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Abstract 

Investigations into multitasking have shown that overlap in 
cognitive resource use between tasks leads to lower 
performance. Various computational models have been 
developed to explain this phenomenon. However, most 
concurrent multitasking models have been tested in dual-task 
situations only. In order to see if single-task models could 
explain dual-task performance, we developed a computational 
cognitive model that was fit on single-task performance. The 
model was used to generate a priori predictions of behavior 
for an experiment in which three tasks with various resource 
requirements were performed in isolation and in combination. 
The model predictions closely matched the behavioral data, 
indicating that models designed for single tasks can indeed 
account for performance degradation in dual-task situations. 
To further validate the model, a prediction of neuroimaging 
data in six regions of interest was generated, which was tested 
in an fMRI experiment. We achieved a partial fit for the 
neuroimaging data, indicating that some aspects of the BOLD 
response require further modeling. 
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Introduction 
Our society is one of avid multitaskers. We perform many 
actions concurrently, often without even realizing it. 
Multitasking is typically used to indicate the simultaneous 
performance of high-level tasks, such as driving a car while 
setting up the navigation software. What we often forget is 
that even something as simple as walking down the street 
while counting lampposts is also a valid example of 
multitasking. These tasks might not register as ‘real’ 
multitasking because we can perform them together easily. 

But what if, during counting, your friend asks you how 
much money you owe him for lunch? Suddenly the situation 
becomes more complicated: now you have two activities, 
counting and algebra, which partly require the same 
cognitive resources. It would therefore be hard to do both 
activities at the same time. The interference in this example 
is probably caused by the overlap in the required resources 
of both tasks: a notion that was formalized in theories of 
multitasking (e.g., Pashler, 1994; Wickens, 2004). A recent 
theory, threaded cognition, also implemented those ideas as 
a computer simulation (Salvucci & Taatgen, 2008, 2011). 

In threaded cognition each task is called a ‘thread’, 
several threads can be active at the same time. Each task can 
make use of several resources, such as vision or declarative 
memory. While these resources function in parallel, access 
to a resource is serial: if one task is using a resource, other 

tasks cannot use it. For instance, if a task requests a fact 
from memory, and the memory resource is already 
retrieving something for another task, the first task will be 
postponed until the current retrieval is complete. 

Salvucci and Taatgen (2008, 2011) showed that a number 
of resources could lead to interference. These include 
obvious candidates such as perceptual and motor resources, 
but also declarative and procedural memory. Furthermore, 
the problem state, a one element working memory resource, 
was also found to be a source of significant interference. 

Concurrent multitasking models using threaded cognition 
have focused almost solely on dual-task performance. In this 
paper we investigate whether task models that have been 
modeled for single-task performance can account for 
performance degradation, as well as neuroimaging data, 
when combined in dual-tasks. To this end, we designed an 
experiment in which three tasks with different resource 
requirements had to be performed alone or in pairs. We 
developed a computational cognitive model of these tasks, 
and generated a priori behavioral predictions, which were 
tested in the experiment. To further validate our results, we 
used the model to predict activation patterns in certain brain 
regions and tested these predictions in an fMRI experiment. 

We will now first discuss the experiment, followed by the 
model and behavioral results. Afterwards, we will present 
the neuroimaging predictions and results. 

Methods 
Design 
The experiment consisted of three tasks: visual tracking, 
tone counting, and n-back. Subjects were asked to perform 
the tasks both in isolation as well as in combination with the 
other tasks. The tasks were chosen in such a way that some 
combinations had mild or significant resource overlap, 
while other combinations did not overlap at all. 

N-back: in the 2-back task a stream of letters was 
presented on screen. Each letter was shown for 1000 ms, 
followed by an inter-stimulus interval of 1500 ms. For each 
letter, the participant has to press a key with their left hand 
to indicate whether the letter was the same or different as 
two letters back. A response could be given up to 1500 ms 
after the letter was presented. The 2-back task was expected 
to require working memory and declarative memory, and to 
a lesser degree the manual and visual resources. 

