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Abstract 

In this chapter we discuss how the ACT-R cognitive architecture can be used in combination with 

fMRI data. ACT-R is a cognitive architecture that can provide a description of the processes from 

perception through to action for a wide range of cognitive tasks.  It has a computational 

implementation that can be used to create models of specific tasks, which yield exact predictions 

in the form of response times and accuracy measures. In the last decade, researchers have 

extended the predictive capabilities of ACT-R to fMRI data. Since ACT-R provides a model of 

all the components in task performance it can address brain-wide activation patterns. fMRI data 

can now be used to inform and constrain the architecture, and, on the other hand, the architecture 

can be used to interpret fMRI data in a principled manner. In the following sections we first 

introduce cognitive architectures, and ACT-R in particular. Then, on the basis of an example 

dataset, we explain how ACT-R can be used to create fMRI predictions. In the third and fourth 

section of this chapter we discuss two ways in which these predictions can be used: region-of-

interest and model-based fMRI analysis, and how the results can be used to inform the 

architecture and to interpret fMRI data. 

Keywords: ACT-R; Cognitive Architecture; fMRI; model-based fMRI; ROI analysis. 
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Introduction 

In 1973, Newell wrote a commentary in which he caricatured the current psychological 

practice as “playing a game of 20 questions [with nature]” [1]. While Newell considered the 

individual experiments and theories presented at the symposium to be “exceptionally fine” (p. 

291), he was worried that the results would never be integrated into an overarching theory of the 

mind. As a solution, Newell proposed the idea of cognitive architectures (the actual term is not in 

his 1973 paper but was well in use at CMU when Anderson arrived in 1978; see for instance [2]). 

A cognitive architecture is first and foremost a psychological theory: it explains for 

instance how our memory system works. Instead of being limited to a single psychological 

construct, however, architectures typically account for complete tasks, from perception to 

response execution. In addition – and unlike most classical psychological theories – a cognitive 

architecture is implemented as a computer simulation, which can be used to create cognitive 

models of specific tasks (e.g., the Stroop task, associative recognition, driving a car). This 

approach has multiple advantages. First, the models yield precise predictions, for instance 

reaction times and accuracy measures. Particularly when complete tasks are modeled – often 

models even interact with the same interface as human subjects – a direct comparison with human 

data is possible. Second, the underlying psychological components (e.g., memory, vision) are 

shared by the different tasks, and have to be truly general. If a simulated memory system only 

works for a single task it probably contains too many task-specific constructs. A cognitive 

architecture forces one to keep the components general enough to work for many different tasks. 

Third, because complete tasks are modeled, interactions between perception and central cognition 

(and between cognitive components themselves) arise naturally from the architecture, which can 

have a large impact on experimental results [3,4].  

For decades, models developed in cognitive architectures were validated using response 

times, accuracy measures, and sometimes eye movements [e.g., 5]. However, behavioral data 
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does not always provide enough constraints to distinguish between different models [6; Chapter 

13]. For example, the time leading up to a response typically consists of multiple cognitive steps, 

which can be arranged in different ways. Researchers turned to neuroimaging data for additional 

constraints and guidance in developing architectures [e.g., 6,7]. Cognitive architectures are well-

matched to fMRI data:  One cannot ignore any of the perceptual, cognitive, or motor components 

of a task when designing or interpreting fMRI experiments (because they all show up in brain 

activity) and a cognitive architecture requires that the modeler address all of these components (to 

get a running model). 

In this chapter we describe how the cognitive architecture ACT-R can be used in 

combination with fMRI data. We will first explain ACT-R in some detail. Then, based on an 

example task, we will demonstrate the different steps of generating fMRI predictions from an 

ACT-R model. Subsequently, we discuss two different ways of using these predictions: a region-

of-interest analysis and a model-based fMRI analysis. We conclude with a short section on how 

the two methods complement each other. 

