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The SAL cognitive architecture is a synthesis of two well-established constituents:
ACT-R, a hybrid symbolic-subsymbolic cognitive architecture, and Leabra,
a neural architecture. These component architectures have vastly different origins
yet suggest a surprisingly convergent view of the brain, the mind and behaviour.
Furthermore, both of these architectures are internally pluralistic, recognising
that models at a single level of abstraction cannot capture the required richness of
behaviour. In this article, we offer a brief principled defence of epistemological
pluralism in cognitive science and artificial intelligence, and elaborate on the SAL
architecture as an example of how pluralism can be highly effective as an
approach to research in cognitive science.

Keywords: pluralism; cognitive architecture; cognitive neuroscience; cognitive
models; computational models

1. Introduction

‘The road up and down is one and the same.’

- Heraclitus (Freeman 1983)

One can study and describe cognition in many ways and at varying levels of detail and
description. Beyond the enduring Cartesian chasm between mind and brain we have,
for example, biochemists studying the details of protein channels, neuroscientists who
research synaptic potentiation in individual neurons and small networks, cognitive
neuroscientists who attempt to understand the behavioural function of various
brain regions, and cognitive psychologists who study behaviour. Paralleling this
experimental hierarchy are the simulation fields of computational neurochemistry,
computational neuroscience, computational cognitive neuroscience, computational
psychology, machine learning and artificial intelligence. Beyond those two scientific
traditions of experimental and computational investigations lie other areas related
to cognitive science, such as anthropology, education, linguistics, philosophy and
human-computer interaction.

Despite the fact that all these fields in one way or another attempt to understand
and/or replicate some or all of the functions of the same 1.3 kg organ, the participants
rarely collaborate across boundaries. The authors believe that this separation of the
larger field of cognitive science into research silos is not merely unfortunate but is likely
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to obscure the answers to the deepest theoretical questions. Newell (1973a,b) described
the perils of dividing a domain into independent subdomains, and our claim might be
viewed as a coarser, heterogeneous extension of those concerns. Unlike some physical
sciences, cognitive science may not be amenable to this kind of reductionist arrangement

of the field.
In this article, we provide a brief principled defence of pluralism in cognitive science,

arguing that theories at different levels of detail and from different perspectives are
mutually informative and constraining, and furthermore that no single level can capture
the full richness of cognition. We then explore this perspective by providing details of two
relatively successful cognitive architectures, ACT-R (Anderson and Lebiere 1998;
Anderson et al. 2004; Anderson 2007) and Leabra (O’Reilly and Munakata 2000), each
of which embodies theories at multiple levels of description yet has been successfully
implemented as an integrated software simulation environment. Finally, we discuss the
further integration of these multi-level theories into the SAL (Synthesis of ACT-R and
Leabra) architecture, and show that even in early and simple tests it has demonstrated

capabilities that neither of the component architectures can provide alone; and we further
show that the collaboration itself has led to insights at the critical boundary between the
architectures.

2. An argument for pluralism

Physics was perhaps the most successful field of science in the first half of the twentieth
century, and consequently a great deal of recent philosophy of science centres on examples
from that field. Furthermore, as a field, physics tends to have a deeply reductionist view of
the world, always seeking out the smallest and most basic constituents of physical reality.
It might, therefore, be surprising that pluralism is an important part of physics:

. . . psychologically we must keep all the theories in our heads, and every theoretical physicist
who is any good knows six or seven different theoretical representations for exactly the same
physics. He knows that they are all equivalent, and that nobody is ever going to be able to
decide which one is right at that level, but he keeps them in his head, hoping that they will give
him different ideas for guessing. (Feynman 1965)

Superficially this is uncontroversial. Many scientists would agree with Feynman that
having different descriptions of the same phenomena helps to move the science forward
and has numerous practical benefits. At a deeper level, though, most scientists (whether in
physics or cognitive science) also believe that there is nevertheless one description that is
ontologically privileged, the one that captures the way things really work. Indeed, this is
what many scientists seek in their research. Consequently, a typical perspective is that,
while the theories of others may be useful, mine is true. A special case of this perspective is

that of the strict reductionist and his sidekick, the eliminative materialist, for whom only
the smallest features are real, and all else is epiphenomenal.

The notion that there is an ontologically privileged description of a given phenomenon
is an unsurprising outgrowth of a belief in metaphysical identity. If there is a way that
things are, then there must be one right or true way to describe it. But this does not follow.
A description of a phenomenon is neither the phenomenon nor an instance of it; in
particular, a description is an abstraction. Any finite description must omit some details in
favour of others that are more predictive, more revealing, more important for our current
purposes. Thus for any such description, there is another that elects to incorporate some of
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the omitted details and leave out others that were previously included; this second
description is no less true – it merely has different priorities:

. . . one is likely to commit the common fallacy of assuming that the finer [more granular]
theory is always more true than the coarser theory. The finer theory fails completely in
accounting for qualitative features easily described by the coarser theory. In this case, there is
an epistemic loss when one restricts oneself to the finer theory. Truth is here established by
correspondence to different cognitive levels, each making its own contribution. It follows that
the qualitative character of the coarser theory demands recognition in its own right despite the
knowledge of the finer theory (Rohrlich 1988).