Tracking: during the tracking task participants were asked 
to track a moving target using their right hand. The target 



only moved in a horizontal direction: keys for left and right 
were used to track it. Two green lines on either side of the 
target conveyed the maximal distance the cursor may be 
removed from the target. If the cursor crossed this threshold, 
the lines turn red. The tracking task uses the manual and 
visual resources. 

Tone-counting: the final task was tone-counting, in which 
participants were presented with 20 tones at pseudo-random 
intervals. Tones could be either high (493.88 Hz) or low 
(261.63 Hz); participants had to count the high tones. The 
number of high tones in a trial varied randomly between 10 
and 17, with the rest filled up by low tones. At the end of a 
trial an answer prompt was presented. The participant had 
10 seconds to enter a response, which was given by pressing 
a key to increment the digits shown on screen. If tone-
counting was combined with tracking the left hand was used 
to respond, in all other cases the right hand. Afterwards, 
feedback was given for 500 ms. The main resources used by 
the counting task are the aural, working memory, and 
declarative memory resources. 

Participants 
28 students participated in the behavioral experiment for 
monetary compensation. Because one participant did not 
follow instructions, and three performed the 2-back single-
task at chance level, 24 participants were left for analysis 
(16 female, mean age 23, age range 19-30). Informed 
consent as approved by the Ethical Committee Psychology 
of the University of Groningen was obtained before testing.  

Procedure 
At the start of each trial an eight second fixation cross was 
followed by a two second presentation of the names of the 
tasks in the upcoming trial. In the single-task conditions, the 
task stimulus was presented in the middle of the screen. As 
no visual stimuli are used in the tone counting task, a 
fixation cross was presented instead. In the dual-task 
conditions the 2-back task was always presented on the left 
side of the screen, and the tracking task was always 
presented on the right side. The tone counting fixation cross 
was presented on whichever side was still empty. Each trial 
lasted 30 seconds, with an additional 10 seconds for trials 
with tone-counting for entering the response. 

The experiment consisted of one practice block and two 
experimental blocks. In the practice block participants 
performed each single-task condition twice. The two 
experimental blocks consisted of 31 trials each, which were 
presented in a pseudo-random order: each condition 
appeared every six trials, resulting in 10 trials per condition. 
Every block also contained a fixation trial: during this trial 
participants did not need to perform a task.  

Predicting Interference 
To predict the performance in the experiment we developed 
a computational model in the ACT-R cognitive architecture 
(Anderson, 2007), which was also used to instantiate the 
threaded cognition theory (Salvucci & Taatgen, 2008). 

ACT-R consists of a set of resources that can be operated 
through production rules. The resources act in parallel, but 
each resource itself proceeds serially (Byrne & Anderson, 
2001). The framework consists of peripheral resources  
(visual, manual, aural, and vocal), as well as cognitive 
resources (declarative memory, goal, and problem state). 
The problem state, or imaginal module, represents working 
memory in ACT-R, and can contain a single chunk of 
information. Threaded cognition adds the ability to ACT-R 
to run multiple goals, or tasks, at the same time by 
interleaving the production rules belonging to each goal.  

In our model, each task was implemented as a separate 
thread. This means that the same task models were used in 
both the single-task and dual-task setup: dual-task 
performance was therefore a parameter-free prediction of 
the single-task models. 

In the 2-back task, the model perceives the stream of 
letters, and maintains a problem state that contains the 
previous letter and a reference to the 2-back letter in 
declarative memory. When the model attends a new letter, 
the 2-back state is retrieved from declarative memory and 
compared against this new letter. The model then gives a 
response with its left hand for ‘same’ or ‘different’, 
depending on the retrieved letter. If the 2-back could not be 
retrieved because its activation fell below the retrieval 
threshold, the model guesses a response. Following the 
response, the current problem state is stored in memory – 
effectively storing the letter 2-back – and a new problem 
state is made that contains the attended letter and a reference 
to the old problem state. 

When performing the tracking task, the model first 
perceived the positions of the cursor and the moving target 
dot. While tracking these positions, the distance between the 
target and cursor is observed. If this distance becomes too 
large, the model presses the key required to reposition the 
cursor on top of the target, using its right hand. Movements 
of the cursor will be rapid when it is far removed from the 
target, but slow when it is close to the target. This allows the 
model to make precise adjustments.  

