
error in applying the output function leads these automata to cover different marginal probabilities of play.
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Fig. 3 Probability density of payoffs of automata and participants against each CA
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Table 11 Classification of players into types based on the questionnaire answers (%)

CA Non-pattern detecting Pattern detecting ws/ls Other reasoning Random

All 18.8 21 2.2 4.6 53.5
fp2 17.8 21 2.4 5.6 53.2
fp3 16.9 22.6 1.6 3.2 55.6
spd 21.8 19.4 2.4 4.8 51.6

Most automata perform very well against the spd CA (as the automata distribution is shifted significantly

to the right of the corresponding distributions for fp2 and fp3 ), as long as they do not employ the ws/ls

strategy or a close variant. For further econometric analysis of participants’ payoffs and dependence on

the type of CA opponent, presentation order of CAs etc., the reader is referred to Appendix D.

6 Questionnaire analysis

Earlier sections presented evidence of pattern recognition and strategic adaptation derived implicitly

from observed actions; I now present explicit evidence from participants’ reported descriptions of their

decision strategies (collected every 25 rounds). Each answer was coded as falling into either of the follow-

ing categories: non-pattern detecting strategies, pattern detecting strategies, other types of reasoning,

ws/ls heuristic, and random.21 To qualify for the pattern detecting category participants had to display

some type of multi-period or sequential thought instead of simply looking at single-period actions. The

results of this categorization are displayed in Table 11.

The proportion of participants classified under each type seems to be largely independent of the

CA opponent. A large percentage of responses stated that decisions were made randomly (53.5%),

followed by pattern detecting strategies (21%), non-pattern detecting strategies (19%) and a much

smaller percentage, 4.6%, gave some other kind of reasoning. A striking result is that only a small

percentage of responses acknowledged using the ws/ls heuristic. This implies that the use of the ws/ls

heuristic is an automatic, rather than a controlled process [8], in which case players show a subconscious

tendency to exhibit this type of behavior.

The correlation between the percentage of times a player stated he/she was playing randomly and

that player’s RAM/OUP(2) llcv was only 0.088 (p = 0.638). Therefore, subjects reporting random be-

21 Examples of representative answers for each category are:
Non-pattern detecting: “The computer played white more often so I played yellow more often.”, “I think it started

off playing white more often but then started playing brown more often.” ,“I tried to count how often I won
playing each color.”, “I made my choice according to the changes in my score.”

Pattern detecting: “I thought the computer chose to play the same color very often.”, “I am trying to figure out
how many times in a row it uses each color.”, “Playing three times yellow and one time blue seems to be a
profitable combination.”, “When I lost two consecutive times playing blue I would play yellow and vice versa.”

Other reasoning: “I played yellow so as not to lose 80 points.”, “Normally you should play only blue because if
you win you have made up for three losses.”

Win/stay, lose/shift heuristic: “Usually whenever I lost I would change color.”, “If I lost playing yellow I would
then choose blue and vice versa.”

Random: “I was playing according to chance.”
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Table 12 Predictions of own and opponents’ first-order play

Opponents’ actions (white action) Own actions (blue action)

CA % predicted % actual MAD % predicted % actual MAD

All 51.24% 66.15% 20.98 41.13% 41.16% 11.60
fp2 53.41% 69.59% 23.83 39.07% 37.48% 11.38
fp3 51.90% 67.81% 21.26 38.65% 40.58% 12.71
spd 48.25% 60.75% 17.71 46.00% 45.61% 10.61

havior were just as predictable as other subjects indicating that they were not really randomizing, but

had difficulty explicitly reporting their strategies.

After the final round of playing a CA each subject was asked to state the number of times she

thought she had played blue in the last 100 rounds and also the number of times that her opponent

had played white. Table 12 presents the predicted proportions and the actual proportions of own and

opponents’ play pooled against all algorithms and by each computer opponent.