A simple concrete example of this plural validity is the behaviour of liquid water.
At a fine descriptive level there are water molecules; at a much coarser level there are
waves. It is easy to see the practical benefits of the two different representations. Yet
reductionist instincts encourage a view that the water molecules are ontologically
privileged. Alas, if one knew only of the water molecules and their micro-behaviour, one
would neither predict nor expect any such phenomenon as waves. The motion of even
three particles, let alone billions, is not susceptible to analytic solution, and leaving aside
the computational intensity of a simulation, it is unlikely that the description and
understanding of the water molecules, without a prior knowledge of waves, would be
sufficiently accurate that such higher-level phenomena would arise in a simulated model.
The description of water molecules instead prioritises explanations for slightly coarser
phenomena such as ionic solution and cohesion. The only way that waves would arise
from a simulation of water molecules is if we were to constrain the characterisation of the
water molecules in plausible ways, find those that actually produced wave behaviour, and
then determine empirically which of these constrained characterisations actually comports
with the physics of the water molecules. Such an approach can provide novel predictions
and refinements at both levels of description; but critically for the present discussion,
it illustrates that waves and water molecules are merely two different, incomplete
descriptions of a unity of physical behaviour.

In contrast to physics, psychology and artificial intelligence have sometimes had an
anti-reductionist view. Although, this has abated in the past decade, with the rise of
‘biologically inspired’ techniques in machine learning and the use of fMRI, ERP, and
single-cell recording techniques in psychology, it is still necessary to argue that the
microstructure of cognition is relevant to large-scale problems such as educational issues
(e.g. Anderson 2002), and machine learning practitioners are often heard to point out ‘you
do not need to know how birds fly to design an airplane.’ At first glance this position
appears to be more pragmatic than philosophical; the claim is that reductive theories are
irrelevant, not unreal. But a claim that a theory is irrelevant implies that it is
epiphenomenal, thus that it is ontologically inferior. The error is fundamentally the same.

It is important to see that pluralism is not the same as relativism. First, it is not the case
that just any theory is valid: it must be consistent with the facts. Note that this is not the
same as being consistent with all the data – no theory meets that standard, due to
measurement error, experimental confounds, and the like (Kuhn 1970 pp. 146–147;
Feyerabend 1993 p. 39). Second, even if there are several different descriptions of
a phenomenon, all of which are consistent with the facts, it is not the case that all of them
are equally good. Although, we intend to discredit ontological privilege, descriptions
can clearly be epistemologically privileged. One standard for this is parsimony, which
in very broad form can be characterised as a preference for descriptions that explain
more phenomena with fewer conceptual categories; another is vertical and horizontal
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coherence (Rohrlich and Hardin 1983). Furthermore, when working within a particular

theoretical context, it is essential to the economy of thought to opportunistically reify the

entities and categories of the theory. What pluralism demands is merely that one recognise

this as an act of reification, rather than as an establishment of ontological privilege, and

not that one must constantly give voice to alternative theoretical constructions. In essence,

pluralism is an extension of instrumentalism, adding to it the claim that different systems

of concepts and theories can describe the same phenomena, without contradiction, but

having different aims or emphasis.
The apparently subtle distinction between ontological and epistemological privilege

has major consequences for the sociology of science, and in particular for pluralism.

Despite one’s best efforts to see value in the work of others in the same or peripheral fields,

from the perspective of ontological privilege it is difficult to avoid a thinly disguised

contempt for their ‘epiphenomenal’ results. If instead we have a viewpoint of

epistemological privilege only, then pluralism is to be embraced. Without abandoning

any beliefs we may have about the underlying nature of reality, we can recognise the

ineffability of those beliefs. Thus we can end what is in essence a religious war over the

metaphysically true, embrace the insights and constraints generated by other approaches,

and thereby hopefully enhance our own approach.

3. ACT-R

ACT-R is a cognitive architecture whose initial development was driven by modelling

phenomena from the psychology laboratory. Numerous successful models have been

developed for a wide range of tasks involving attention, learning, memory, problem

solving, decision making and language processing. Recent years have seen a significant and

relatively successful effort to embed ACT-R models into simulation environments

and apply them to the performance of challenging real-world tasks. Examples of

these applications include driving (Salvucci 2006), aircraft manoeuvring (Byrne and

Kirlik 2005), simulated agents for computer-generated military forces (Best and Lebiere

2006), and tutoring systems of academic skills, particularly high school mathematics
(Anderson and Gluck 2001).

The history of the ACT-R theory is a case study in the value of pluralism. ACT-R has

its roots in the HAM (for Human Associative Memory) theory of human memory of

Anderson and Bower (1973), which represented declarative knowledge as a propositional

network. HAM was implemented as a running computer simulation in an attempt to

handle complexity and to precisely rather than verbally specify how the model applied to

the task, thus overcoming the major limitations of the mathematical theories of the 1950s

and 1960s. One could view the departure from concise mathematical equations toward

a collection of computational mechanisms applied to complex data structures to be a first

foray into pluralism.
The next step was the introduction of the first instance of the ACT (Adaptive

Control of Thought) theory, ACTE (Anderson 1976). It combined HAM’s theory of

declarative memory with a production system implementation of procedural memory,
thus precisely specifying the process by which declarative knowledge was created and

applied. Production systems were then becoming increasingly popular in cognitive

science and artificial intelligence (e.g. Newell 1972, 1973a). Their combination with

a theory of human memory was itself a form of pluralism by integrating mechanisms
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focused on very different levels: a broad and powerful functional replication of human
capabilities on the one hand, and an attention to relatively small and subtle
behavioural patterns on the other. At a theoretical level, while the distinction between
procedural and declarative knowledge had little support at the time, it has found
increasing popularity and support from recent neuroscience evidence pointing at
a dissociation between declarative and procedural memories. This ability of new
neuroscience findings to illuminate long-standing debates in cognitive science is one
source of our confidence in its guidance in developing our integration of the SAL
architecture, as will be discussed later.