Finally, when the model is counting tones, it stores the 
count in a problem state. The model hears both high and low 
tones, but does not count the low tones. After a high tone is 
perceived, the model increments the current count n by 
retrieving n+1 from declarative memory. Sometimes a tone 
is heard while the current count is being incremented. This 
fires a production rule that stores the new tone in memory. 
Once the increment is completed, the tone is retrieved from 
memory to determine if it was low or high, and if needed a 
new increment operation is started. 

To interleave most resources in ACT-R, each task must 
check if a resource is busy and empty. Using the problem 
state resource is slightly more complicated. While the 
problem state itself can be checked whether it is busy, this 
does not provide any information about another task that 
might be using the problem state contents over the span of 
several production rules. As all threads have direct control 
of the contents of the problem state resource, overwriting its 



contents can cause problems: one thread might overwrite the 
problem state, causing another thread to be stuck forever as 
it requires its own problem state to be in the buffer. 
Therefore, problem states must be switched explicitly: at 
any step where the problem state is required the task must 
check if it has a state of the right task. If not, it retrieves a 
usable state, and replaces the current one. This is the only 
part of the models that would not ordinarily be required 
when just modeling single tasks. However, one could argue 
that a robust model would include it nonetheless. 

A Priori Performance Predictions 
The three task-models indicate that several resources could 
overlap and cause interference in the dual-task conditions. 
When 2-back is combined with tracking visual requirements 
overlap, as attention has to be divided between the letters on 
the left half of the screen and the tracking dot on the right. 
Although both tasks use the manual resource, there is no 
real overlap because the tasks use different hands. 

In the 2-back and tone-counting condition, there is 
overlap in memory resources: both tasks require declarative 
memory and the problem state resource. The 2-back task 
requires the problem state to keep track of the last few 
letters, and needs declarative memory to retrieve the 2-back. 
The tone-counting task requires the problem state to keep 
track of the number of high tones, and declarative memory 
to determine the next increment. 

Finally, in the tracking and tone counting condition there 
is no apparent overlap, as both tasks use different sensory 
modalities, only one task requires working memory, and 
only one task makes use of the manual resource during the 
trial. 

  Using our computational model we generated 
quantitative predictions of single-task performance and 
dual-task interference. These predictions are shown in 
Figure 1 (yellow squares)1. The largest overall performance 
loss was in the 2-back & tone-counting conditions, followed 
by 2-back & tracking. Both tracking and tone-counting 
performance suffer when combined with the 2-back task, 
but 2-back performance itself suffers most when combined 
with tone-counting. Hardly any performance difference is 
seen in the tracking & tone-counting condition. 

Results 
All F- and p-values are from repeated measure ANOVAs, 
and all accuracy data were transformed with a logit 
transformation before performing ANOVAs. All error bars 
depict 95% confidence intervals. 

The white circles in Figure 1 show the error rate for each 
task (panels A, B, and D). An ANOVA showed a main 
effect for condition in the 2-back task accuracy (F(2, 48) = 
56.15, p < 0.001). A post-hoc Tukey’s test reveals that the 
difference between 2-back & tracking and 2-back & tone-
counting was slightly less significant than the other 

                                                             
1 This prediction was generated before we ran the experiment; it 

was posted on the ACT-R mailing list on October 29, 2012. 

differences (p < 0.01 versus ps < 0.001). Performance is 
clearly worse in dual-task conditions, with 2-back & tone 
counting leading to the lowest performance, as predicted. 
Reaction times (panel C) for the 2-back did not mirror the 
accuracy data: an ANOVA showed a main effect for 
condition (F(2, 48) = 31.34, p < 0.001) with the single-task 
condition leading to the fastest times and the 2-back & 
tracking condition leading to the slowest times. The model 
predicted this pattern. 

Tracking accuracy showed a main effect of condition 
(F(2, 48) = 105.1, p < 0.001): A post-hoc Tukey’s test 
shows that all conditions were significantly different from 
each other (ps < 0.001). As seen in panel B, the accuracy 
only decreased by a meaningful amount when combined 
with 2-back. The model captures the same effect, but 
predicts slightly lower overall accuracy. 