Predictions of opponents’ play against all CAs are not calibrated well, 51.24% versus the observed

value of 66.15%, in stark contrast to predictions of own play, 41.13% versus 41.16%. Individual accuracy

of predictions is measured by the mean individual absolute deviations (MAD) of predictions from actual

play. The difference between own and opponents’ play (MAD) against all CAs, 11.6% to 20.98%, is

economically and statistically significant using a Wilcoxon signed ranks test (z = −4.308, p < 0.001).22

These results imply that own actions are more easily and/or accurately retrieved from memory than

opponents’ actions. A possible explanation is that in the RAM model the latter are only encoded as part

of the context, which does not need–and is not designed–to be directly retrievable from memory; this

is in contrast to own actions which are encoded in the retrievable Slot ID “Choice”. Subjects can form

their probability estimate of own actions by retrieving the values of aj from existing memory chunks

and reporting a weighted average of them.

7 Discussion

This paper examines strategic adaptation and behavioral modeling of humans engaged in repeated games

using a human versus computer algorithm experiment. This led to an increase in experimental control

allowing for more powerful statistical testing of strategic adaptation, in response to three different types

of computer opponents.

The experimental data verified that participants condition their behavior on the type of opponent,

not just by modifying their marginal choice probabilities, but also conditional probabilities of play,

i.e., multi-period patterns or sequences of behavior. Since standard learning models in the game theory

22 Also, it is not possible to reject the null hypotheses that the average MAD for predictions of own and
opponents’ play is the same across all CAs using Friedman tests at the 5% significance level. The χ2 (and associated
p-values) of MAD predictions of own and opponents’ play are 1.52 (0.468) and 2.742 (0.254) respectively.
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literature do not permit sophisticated pattern recognition, this paper proposed an alternative model

based on two widely used cognitive process paradigms in the mathematical psychology literature. An

underlying memory system encoding the context in which memories are encoded and a similarity-based

context dependent activation of memories—in this case, the context was a subset of the history of play,

thereby implementing pattern recognition. Noisy samples of evidence regarding the desirability of action

choices were sequentially sampled from the memory system and accumulated according to a diffusion

process until a decision threshold was reached. This cognitive model significantly outperformed the

widely used Experience Weighted Attraction learning model in out of sample prediction of participants’

behavior.

Furthermore, the proposed model can also predict the distribution of response times, in contrast to

the standard learning models in the literature that are incapable of modeling response times. Although

this experimental study did not have response time data to take advantage of this, future research

should attempt to jointly model decision choices and response time. The advantage of models jointly

determining choice and response time is that they are more falsifiable. In light of the issues discussed

early in the paper regarding the econometric estimation of learning models, the addition of response

time data could also serve to increase parameter identification and lead to more powerful tests of model

comparison.
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A Detailed results

Table 13 Human participants’ empirical marginal and first-order Markov transition probabilities

Marginal First-order p (ai,t = bl|ai,t−1, a−i,t−1)

a−i,t−1

fp2 fp3 spd br w

bl 0.38 0.41 0.46
ai,t−1

bl 0.55, 0.56, 0.46 0.39, 0.38, 0.46
y 0.62 0.59 0.54 y 0.62, 0.61, 0.51 0.24, 0.27, 0.42

The conditional probability of bl against fp2, fp3 and spd respectively

Table 14 RAM/OUP(2) empirical marginal and first-order Markov transition probabilities

Marginal First-order p (ai,t = bl|ai,t−1, a−i,t−1)

a−i,t−1

fp2 fp3 spd br w

bl 0.39 0.38 0.46
ai,t−1

bl 0.58, 0.56, 0.53 0.35, 0.35,0.47
y 0.61 0.61 0.54 y 0.53, 0.51, 0.46 0.30, 0.28, 0.41

The conditional probability of bl against fp2, fp3 and spd respectively

Table 15 Human participants’ second-order Markov transition probabilities

Second-order p (ai,t = bl|ai,t−1, ai,t−2, a−i,t−1, a−i,t−2)

(a−i,t−1, a−i,t−2)

(br, br) (br, w) (w, br) (w,w)

(ai,t−1, ai,t−2)