The next major step in the evolution of the ACT theory was the ACT* system
(Anderson 1983), which added a neural-like calculus of activation to declarative memory
that determined its functional properties. The addition of this new subsymbolic level was
driven by the need to capture the soft, graded, probabilistic nature of human cognition.
To each symbolic propositional node (also called a ‘unit, ’ and later called a ‘chunk’ in
subsequent ACT-R versions) in memory corresponded a real-valued activation that
determined its availability, from its probability of being retrieved correctly to the latency
of the retrieval. The two levels are tightly integrated: an activation level is meaningless
without the symbolic node to which it is attached, and a node without its activation cannot
make precise quantitative behavioural predictions. This pluralistic integration of a purely
symbolic cognitive theory with subsymbolic mechanisms was successful in improving
correspondence to psychology laboratory results, but it also had profound architectural
implications. The requirements of integration placed constraints on both the subsymbolic
mechanisms (i.e. not just any set of mechanisms produce the necessary high-level
behaviour) and the symbolic organisation (i.e. equivalent representations will have
significantly different subsymbolic consequences), with the result that the new theory was
not really a hybrid but rather a synthesis of theories of cognition at two different levels of
description. Today, ACT-R modellers sometimes speak purely in terms of chunks and
productions, and at other times they express the progressive changes in terms of
subsymbolic quantities. The appropriate level of description depends on the modeller’s
immediate purposes.

Important to the history of ACT-R was the rational analysis of cognition (Anderson
1990) inspired by Marr’s theory of information-processing levels (Marr 1982).
The general principle of rationality states that the cognitive system operates at all
times to optimise the adaptation of the behaviour of the organism. This rationality
hypothesis does not imply that human cognition is perfectly optimal. Rather, it helps
explain why cognition operates the way it does at the algorithmic level, given its physical
limitations at the biological level and the optimum defined by the rational level that it
attempts to implement. This analysis provides very strong guidance on theory
development, because given a particular framework (say, an activation-based production
system) it tightly constrains the set of possible mechanisms to those that satisfy the
rational level. As for Marr’s theory, this type of analysis is inherently pluralistic because
it recognises that the same system can be analysed at different levels: from the functions
that it computes to the algorithms that it uses to the details of their implementation.
Moreover, it implies that a system cannot be understood at any single one of these levels
but that instead the interaction between the constraints originating from each level is
critical. While we initially conceived of the rational analysis as an alternative to
mechanistic accounts, we later realised that the two approaches were in fact
complementary. Nevertheless, many use this same framework to argue for the primacy
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of the computational level and a justification for ignoring the ‘implementational
details’ – a move that is very reasonable in the domain of computer algorithms on
standard serial computers, where indeed the implementational distinctions are largely
irrelevant. The recent popularity of various forms of hardware parallelism, and more
exotic forms of computation such as quantum computing, have perhaps helped people
appreciate that all levels really are tightly intertwined and equally important.

Constrained by this rational analysis, a new version called ACT-R (the R standing for
Rational) provided a more formal basis to the subsymbolic level in terms of Bayesian
statistics and extended it to procedural memory in the form of a utility calculus that
determines production selection (Anderson 1993). Reflecting the growing influence of
neuroscience constraints, Lebiere and Anderson (1993) attempted to implement the
architecture using standard connectionist constructs. Although the resulting system,
ACT-RN, was not of practical use, this connection between symbolic and connectionist
levels had a fundamental impact on the development of the architecture. New mechanisms
were added to capture some key connectionist properties. For instance, Lebiere, Anderson
and Reder (1994) introduced a partial matching mechanism for declarative memory. This
mechanism illustrated that connectionist properties can be abstracted at the subsymbolic
level, for example, by reducing distributed representations to similarities that are then
combined with activation to yield semantically-driven retrievals. Also, many complex
symbolic constructs that were found to be too difficult to implement and thus neurally
implausible were removed from the architecture. These changes resulted in a finer-grained,
more constrained version of the architecture (Anderson and Lebiere 1998), which can be
viewed as embodying another form of pluralism between its computational nature, its
mathematical and statistical roots in the rational analysis, and the neural constraints that
limited its complexity.

The most recent version of the ACT-R theory (Anderson et al. 2004) has
integrated more granular theories along a different dimension, that of architectural
organisation. Under the pressure of accommodating the wide range of tasks
mentioned above, the architecture has added fairly detailed modules that represent
perceptual attention and motor programming. To accommodate new knowledge from
fMRI and other neural techniques regarding the functioning and organisation of the
brain (Anderson 2007), it has adopted a highly modular structure to incorporate
these new capabilities, as well as to modularise long-standing capabilities such as
long-term declarative memory, goal processing and procedural competence (Figure 1).
The information processing in each of these modules is largely isolated from the
information processing in others. They communicate with one another by putting
information into limited-capacity buffers, and production rules coordinate their action
by recognising patterns in the buffers and making further requests of the modules.
A major benefit of this modular approach is that the architecture has become
dynamically pluralistic, by facilitating the integration of a variety of modules, often
borrowed from other architectures. For example, development of the perceptual and
motor modules (including more specifically the visual and manual modules illustrated
in Figure 1) was heavily influenced by the EPIC architecture (Meyer and Kieras
1997). In addition, the modules have mappings to brain regions, and this has enabled
the use of cognitive neuroscience data, particularly brain imaging, to guide the further
development of models and the architecture. Once again, extending the architecture to
incorporate more granular theories has provided strong constraints for productive
development at both the higher and lower levels.
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4. Leabra

Development of the Leabra framework also grew out of a desire to reproduce laboratory
results in simulation, but from an entirely different starting point. Beginning with

fundamental neural mechanisms, Leabra integrates into one coherent framework a set of
basic neural learning and processing mechanisms (O’Reilly 1996; O’Reilly 1998; O’Reilly

and Munakata 2000; O’Reilly 2001) that have been otherwise separately investigated in the
neural modelling community.