Finally, tone counting accuracy also shows a main effect 
for condition (F(2, 48) = 50.64, p < 0.001). Again, all 
conditions differ significantly from each other, with the 
difference between tone counting and tone-counting & 
tracking being slightly less significant than the other 
comparisons (p < 0.01 versus ps < 0.001). The data reveals 
two unexpected effects: in the tone-counting + tracking 
condition the accuracy is lower compared to the single-task 
condition. It seems there is still some interference, even 
though the tasks do not seem to share any resources. The 
condition with the lowest accuracy is clearly 2-back & tone-
counting, as predicted by the model. However, the model 
overestimated performance in the single-task and tracking 
conditions, and underestimated performance in the 2-back 
condition. 

Figure 1. The behavioral results for each task. Rp
2 is the 

fit to the results of the a priori prediction, whereas Rf
2 is 

the fit for the posteriori model. In addition, the mean 
absolute error (MAE) is given. The gray background 
represents density estimates of the underlying data. 
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Posteriori Model Fit 
We adapted the model to fit the data of the experiment. To 
capture the low performance on the tone-counting single-
task, the model was altered to sometimes mistake a low tone 
for a high tone. This was accomplished by adding an extra 
production rule that competes with the correct rule for 
handling low tones. In addition, we fitted the model 
parameters to create a better quantitative fit. 

The red diamonds in Figure 1 show that the fitted model 
has a good quantitative fit to the data. Even the unexpected 
effect in the tracking & tone-counting condition is captured. 
In model terms, the explanation for this effect is that 
concentrated effort on the tracking task can sometimes 
cause tones to expire in the auditory buffer before they have 
a chance to be processed by the counting task: the tones are 
heard, but not consciously processed. 

A Priori BOLD Predictions 
As the cognitive resources used by the model have been 
mapped onto brain regions (e.g., Anderson, 2007), it is 
possible to generate predictions of the Blood-Oxygenation 
Level-Dependent (BOLD) response for those regions. The 
predictions were generated by convolving resource activity 
with the hemodynamic response function, and can be 
compared against the neuroimaging data to provide further 
validation of the model. For a detailed overview of the 
method see Anderson (2007) and Borst, Taatgen, Stocco, & 
Van Rijn (2010). 

Using the fitted model we computed BOLD functions for 
five resources: the visual resource, the manual resource, the 
aural resource, the declarative memory resource, and the 
problem state resource. We split the manual resource 
prediction into left and right, as each task had different 
manual requirements. The predictions are presented in 
Figure 2 (odd rows)2. Each panel shows the predicted 
BOLD response over one trial: each scan is 2 seconds.  

The aural prediction is presented in Figure 2A. It shows 
the same amount of activity for all three tone-counting 
conditions. This is a consequence of tone-counting being the 
only task that uses auditory cues. As such, no activity is 
predicted for any of the remaining conditions. 

The prediction for the visual resource is shown in Figure 
2B: the model predicts the highest activities for conditions 
that include the tracking task. Less activation is predicted 
for the remaining conditions that include the 2-back, and for 
the tone-counting single-task condition activation is only 
predicted at the end of the trial, when the answer needs to be 
entered. We see a similar spike in the 2-back & counting 
condition. These predictions align with our intuition: more 
visual information on the screen results in more visual 
resource activity. One might expect the 2-back & tracking 
condition to result in the highest activation, given that both 
tasks have a strong visual component. However, the model 
does not reflect this. The reason is that the time spent 

                                                             
2 This prediction was also posted on the ACT-R mailing list on 

January 16, 2013. 

switching between the two tasks does not result in activity 
in the visual resource3.  

Figure 2E and 2F show the BOLD predictions for the left 
and right manual resources. The left manual prediction is 
similar to the visual prediction: it shows large activations 
for all three tracking conditions. This is expected, as the 
right hand is used for the tracking task. The activation at the 
end of the tone-counting and 2-back & single tone-counting 

                                                             
3 It does result in activity in the visual-location resource, which 

we do not cover, as there is no mapping of that resource to a 
specific brain region in ACT-R. 