(bl, bl) 0.72, 0.65, 0.62 0.48, 0.55, 0.62 0.31, 0.29, 0.53 0.40, 0.45, 0.51
(bl, y) 0.58, 0.60, 0.51 0.35, 0.48, 0.26 0.30, 0.40, 0.44 0.34, 0.35, 0.36
(y, bl) 0.46, 0.63, 0.57 0.52, 0.65, 0.52 0.36, 0.45, 0.65 0.30, 0.32, 0.39
(y, y) 0.57, 0.53, 0.60 0.70, 0.62, 0.46 0.39, 0.32, 0.42 0.17, 0.20, 0.26

The conditional probability of bl against fp2, fp3 and spd respectively

Table 16 RAM/OUP(2) second-order Markov transition probabilities

Second-order p (ai,t = bl|ai,t−1, ai,t−2, a−i,t−1, a−i,t−2)

(a−i,t−1, a−i,t−2)

(br, br) (br, w) (w, br) (w,w)

(ai,t−1, ai,t−2)

(bl, bl) 0.78, 0.75, 0.80 0.52, 0.50, 0.62 0.35, 0.40, 0.59 0.30, 0.31, 0.45
(bl, y) 0.60, 0.59, 0.52 0.44, 0.43, 0.39 0.39, 0.37, 0.47 0.39, 0.35, 0.39
(y, bl) 0.53, 0.59, 0.52 0.48, 0.50, 0.46 0.44, 0.44, 0.59 0.35, 0.33, 0.39
(y, y) 0.57, 0.53, 0.56 0.52, 0.51, 0.42 0.41, 0.34, 0.44 0.23, 0.21, 0.29

The conditional probability of bl against fp2, fp3 and spd respectively
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B Details of computer algorithms

The details of the belief generating equations and their updating are outlined in the following four steps. The

discrete strategy set of player i is denoted Si and the actions chosen by player i at times t, t− 1, t− 2 are denoted

by ai, a′i, a
′′
i respectively.

Step 1

fp2 Starting from round 3, and for every round henceforth, after observing the action of the human subject

update equations 8 and 9. Let It(a−i|a′−i) is an indicator function that takes a value of one if a−i was the

action played at time t and a′−i was the action played at time t − 1 and takes a value of zero otherwise23.

Define for player i, the count of a−i at time t given action a′−i as:

Ci(a−i|a′−i, t) =
It−1(a−i|a′−i) +

∑t−2
u=1 It−u−1(a−i|a′−i)

t− 1
(8)

The fp2 beliefs of player i of action a−i given action a′−i are then given as:24

fp2i(a−i|a′−i, t) =
Ci(a−i|a′−i, t)∑

a−i∈S−i
Ci(a−i|a′−i)

(9)

fp3 Starting from round 4, after observing the action of the human subject update the following equations. Given

actions a−i, a′−i a
′′
−i, It(a−i|a′−i, a′′−i) is an indicator function that takes a value of one if a−i was the action

played at time t and a′−i and a
′′
−i were the actions played at time t − 1 and t − 2 respectively, and takes a

value of zero otherwise:

Ci(a−i|(a′−i, a′′−i), t) =
It−1(a−i|(a′−i, a′′−i)) +

∑t−2
u=1 It−u−1(a−i|(a′−i, a′′−i))

t− 1
(10)

The fp3 beliefs of player i of action a−i given actions a′−i and a
′′
−i are then given as:

fp3i(a−i|(a′−i, a′′−i), t) =
Ci(a−i|(a′−i, a′′−i), t)∑

a−i∈S−i
Ci(a−i|(a′−i, a′′−i), t)

(11)

spd Starting from round 4, after observing the human subject’s action update equation 12 where Wi(3) is

initialized to be zero. The indicator function, It−1(a′−i|a′′i , a′′−i) takes the value one if the subject’s action

a′−i was consistent with the ws/ls heuristic and the value of -1 otherwise:

Wi(t) =Wi(t− 1) + It−1(a
′
−i|a′′i , a′′−i) (12)

The variable Wi(t) is just the net sum of the number of times the subject has exhibited ws/ls behavior - a

count of zero means that the ws/ls action was played 50% of the time.

Step 2 If t < 5 or average payoffs to the human subject are higher than 20 proceed to step 3, otherwise proceed

to step 4 with probability 0.8 or to step 3 with probability 0.2.

Step 3 Choose the computer action probabilistically according to the stage game’s MSNE and proceed to step 1.