In Leabra, individual neuron behaviour is governed by a point-neuron activation

function that uses simulated ion channels to update a membrane potential, with a non-
linear, thresholded output to other neurons. While this function is substantially simplified

over detailed neurochemistry simulations, it is behaviourally richer than more abstract
neural networks, and produces results that cannot be replicated in its absence (e.g.

shunting inhibition, which itself is critical for balancing inhibitory competition with
distributed representations, as described below). Similarly, Leabra incorporates three

different learning mechanisms: small increments of Hebbian learning, a substantial

component of error-driven learning, and in some cases reinforcement learning, which
together produce better overall learning than any one mechanism alone (O’Reilly and

Munakata 2000; O’Reilly 2001; O’Reilly and Frank 2006; O’Reilly, Frank, Hazy, and
Watz 2007).

Importantly, all three mechanisms are organised to correspond to biologically

plausible formulations. Hebbian and other forms of associative learning are well
established as having a biological foundation (Lisman, Lichtman, and Sanes 2003).

The error-driven component is based on post-synaptic calcium dynamics (Jilk, Cer and
O’Reilly 2003) and bidirectional excitatory connectivity, yet provides results that are

provably similar to those of backpropagation (O’Reilly 1996). The Leabra theory of
reinforcement learning depends on a complex architectural arrangement called ‘PVLV’

that maps closely to subcortical neural structures (O’Reilly, Frank, Hazy, and Watz 2007).
Thus at its most granular level, Leabra posits a theory of neuron function and learning

that is both consistent with the known biology and comparable in effectiveness with

Figure 1. Overview of the ACT-R architectural organisation.
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machine learning techniques. This theory attempts to isolate those biological factors that
are essential to the computational result at both a neural and network level. These
mutually constraining factors from two very different fields were essential to the
development of the framework.

Leabra also provides a theory of how such neurons connect and interact in networks.
First, it includes both small-scale and regional inhibitory fields, which both maintain
overall activity at desirable levels and induce representational specialisation of neurons
and groups of neurons. Critically, the inhibition is such that multiple neurons within
a functional area can be active, providing all the benefits of distributed representations, in
contrast with the more prevalent single winner-takes-all (WTA) algorithms, which produce
only localist representations (O’Reilly 1998; O’Reilly and Munakata 2000). Leabra’s
approach to inhibition is guided by the anatomy and behaviour of inhibitory interneurons
in the brain, but the actual implementation in a k-winners-take-all (kWTA) function is via
a computational abstraction, reflecting a pragmatic, pluralistic approach. Second, Leabra
includes bidirectional connectivity among regions, which is a striking feature of the brain’s
anatomy. In a simulated network, bidirectional connections result in dynamic constraint
satisfaction between top-down and bottom-up influences, which is critically important to
performing cognitive tasks such as interpretation of ambiguous stimuli or focusing
attention in relation to current goals. They also cause strong attractor states, a crucial
representational feature, to develop during learning.

The large-scale architectural organisation of Leabra (Figure 2) includes three major
brain systems: the posterior cortex, specialised for perceptual and semantic processing
using slow, integrative learning; the hippocampus, specialised for rapid encoding of novel
information using fast, arbitrary learning; and the frontal cortex/basal ganglia complex,
specialised for active and flexible maintenance of goals and other context information,
which serves to control or bias processing throughout the system. This latter system also
incorporates various neuromodulatory systems, such as dopamine, norepinephrine, and

Figure 2. Overview of the Leabra architectural organisation.
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acetylcholine, that are driven by cortical and subcortical areas (e.g. the amygdala, ventral

tegmental area, substantia nigra pars compacta and locus ceruleus) involved in emotional

and motivational processing. These neuromodulators are important for regulating overall

learning and decision-making characteristics of the entire system.
Demonstrating the importance of pluralistic vertical integration in the Leabra theory,

this large-scale specialisation of the cognitive architecture is suggested by basic neural

mechanisms. For example, a single neural network cannot both learn general statistical

regularities about the environment and quickly learn arbitrary new information such as

new facts or names of people (McClelland, McNaughton, and O’Reilly 1995; O’Reilly and

Rudy 2001; O’Reilly and Norman 2002). Specifically, rapid learning of arbitrary new

information requires sparse, pattern-separated representations and a fast learning rate,

whereas statistical learning requires a slow learning rate and overlapping distributed

representations. These properties correspond nicely with known biological properties of

the hippocampus and neocortex, respectively. A number of empirical studies, specifically

motivated by Leabra computational modelling work, have tested and confirmed these and

other more detailed properties (e.g. Maviel, Durkin, Menzaghi, and Bontempi 2004;

Bakker, Kirwan, Miller, and Star 2008).
Similar reasoning applies to understanding the specialised properties of the frontal

cortex, particularly the prefrontal cortex, relative to the posterior neocortex and

hippocampal systems. The tradeoff in this case involves specialisations required for

maintaining information in an active state (i.e. maintained neural firing, supported by the

frontal cortex) relative to those required for performing semantic associations and other

forms of inferential reasoning (supported by the posterior cortex). The prefrontal cortex

system also requires an adaptive gating mechanism (Braver and Cohen 2000; O’Reilly and

Frank 2006), to be able to rapidly update certain new information, such as a new subgoal,

while simultaneously maintaining other information that remains relevant, such as

a super-ordinate goal. The basal ganglia have the right neural properties to provide this

function (Frank, Loughry and O’Reilly 2001).
The Leabra framework has been and continues to be applied to modelling a wide range

of cognitive phenomena in perception, attention, learning and memory, language, and

higher-level cognition, thereby testing and validating the synthesis of its core elements.