Figure 2. BOLD response prediction (odd rows) and 
neuroimaging results (even rows) for six ROIs. 
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trials is present as well: the right hand is used to enter the 
tone count in these conditions. As 2-back is performed with 
the left hand, it shows no activation in the single-task 
condition. 

All 2-back conditions show a clear response in the right 
manual prediction. The magnitude of the BOLD change is 
smaller than seen in the left manual prediction, as the 2-back 
task requires much less manual input than the tracking task. 
The activation at the end of the trial in the tone-counting & 
tracking condition is due to the tone counting response 
being made with the left hand in that condition. 

Figure 2I shows the problem state prediction. The 2-back 
& tone-counting condition generates by far the largest 
BOLD response during the trial. This is due to the 
interference between the tasks: Both tasks require a problem 
state, and given that only one state can be active at any 
particular time, states are switched in and out of the resource 
repeatedly. This switching means that the problem state 
resource is very active, which results in the large BOLD 
response. The remaining 2-back conditions show an 
intermediate level of activation: even without an interfering 
task, the 2-back is still quite taxing on memory. When a new 
letter has to be stored, the old problem state is put in 
declarative memory, and a new state is created, which 
causes the predicted activity. The tone-counting single task 
shows a low level of activation: the problem state is updated 
during a trial, but not replaced with a new state. As such, it 
is less intensive than the 2-back task. As tracking does not 
use the problem state, it shows no activation. 

The declarative memory resource prediction, shown in 
Figure 2J, shows a pattern very similar to the problem state 
prediction. This makes sense, as declarative memory is 
primarily used to retrieve old problem states from memory. 

fMRI Experiment 
Eighteen people participated in the experiment for monetary 
compensation. Two participants were removed due to 
excessive head motion, leaving 16 datasets for analysis (4 
male, mean age 22, age range 18-25, right-handed). Written 
consent as approved by the Medical Ethical Committee of 
the University Medical Center Groningen was given before 
the experiment. 

Before the scanning session participants performed a 20-
minute practice session with the paradigm outside of the 
scanner. The scanning session starts with a structural scan. 
During this scan participants perform a 10-minute practice 
block, to become accustomed to performing the tasks inside 
the scanner. Afterwards, participants performed six 10-
minute blocks. Each block contained each condition twice, 
plus one fixation trial, for a total of 78 trials. The trial order 
within each block was randomized. The remaining details of 
the paradigm are identical to the behavioral experiment 
described earlier. 

fMRI Procedures and Preprocessing 
The neuroimaging data were obtained with a Philips Interna 
3 Tesla scanner using a standard radio frequency head coil. 

Each functional volume consisted of 37 axial slices (3.5 mm 
thickness, 64x64 matrix, 3.5 mm x 3.5 mm per voxel), 
acquired using echo-planar imaging (2000 ms TR, 20 ms 
TE, 70° flip angle, 224 mm field of view, 0 mm slice gap, 
with AC-PC on the 19th slice from the bottom). Anatomical 
images were acquired using a T1-weighted spin-echo pulse 
sequence with the same parameters as the functional images, 
but with a higher resolution (1 mm thickness, 256x256 
matrix, 1 mm x 1 mm per voxel). 

The data were preprocessed using SPM84. The steps 
consisted of realigning the functional images, coregistering 
them with the structural images, normalizing the images to 
the MNI (Montreal Neurological Institute) ICBM 152 
template, and smoothing them with an 8 mm FWHM 
Gaussian kernel. 

Imaging Data Analysis 
The results of a region of interest (ROI) analysis performed 
on the imaging data are presented in Figure 2 (even rows). 
The location of the regions is based on a recent meta-study 
(Borst & Anderson, 2013), instead of the mapping provided 
by ACT-R (see Borst, Nijboer, Taatgen, & Anderson,  
submitted, for details). Results were averaged over the left 
and right regions, with the exception of the manual regions. 
The aural resource (left superior temporal gyrus), visible in 
Figure 3C, only showed activation for the conditions that 
include the tone-counting task. While the model predicted 
identical activation patterns for all three tone-counting 
conditions, there was clearly less activity in this region 
while the dual-tasks were performed. 