23 At t = 1 the indicator function takes the value of zero for all actions a−i, since a time period t = 0 does not
exist and therefore actions are not observable.
24 This definition assumes that the denominator is not zero i.e. that the action a′−i has been played at least once
in the past. In cases where a′−i has not been observed beliefs are assumed to be given by a uniform distribution
over a−i ∈ S−i.
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Step 4 For the fp2 and fp3 algorithms, play a best response to the calculated beliefs. For the spd algorithm,

if Wi(t) > 0, then assume the subject will play the ws/ls prescribed action and best respond to that, if

Wi(t) < 0 assume the subject will not play the ws/ls prescribed action and best respond to that, and if

Wi(t) = 0 then play the stage game MSNE. Start over from step 1.

Equations 8 and 10 implicitly assume that there is no memory decay at all so that all past actions are remembered

perfectly. This was consciously chosen because a pilot study showed that increasing memory decay made the

computer algorithms much more predictable and open to exploitation, a result that is also corroborated by Messick

[30]. Step 2 injects noise into 20% of the decisions made to mask the underlying belief generation process.25 The

commonly used logit decision rule, by injecting noise into every single decision is overly defensive—this may

be the reason why in some studies CAs using this rule have not able to gain statistically significant increases

in payoffs against human participants. We believe that the approach employed in this paper provides a better

tradeoff between the desire to mask the inner workings of the CAs (and avoid deterministic repetitive behavior)

whilst still retaining the ability to aggressively exploit non-optimal human behavior.

C Introduction to EWA

The experience weighted attraction (EWA) learning model has the desirable property of nesting both reinforce-

ment and fictitious play learning models as demonstrated in Camerer and Ho [9]—note, the mathematical symbols

used in this chapter follow those in Camerer and Ho [9], but may clash with the use of some symbols in the main

text. Equation 13 is the EWA updating formula for the attractions of each available action. These attractions

are then normalized so that they sum up to one, thereby representing probabilities of playing each action, by

implementing the logit decision rule in equation 14. Players are indexed by i (all other players by −i), individual

strategies by j for a total of Mi strategies per player, πi(s
j
i , s−i(t)) are the payoffs to player i given strategies sji

at time t, and I(sji , si(t)) is an indicator function which is equal to one if strategy j was played at time t by player

i (i.e. if sji = si(t)) and zero otherwise. The free parameters in the model are φ, which represents a decay rate on

the previous period attraction and can be thought of as strength of memory, δ controls how much forgone payoffs

affect attractions and κ controls how attractions grow over time - whether attractions are weighted averages of

previous attractions or a cumulative sum of previous attractions. The parameter N(t) is an experience weight and

is modified according to equation 15, and the λ parameter in the logit decision rule26 determines the sensitivity

of agents to differences in the attractions of the available actions. Before the game starts, at t = 0, the experience

weight N(t), is assigned an initial value, N(0) to be estimated, as are all attractions Aji (0). Following Ho et al.

[27] we set N(0) = 1 rather than estimating it, as experimental evidence finds that participants do not exhibit

strong priors and the importance of this parameter rapidly decays over time.

25 A pilot study found 20% to be an appropriate values in terms of the CAs performing well against human
participants.
26 The parametric form of the logit decision rule is such that adding a constant to all attractions does not change
probabilities and therefore given that there are two possible actions it is only necessary to estimate Aji (0) for one
action and normalize the other value to some constant, in this case zero.
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Aji (t) =
φ ·N(t− 1) ·Aji (t− 1) +

[
δ + (1− δ) · I(sji , si(t))

]
· πi(sji , s−i(t))

N(t)
(13)

P ji (t+ 1) =
eλ·A

j
i (t)∑Mi

k=1 e
λ·Ak

i (t)
(14)

N(t) = φ · (1− κ) ·N(t− 1) + 1 (15)

Reinforcement learning requires δ = 0, and is in cumulative form if κ = 1 or weighted average form if κ = 0.

Weighted fictitious play is attained if δ = 1 and κ = 0, and the special case of Cournot best response dynamics27

if φ = 0.