5. Theoretical convergence

When the ACT-R and Leabra research teams began working together in 2006, they came

to a startling realisation: the two theories, despite their origins in virtually opposite

paradigms (the symbolic and connectionist traditions, respectively) and widely different

levels of abstraction, were remarkably similar in their view of the overall architecture of

the brain. Furthermore, they discovered that the underlying subsymbolic mechanisms in

ACT-R have conceptual and even mathematical similarity to the behaviour of emergent

representations in Leabra. Finally, they recognised that each architecture reflects an

explicit commitment to theoretical pluralism, both vertically (coarse versus granular) and

horizontally (e.g. replaceable modules in ACT-R, multiple learning mechanisms and

strategies in Leabra).
At the level of large-scale systems, the theoretical agreement is evident in Figure 3.

Both architectures reflect a central role for the basal ganglia in receiving converging input

from a wide range of cortical processing areas, which then drives the performance of
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specific motor or cognitive actions. Anatomically, the basal ganglia send output primarily
to the frontal cortex, which is associated with active maintenance of task relevant
information in Leabra, and with the homologous buffers of ACT-R. Similarly, both
architectures highlight the importance of the declarative/episodic memory system
supported by the hippocampus and related anatomical structures. Finally, both adopt
specialised sensory and motor processing pathways that have been well characterised in
posterior cortex. In the Leabra architecture, the processing differences among these
systems are supported by distinct neural specialisations in the basal ganglia, hippocampus
and cortex, while in ACT-R they are supported by distinct modules, representational
structures and processing and learning mechanisms.

At the cognitive level, a division into procedural and declarative components is shared
by both frameworks. This distinction and dissociation has clear cognitive validity: people
can possess abstract declarative knowledge of how to do something, yet be procedurally
incapable of doing so (e.g. driving a car or playing golf), and vice-versa (e.g. touch typists
often cannot recall where the keys are located).

Although dissociable, the procedural and declarative systems interact intimately in
any complex cognitive process. In ACT-R, the firing of productions is driven by the active
contents of the declarative and other information buffers, and the result of production
firing is the updating of these buffers and the creation of new declarative memory chunks.
In Leabra, the basal ganglia procedural system is tightly linked with the prefrontal cortex,
which maintains task-relevant information in an active state over time. One of the primary
functions of the basal ganglia in the brain is to drive the updating of these prefrontal active
memory states. These prefrontal areas then influence activation states throughout the rest
of the cortex via strong top-down excitatory projections. Each area of posterior cortex
has an associated prefrontal area, with which it has strong bidirectional excitatory
connectivity. Thus, we associate the buffers of ACT-R with these prefrontal representa-
tions of corresponding posterior cortical areas. While some buffers have been associated
with activation of posterior cortical areas as well as prefrontal areas (e.g. Anderson 2007),

Figure 3. Overlap of the ACT-R and Leabra architectural organisation.
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those attempts do not specifically discriminate between the activation of buffers and the
modules with which they are associated.

Reinforcement learning is a central behavioural element of human and animal
procedural cognition. The basal ganglia system in Leabra is strongly modulated by
a model of dopamine, which signals reward and punishment information. Positive reward
reinforces associated procedural actions, while negative feedback reduces the likelihood of
producing associated actions. A similar, more abstract form of reinforcement learning is
present in the ACT-R procedural system, where the integrated history of past success and
time-cost are the major determinants in selecting which production will fire. Stochastic
noise in quantities learned by reinforcement learning that control procedural selection
plays an important role in both frameworks in modulating maximising tendencies, and
suggests similar solutions to issues of exploration vs. exploitation.

The implementation of declarative memory in the two architectures stands in contrast
to that of reinforcement learning. The neural properties of the hippocampus have been
shown in the Leabra framework to be critical for the rapid learning of new arbitrary
information without interfering with existing knowledge. The declarative system in
ACT-R integrates both of these properties: new chunks of knowledge, encoded as
combinations of existing chunks, can be rapidly formed and accessed unambiguously;
chunks that are used more frequently over time gain higher levels of activation and
correspond to more expert knowledge; similarities can be defined between symbolic
chunks to drive semantic generalisation to related situations.

Both architectures also make use of associative learning mechanisms to modulate the
strength of representations in declarative memory. Subsymbolic declarative quantities in
ACT-R are learned according to Bayesian statistical algorithms, while new declarative
representations in Leabra are learned using a combination of error-driven and Hebbian
learning. Such learning mechanisms are based on the history of activation of the
information stored in declarative memory, but, critically, not on the success, failure or
costs of a particular action taken using that memory, as in procedural reinforcement
learning. In terms of processing information already stored in declarative memory, the
concept of spreading activation is critical to both architectures. In ACT-R, activation
spreads among declarative chunks in proportion to their associative strength and
similarities between chunks determine the degree of match. In Leabra, a similar activation
spreading dynamic emerges, in that coarse-coded distributed representations in posterior
cortical areas cause associated representations to overlap and share activation states.

The two architectures, however, reached different solutions regarding the existence of
complementary declarative systems. While Leabra had to assume separate systems with
distinct properties reflecting those of the hippocampus and posterior cortex because no
neurally plausible learning rules could produce the properties of both systems, ACT-R was
able to adopt a unified approach to declarative memory. The ability to create arbitrary
combinations of existing symbolic chunks into new structures provides the rapid learning
typical of the hippocampus, while the slow accumulation of activation and strengths of
association reflects the slow, statistical learning of posterior cortical areas. More
specifically, it was ACT-R’s commitment to an integrated hybrid symbolic-subsymbolic
approach that enabled it to unify separate areas into a single one. The result is that
commitments to different mechanistic levels allows on the one hand for an understanding
of the function of separate subsystems, but on the other for the unification of their
underlying functions. Each level of the system thus makes distinct contributions to our
scientific understanding.
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In summary, the ACT-R and Leabra frameworks overlap to a considerable degree in

their basic claims about the nature of the cognitive and neural architecture, despite having

been developed from very different perspectives. Broadly speaking, they are mutually

coherent theories of the same unity of behaviour, at different levels of description.