The results for the visual resource (left middle occipital 
gyrus) are presented in Figure 2D. Apart from the large 
initial spike, the results partially resemble the model 
prediction: the three tracking conditions show the highest 
activation. However, the 2-back conditions show almost no 
activation. It is therefore likely that the visual ROI is more 
related to spatial attention than the detailed visual 
processing required in parsing the 2-back letters shown on 
the screen. Further evidence of this is that all the conditions 
that include tone-counting show a spike at the end of the 
trial, when the tone count input screen is presented. Hence, 
all the instances that require significant spatial attention 
show high activity in the visual ROI. 

Figure 2G and 2H show the results of the manual resource 
region (the left and right precentral gyrus, respectively). The 
left region shows large, near identical activation for all three 
conditions that involve tracking. The right region shows 
almost identical activation patterns for the conditions that 
include the 2-back task. The figure also shows deactivation 
in the tracking single-task and the tracking & tone-counting 
dual task conditions. The counting single-task shows no 
activation during the trial. 

The problem state resource (left inferior/superior parietal 
lobule, Figure 2K) showed strong activation in the 

                                                             
4 Wellcome Trust Centre for Neuroimaging 

(www.fil.ion.ucl.ac.uk/spm/) 



conditions in which the 2-back task was present. In contrast 
to the model prediction, we did not see an over-additive 
effect in the 2-back & tone-counting condition. In fact, of 
the three conditions that show high levels of activation, it is 
the least active. All conditions showed an activation spike at 
the start of the trial. This might be due to an attention shift: 
it has previously been shown that activation in the problem 
state region can reflect visual processing. 

Finally, the declarative memory region (left inferior 
frontal gyrus) is presented in Figure 2L. The region showed 
a pattern very similar to the problem state region: the 2-back 
& tone-counting condition shows somewhat less activation 
here, and the tone-counting single-task shows slightly more 
activation. 

In summary, the results in the manual regions followed 
the predictions closely. The prediction for the visual region 
has the conditions in roughly the right order, but does not 
capture the differences between the three conditions that 
contain the tracking task, and did not match predicted n-
back activity. Looking at the aural region, the model and the 
results have a similar overall shape, but the model does not 
produce the deactivation found in all conditions except the 
tone-counting single-task. Finally, in the problem state and 
declarative memory regions the model does not capture the 
BOLD response for the 2-back & tone-counting condition. 

Discussion 
We developed a model to investigate interference effects in 
concurrent multitasking. To test this model, we performed a 
behavioral and an fMRI experiment. The behavioral 
predictions of the model were confirmed: the model 
predicted dual-task performance by combining the single-
tasks models, without changing the single-task models. This 
results in a parsimonious account of concurrent 
multitasking, which does not rely on any additional systems 
such as a central executive (Baddeley, 1996; Kieras et al., 
2000). Furthermore, having three tasks that show different 
performance profiles for each condition imposes strong 
constraints on the model, as the interaction between tasks 
limits the space of possible solutions. 

The neuroimaging predictions were partly confirmed by 
the data. The greatest discrepancy between model and data 
occurred in the 2-back & tone-counting condition, which 
showed a poor fit for the problem state and declarative 
memory. In addition, the aural regions showed deactivation 
in the dual-task conditions that contained tone-counting. 
This might indicate that there is a limit on the amount of 
blood flow to various regions. As dual-task conditions do 
not only use certain regions more intensely, but also a 
greater number of regions, it could be that we are observing 
a ceiling effect, limiting the increase in the BOLD response. 
However, this does not explain why 2-back & tone-counting 
produces less activation than the 2-back single task.  

Alternatively, it might be that participants changed their 
strategy in the dual-task condition. That is, they might have 
used a less memory-intensive strategy to perform the 2-back 
task in this condition, based on familiarity and timing (e.g., 

Iuvina & Taatgen, 2007). This would lead to lower activity 
in the regions-of-interest, but also to lower behavioral 
performance, matching our results. Finally, we might simply 
be looking in the wrong region for evidence that 2-back and 
tone-counting interfere. In conclusion, while the single-task 
models gave an excellent fit for dual-task behavioral data, 
the neuroimaging results pose a greater challenge. 
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