D Data analysis

This section models how variables such as payoffs and randomizing efficiency are affected by the type and the order

of presentation of the opponents the participants faced. The estimated models are maximum-likelihood estimated

linear mixed-effects models, capturing both within- and between-participants variance, with participants modeled

as random effects. As normality assumptions were clearly violated, confidence intervals were created using the

bias-corrected, accelerated percentile intervals (BCa) method proposed by Efron [15] for 2,500 replications.28 The

effects of multiple comparisons are accounted for by controlling the family-wise error rate (FWER) rather than

the per-comparison error rate (PCER), through the use of the Sidak [41] correction.

The general equation setup for the following analyses will be:

response=random subject effects + fixed treatment effects + error (16)

The treatments are fixed-effects and are modeled by the inclusion of appropriate dummy variables. There are two

treatments each consisting of three levels. The algorithm treatment consists of three levels, namely the three CAs

that the participants faced, fp2, fp3 and spd. Let Aalg denote a dummy variable equal to one whenever alg was

the computer algorithm faced by the subject. Likewise, the position (or order) treatment consists of three levels

i.e. whether the CA was the first, second or third opponent that a subject played against. Let Tt be a dummy

variable equal to one where t is equal to the position (or order of presentation) of the game. Adhering to this

convention let the estimated coefficients of these treatment effects be denoted by the lower-case Greek equivalents,

αalg and τt. Let the individual observations, i, of any particular dependent variable under investigation, x, at

time t, be denoted by xi,t. Also, xtalg is the estimate of x for players facing the CA alg, in position t.

The reference category for this model is the value of the dependent variable when participants played against

the fp2 algorithm in the 1st position, denoted by x1
fp2. Note that xtfp3 = xtfp2 + αfp3, and similarly xtspd =

xtfp2+αspd. The estimated model is given in equation 17, where εi,t ∼ N(0, σ2
ε ) thereby assuming homoskedasticity

of errors, and µi ∼ N(0, σ2
µ) with variance-covariance matrix Ω3n×3n = In ⊗Σ3×3 , where n = i× t is the total

number of observations, In is the identity matrix and Σ3×3 is given in equation 18.

27 For arbitrary payoffs another necessary condition is that δ = 1 so that the model weights both foregone and
realized payoffs equally. It is important however to note that given the payoffs of the game used in this experiment
δ = 1 is not a necessary condition.
28 Efron and Tibshirani [16] recommend 2,000 replications for the BCa method.
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Table 18 Payoff performance and its dependence on position and algorithm effects

Coef. Bootstrap s.e. lower2−tail
98.3%

upper2−tail
98.3%

lower1−tail
98.3%

π1
fp2 10.563 1.078 7.964 13.147
π1
fp3 7.299 1.074 4.503 9.726
π1
spd 11.662 1.217 8.629 14.612
π3
fp2 13.109 1.238 9.864 15.922
π3
fp3 9.844 1.271 6.224 12.567
π3
spd 14.207 1.205 11.352 17.232
αfp3 -3.265 1.293 -6.459 -0.243
αspd 1.099 1.356 -2.189 4.266

αspd − αfp3 4.363 1.352 1.256 8.059
τ2 2.609 1.257 0.037

τ3 − τ2 -0.063 1.403 -2.774
τ3 2.545 1.313 -0.084

Likelihood LRχ2(4) p-value

-285.30503 15.58 0.0036

xi,t = x1
fp2 + αfp3Afp3 + αspdAspd + τ2T2 + τ3T3 + µi + εi,t (17)

Σ3×3 =


σ2
ε + σ2

µ σ2
µ σ2

µ

σ2
µ σ2

ε + σ2
µ σ2

µ

σ2
µ σ2

µ σ2
ε + σ2

µ

 (18)

D.1 Are some algorithms better than others in exploiting human behavior?

The relevant hypotheses to test whether payoffs to participants, π, differed significantly across CA opponents are:

H0 : αfp3 = 0, αspd = 0, αspd − αfp3 = 0

H1 : ∼ H0

From Table 18, participants’ payoffs where highest against spd, followed by fp2 and finally by fp3. Payoffs

against fp3 are less than the payoffs from both the fp2 and spd CAs, by 3.265 and 4.363 respectively, results that

are not only statistically significant but also economically significant in terms of magnitude.