6. SAL

Like all theories, ACT-R and Leabra are incomplete. While ACT-R utilises subsymbolic

mechanisms and can interact with modules that are not symbolic, ultimately its inputs and

representations must translate to pure symbols. Leabra argues for a tripartite large-scale

architecture, but this architecture has not yet been implemented in an integrated large-

scale simulation. Neither of the architectures provides much detail regarding the crucial

issue of how symbolic representations, the feature of human cognition that makes it

unique among animals, arise organically in the mind and brain, although some initial work

on this issue has begun (Rougier, Noelle, Braver, Cohen, and O’Reilly 2005).
Because a philosophy of pluralism is not only inherent in the theories, but also a part of

each group’s working style, there seemed to be promise in collaboration. Thus, the SAL

architecture was born. SAL is an attempt to integrate and synthesise the Leabra theory of

neural function, network behaviour and representation, and tripartite architecture with the

ACT-R theory of symbolic and subsymbolic decision-making, representational activation

and organisation, and modular architectural organisation. It also is worth pointing out

that in the combined SAL architecture, most major machine learning techniques are

represented, and grounded in forms that are motivated and informed by human

psychology and biology.
For its initial effort, the SAL team built a demonstration model representing

a preliminary synthesis of the two architectures (Figure 4). The model performs

Figure 4. An initial SAL implementation.
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a straightforward navigation and search task. The integration is of the simplest form,

whereby the visual module in an existing ACT-R model of navigation is replaced with

a Leabra visual object recognition model, which is capable of processing raw bitmap

images in a way that the ACT-R visual module cannot. Similarly, extant Leabra models

are not capable of organising problem solving behaviour over a period of several minutes,

as the ACT-R model does in searching for the target object in a complex environment.

Thus, this hybrid SAL model represents a new level of functionality that goes beyond the

capabilities of its constituent architectures.
In the demonstration, the SAL agent is embodied within an Unreal Tournament

simulation environment. It is familiar with the environment, in that it has access to

navigation points and object location points in symbolic form. This simplification was

adopted for tractability and without much loss of generality, as Best and Lebiere (2006)

demonstrated that one ACT-R model can navigate either virtual or real worlds

(controlling a virtual avatar or a robotic platform, respectively) using actual sensors

without requiring pre-arranged navigation points. Further, its Leabra-based vision module

has been trained to perceptually identify the possible object categories from bitmaps under

a variety of viewing angles and distances. An operator instructs SAL to find the desired

target via a typed command (‘find armor’). SAL then navigates the rooms; views and

perceptually identifies each object; and, when it recognises the desired target, navigates to

it and picks it up (Figure 5).
This straightforward modular integration illustrated that significant behavioural

benefits can arise from the synthesis. The obvious value is that the SAL model can

accomplish a task that neither architecture could perform alone: ACT-R because its visual

module cannot recognise objects from bitmaps, and Leabra because it has not

demonstrated control properties that allow it to navigate complex spatial environments.

Figure 5. SAL operating in an Unreal Tournament environment.
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However, the model also sheds light on some basic theoretical conundrums, such as the
symbol-grounding problem. The SAL model demonstrates how the architecture could
train the Leabra visual network to associate images of an object to its symbolic
representation, and then use that capability to robustly recognise objects in the
environment, extract their symbolic identity, and use that information to control complex
behaviour. While, again for the sake of simplicity, that process was managed by the
modelers in this case, it would be relatively straightforward to combine it with ACT-R’s
demonstrated ability to learn from instructions (e.g. Fu et al. 2004). This would result in
a model that could be shown pictures of objects and told their names, and given arbitrary
instructions involving those objects would be able to interpret and execute them.

Another interesting issue is the degree to which top-down control of the visual system
by higher-level cognition modulates the bottom-up processing of visual inputs. In the
current model, the model picks an object, focuses the attention of the visual module on
that object, then requests the visual module to recognise it and receives the result. A more
natural and efficient organisation would be to prime the visual module with the identity of
the object being searched, then to allow the visual module to select the object in the visual
field that best matches that description. Integrating a biologically plausible visual
processing module with high-level control modules allows for the systematic investigation
of those issues in tasks and environments of much greater complexity than those typically
used in purely experimental investigations.

Taatgen, Juvina, Herd, Jilk and Martens (2007) showed that a deeper integration can
produce more subtle behavioural features of human performance. Specifically, their model
of attentional blink connected the temporally varying activation states of internal Leabra
visual representations with an ACT-R model of control. In addition to demonstrating the
primary phenomenon of attentional blink, it also showed subtleties such as reduced
control leading to less blink, and reversed report of lag-one trials, neither of which were
captured in prior symbolic or neural models. This empirical match suggests that the
coherence and convergence of SAL, as described above, is not merely theoretical.

7. Continuing research

Future work on SAL will proceed along two different tracks. The first track can be likened
to comparative anatomy, in that the structural and emergent features of each architecture
will be mapped to those of the other, driving deeper understanding of both. This mapping
will be informed by empirical biological and behavioural data. The second track
emphasises achievement of superior functional capabilities through tighter, principled
integration of the two simulation systems.

7.1. Mapping track

The theoretical issue at the heart of the integration between ACT-R and Leabra is how
we think of the mapping between their structures and representations, most specifically
between the ACT-R buffers and production rules, and the Leabra model of working
memory and cognitive control in the prefrontal cortex and basal ganglia. Thus the effort
will focus on the issue of neural realisations of the basic production-rule cycle in ACT-R
(Figure 6), in which the contents of buffers are consulted, an action is selected, and the
buffer contents are updated. The envisioned resulting dynamic is one of gradual
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convergence between two different and currently incommensurable levels of description,
with each level gaining functionality and fidelity, while receiving guidance toward helping
the other achieve its goals. Specifically, ACT-R will provide a control framework to guide
the evolution of Leabra, while Leabra will provide a representation framework to
constrain the evolution of ACT-R. Further, the final outcome of this process will result in
a comprehensive account of cognition that ties behaviour at the organism level to
mechanism at the cellular and sub-cellular level without explanatory gaps.

In particular, we anticipate that this research track will help to address the following
open questions in ACT-R and Leabra:

. In ACT-R, how can ‘partial matching’ of production rules that ‘softens’
traditional production conditions operate without producing degenerate
behaviour?

. How can the learning of utility parameters that control production selection be
grounded in plausible assumptions about the nature of feedback available?

. How can context influence production matching and selection beyond the explicit
specification of precise conditions?

. In Leabra, how can new procedural learning piggyback on prior learning, rather
than using trial and error for each new behaviour?

. How can verbal instructions be integrated and processed?

. How does the system manage the choice between exploration and exploitation,
and more generally perform strategic search through the space of behavioural
actions and policies?

The neural realisation approach has informed the ACT-R architecture throughout its
evolution, from an early attempt at implementing ACT-R in neural network constructs
(Lebiere and Anderson 1993) to a current attempt at mapping the details of the production
rule cycle onto the anatomy of the basal ganglia (Stocco, Lebiere, and Anderson 2008).

==>==>
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count =count
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Figure 6. Mapping track – neural realisation of the production rule cycle.
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Developing neural realisations of higher-level cognitive phenomena has also been at the

heart of the Leabra research program (O’Reilly and Munakata 2000), and this effort for

the first time offers an intermediate level of representation that more tightly constrains

these neural realisations. This history provides a great deal of confidence that important
new insights will arise from the effort.

7.2. Integration track

As mentioned, the second future research track will emphasise the development of superior

functional capabilities through a principled integration of the two systems. A critical

feature of robust systems is that they have multiple different methods of solving problems.
Those different methods have complementary strengths and weaknesses that prevent

catastrophic failures (because when one method fails, another can take over) and boost the

overall performance of the system (by both synthesising the results of the different

methods and allowing some methods to learn from others). Human intelligence in

particular gains considerable robustness by having both subsymbolic and symbolic

capabilities. O’Reilly (2006) recently characterised these two capabilities in terms of analog
and digital computational properties that emerge from computational models based on

cognitive neuroscience data.
The division between symbolic and subsymbolic (i.e. distributed) levels corresponds

largely to the distinction between control and representation subsystems, respectively.

A combination of the two is essential in implementing a broadly effective system, but as

one would expect, and as some past efforts have shown, the specific manner in which they
are combined is a critical determinant as to whether the potential functional benefits of the

combination are realised. Neurally realised subsymbolic systems provide a way to achieve

the following properties in processing and representing large amounts of data:

. Speed: distributed connectionist systems can process information in a few steps by

exploiting neural parallelism.
. Capacity: massive parallelism at the cortical level enables the processing of large

amounts of data in perceptual and memory areas.
. Robustness: unlike symbolic systems, distributed representations generalise

naturally to new situations and their performance degrades gracefully in the

face of erroneous, imprecise or unexpected information or damage to the system.

Conversely, advantages of symbolic systems for controlling the operations of the

system include:

. Tractability: Enforcing sequentiality sacrifices speed to enable tractable control

over the flow of execution and reduce combinatorial complexity.
. Inspectability: Sequential control steps enable explicit memory of past processing

and the metacognitive introspection essential to avoiding local solution minima
(i.e. impasses).

. Efficiency: learning sequential control is considerably more efficient for symbolic

systems than it is for subsymbolic systems.

Past attempts to develop symbolic/subsymbolic hybrid systems (see, e.g. Wermter and

Sun 2000 for a review) have typically not reflected this division of labour. Instead of

applying symbolic techniques to control functions and subsymbolic techniques to
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representation functions, they often use both techniques for both functions. This dilutes

rather than exploits the benefits of each type of technique, resulting in systems that

struggle in both control and representation of the information required for robust

cognition.
In SAL there is a simple and obvious mapping of ACT-R to the control of the

communication paths among brain regions, and of Leabra to the subsymbolic

representation and computations performed within those regions; the research will

emphasise their strengths in these domains. However, we plan to go beyond a simple

modular hybridisation scheme toward a deeper synthesis, where elements based on ACT-R

and Leabra principles interact in a more tightly coupled and biologically inspired manner.

In brief, we associate the active buffers, procedural production system, and symbolic

representations from ACT-R with the prefrontal cortex and basal ganglia, while the

graded distributed representations and powerful learning mechanisms from Leabra are

associated with the posterior cortex. Given these mappings and specialisations, in the SAL

framework the interface between symbolic and subsymbolic elements occurs in the

bidirectional interactions between the ACT-R elements associated with prefrontal cortex,

and the Leabra elements associated with posterior cortex. Thus the tight integration

between ACT-R and Leabra occurs not between modules, as in our demonstration system,

but within modules; and in the process separating the larger subsymbolic module from its

symbolic buffer interface to the procedural system.
This direction differs substantially from the first track, in which the focus is on

developing neural realisations of working memory and cognitive control. Here, ACT-R

primarily handles cognitive control and Leabra handles representation, and the emphasis

is on the bidirectional interface between the two (Figure 7).
There are important technical challenges to bridging the analog/digital gap at the

interface of the posterior and prefrontal elements of this model, but we believe that these

are the very same challenges that the human brain faces in order to exhibit both symbolic

and subsymbolic abilities. Thus, a major focus of the research will be on the specific issue

of understanding bidirectional interactions between prefrontal and posterior representa-

tions, especially how learning new distributed representations in posterior cortex can drive

the development of new prefrontal symbolic representations, and how the task demands

represented in prefrontal cortex provide top-down influences that shape the learning and

processing in posterior cortex. The human system clearly gains considerable power and