D.2 Do payoffs depend on the order of presentation of each algorithm?

Game specific learning implies that payoffs to participants should be increasing for higher CA positions. This will

be tested by comparing the increase in payoffs from the first to second position, and from the second to third

position.29

H0 : τ2 > 0, τ3 − τ2 > 0

H1 : ∼ H0

29 The statistical tests in this case are one-tailed as game-specific learning necessarily implies an increase in
payoffs over time. Learning from the first to second position necessarily implies that learning from the first to
third period will be at least as much or more, depending on the strength of learning from the second to third
position and therefore a test for learning from the first to third position is redundant. Hence, all statistical tests
will be one-tailed and adjusted for two pairwise comparisons, for a strictly controlled FWER of 5%.
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The results in Table 18 show that τ2 is significantly different from zero and economically significant as payoffs

rise by 2.6 points. However, τ3 − τ2 is not statistically significant different from zero. It can be concluded that

although there is significant transfer of learning from the first period to the latter periods in terms of an increase

in payoffs, there is no additional transfer of new game specific learning from the second to third time periods.

E Experimental instructions

The instructions provided to participants are presented below. Note, the game payoff matrix in the sample

information screen given in the instructions is different from that used during actual game play—apart from this,

the sample information screen is identical to what participants see while playing the real game.

You are about to participate in an economics experiment involving decision-making. Depending on your

performance you will earn real money which will be paid to you at the end of the experiment in private. Throughout

the experiment please do not talk to other participants, if you have any questions please raise your hand and the

administrator will come over and answer your question.

During the experiment you will be facing three different opponents, in all cases they will be computer programs

whose aim will be to maximize their own payoffs. You will play for 100 consecutive rounds against each of these

three computer opponents i.e. 300 rounds during the whole experiment. Nobody will be paid the computer

programs’ payoffs. Your payoff after each round of the game will depend both on your actions/decisions and the

computer program’s actions.

The real money that you will earn will be calculated as follows. You will receive in euro the average of your

payoffs from ALL 300 rounds. For example, if your average payoff for the 100 rounds against the first opponent

was 10, for the 100 rounds against the second opponent was 5 and for 100 rounds against the third opponent was

15, then you would earn (10+5+15)/3=10 euro.

You are guaranteed to receive a minimum of 5 euro for your participation i.e. if your average payoff points at

the end of the experiment are less than 5 your payment will be exactly 5 euro. Furthermore, after all the sessions

of the experiment are concluded, the player who achieved the highest average payoff will be paid a further 30

euro, whilst the player with the second highest payoff will receive 20 euro.

During each decision making round you will have to decide between two possible actions (or moves) referred

to as blue or yellow. Your computer opponent will simultaneously make its own decision whether to play its

brown or white action - neither you nor your opponent will have any knowledge regarding the other’s choice in

that round before deciding.

EXAMPLE:

Before every round you will be shown a screen similar to this one:
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Your payoff is always the first of the two numbers in each cell, and the second number is your opponent’s

payoff. In this example, if you played blue and your opponent brown, you would get 7 and your opponent would

get 0. If you played blue and your opponent played white you would get 97 and your opponent would get 7. Please

make sure that you understand how this works, if you in any way uncertain please raise your hand now. You will

be playing exactly the same game (with the same payoffs) for all the rounds and against each computer program.

However you do not need to memorize the payoff table as it will be presented to you before every decision round.

After you have decided which move you want to make you can enter it simply by clicking on either blue or

yellow (next to the text “Please enter your action”), and then confirming it by clicking on Continue. You will then

be presented with an information screen regarding the outcome of that round. You will be informed what action

your opponent chose, your payoff from that round, your total payoffs and average payoffs against that particular

opponent. This is a sample information screen:
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At certain points during the experiment you will be presented with some questions, please follow the on-screen

instructions and answer them as best you can. There is no “right” or “wrong” answer, and your answers do not

affect how your computer opponent plays, your payoffs or the experiment in general in any way.

If you have any queries please raise your hand now, otherwise please wait for the administrator to begin the

experiment.