Leabra:

Subsymbolic / Representation 

Bidirectional Interface

New Symbol Learning

ACT-R:

Symbolic / Control

Figure 7. Integration track – bidirectionally connected processes.
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robustness from a bidirectional synergy between these systems, and we think that
capturing this dynamic is the key to making SAL more than the sum of its analog and
digital parts. SAL has an advantage in this area over past attempts at hybridisation, in that
Leabra naturally incorporates bidirectional learning and activation dynamics, and ACT-R
is the only symbolic architecture that incorporates subsymbolic computations to perform
both bottom-up statistical learning and top-down biasing of information-processing
functions such as memory retrieval.

Beyond these two primary research thrusts, SAL principles are currently being applied
in an existing robotics project where ACT-R is the control system and a variety of machine
learning and algorithmic perception approaches are used. A Leabra object recognition
model is being introduced to work in conjunction with region-of-interest detection
algorithms to identify objects in the scene. Spatial attention has proved challenging to
model successfully, and in addition to the functional benefits, we hope that this
collaboration will illustrate constraints on how spatial attention must operate.

A pluralistic approach is also being used in a project to combine neural and
algorithmic approaches to perception in simulated environments as a replaceable
‘front-end’ to symbolic cognitive architectures. Leabra and ACT-R will serve as
the reference implementation, but the project aims to treat them as modular and
replaceable components, as long as such components fit within the needs and constraints
of cognition.

8. Discussion

We have provided considerable detail of the theoretical overlap between ACT-R and
Leabra, the previous and planned approaches to their integration in SAL, and the
theoretical questions we hope to answer through this effort. This detail shows that
the SAL architecture is explicitly pluralistic, not merely in that its constituent architectures
exhibit vertical, modular and mechanistic pluralism, or in the simple fact that it is
a hybrid, but rather that this hybrid maps to dissociable systems in the human brain,
and aims to integrate those systems in a manner similar to the brain. In the words of
Newell (1990):

A single system (mind) produces all aspects of behaviour. It is one mind that minds them all.
Even if the mind has parts, modules, components or whatever, they all mesh together to
produce behaviour. Any bit of behaviour has causal tendrils that extend back through large
parts of the total cognitive system before grounding in the environmental situation of some
earlier times. If a theory covers only one part or component, it flirts with trouble from the
start. It goes without saying that there are dissociations, independencies, impenetrabilities and
modularities. These all help to break the web of each bit of behaviour being shaped by an
unlimited set of antecedents. So they are important to understand and help to make that
theory simple enough to use. But they do not remove the necessity of a theory that provides
the total picture and explains the role of the parts and why they exist.

On the surface, ACT-R and Leabra are incommensurable: one operates on discrete chunks
and production rules, while the other is based on simulated neurons and their
interconnections. While we hope to map the theories either mathematically or in
simulated form, the incommensurable categories at the various levels of description will
remain necessary to explain the full range of phenomena (Rohrlich 1988).

The SAL architecture intends to explain a broader range of phenomena, and simulate a
larger scope of functionality, than can either of the component architectures alone.
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However, even if it proves successful, we will continue to view SAL as an epistemologically

attractive description of certain aspects of cognition, not as an ontologically privileged

theory. Other types of theories can constrain or explain SAL in further directions to

continue to broaden its scope or improve its performance. For example:

. The SOAR cognitive architecture (Newell 1990) has explained aspects of

metacognition, including theory of mind and self-assessment. Given that these

aspects are central to human social function, how might they constrain the

representations in SAL? Are new architectural features required in ACT-R to

model metacognition? Do mirror neurons have specialised properties or do they

emerge out of the representations learned in cognition?
. Machine learning algorithms, such as Bayesian approaches and reinforcement

learning, characterise mathematically optimal solutions to problems.

Homologous features of SAL should approach such optimality, explain why

such features are not optimal in a broader cognitive context, or illustrate that the

human system is suboptimal due to unrelated biological factors, in effect

extending the rational analysis (Anderson 1990) to include factors at multiple

levels of abstraction.
. Can artificial cognitive systems shortcut traditional human learning? Is it possible

to ‘load’ a corpus of a priori knowledge, such as the Cyc ontology (Lenat and

Guha 1990), without an elaborate educational process and without semantic loss?

If so, can this extend down to motor and perceptual learning or does it apply only

to logical categories and relationships?
. New molecules and pathways that are required for long-term potentiation of

synapses, or of in vivo learning, are constantly being discovered. Which elements

of this neurochemical maelstrom produce important computational features? Are

there simplified mathematical descriptions of these features or is it necessary to

simulate them?

Finally, there have been explicit benefits to the pluralistic collaboration itself. One such

benefit is characterised by the aphorism ‘you don’t learn it until you teach it’. Because the

collaborators must have a fairly thorough understanding of the component architectures,

we have recognised areas where there theories could use further elaboration or

explanation. In attempting to connect the two architectures functionally, it became clear

that the question of how symbols arise is unanswered in both. The very pragmatic process

of writing joint proposals provides insight into the core questions that collaborators

emphasise and how they sell this to funding organisations – thus allowing one to improve

the contextual element of separate proposals.
We have found a pluralistic approach to cognitive science to be highly fruitful both

within the scope of individual theoretical constructions and in the context of collaboration.

In the spirit of pluralism, however, we recognise that others may have a different view.
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