 

ACT-R 

Currently, several cognitive architectures are in use, for example SOAR [2], ACT-R [6], 

EPIC [8], and 4CAPS [7]. In this chapter we will focus on ACT-R1, because it has an explicit 

mapping between components of the architecture and brain regions. However, most ideas in this 

chapter are also applicable to other architectures. 

 

                                                        
1 For the range of tasks (and associated publications) that have been modeled with ACT-R, see 
http://act-r.psy.cmu.edu/. ACT-R can also be downloaded from this website. 
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ACT-R consists of a set of independent modules that function around a central procedural 

module (Figure 1a). There are modules for perception (visual and aural) and action (manual and 

vocal), and several central cognitive modules (for details on the individual modules, see 

Anderson, 2007, or Anderson, 2005). The modules interact with the procedural module through 

buffers of limited size. The procedural module consists of rules that specify what cognitive action 

to take given the contents of the buffers. For instance, a rule might request the retrieval of the 

meaning of word encoded in the visual buffer. An ACT-R model consists of such rules and of 

knowledge in declarative memory (e.g., the meaning of the word ‘chair’). Thus, ACT-R itself can 

be seen as the fixed hardware – the architecture – of the mind, while the models function as 

software that runs on this hardware. The modules of ACT-R have been mapped onto small 

regions in the brain, which are shown in Figure 1b. These regions are assumed to be active when 

the corresponding module is active (see the section on region-of-interest analysis). 

 

Figure 1. The main modules of ACT-R (a) and associated brain regions (b). 

Numbers indicate the z-coordinate of each slice (MNI coordinates); the colors 

of the regions correspond to the colors in (a). 
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Using ACT-R to predict fMRI data 

In this section we will describe how ACT-R can be used to predict fMRI data. First, we 

describe the task that we will use as an example throughout this chapter. We will then introduce 

the model, followed by how it can be used to generate fMRI predictions. The Lisp code for the 

model and Matlab code to generate the predictions can be downloaded from http://act-

r.psy.cmu.edu/, under the title of this chapter. 

 

The Example Task: Associative Fan 

To illustrate the analysis we will use a previously published experiment with an 

associated ACT-R model (Experiment 2, [9]). This experiment was designed to test the 

assumption that declarative memory activity is reflected by a region in the prefrontal cortex (see 

Figure 1b, the pink regions), while representational activity of the problem state module (roughly 

comparable to a capacity-limited working memory store, e.g., [10]) is reflected by a region in the 

a) Paired Trial

b) Generated Trial

2.0 s 6.0 s 6.0 s 6.0 s 2.0 s 6.0 s

2.0 s 6.0 s 6.0 s 6.0 s 2.0 s 6.0 s

Figure 2. Experimental procedure. Adapted from Figure 1 in 

Anderson, Byrne, et al. (2008) by permission of the publisher. 

Copyright 2008 of the original by Oxford University Press. 
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posterior parietal cortex (Figure 1b, dark blue regions). To this end, memory and representational 

requirements were independently manipulated in an associative recognition task. 

Figure 2a shows the basic procedure. A trial started with a 2 second fixation screen, 

followed by a 6 second study presentation of a paired-associate. Subjects were asked to memorize 

the paired-associate that was presented, in this case ‘band – 2’. The study probe was followed by 

a 6-second fixation screen, after which a test probe was shown for a maximum of 6 seconds or 

until the response was given. The test probe consisted of a word (i.e., ‘band’); subjects had to 

respond with the associated number (i.e., ‘2’). 

Memory requirements were manipulated within-subject by varying the delay between 

study and test items. The trial in Figure 2a is an example of having a study and test item in the 

same trial, but they could be as far as 7 trials apart. There were three levels: no delay, short delay 

(1-2 trials), and long delay (6-7 trials). Representational requirements were manipulated between-

subject by contrasting a ‘paired’ with a ‘generated’ condition. Figure 2a shows the paired 

condition; Figure 2b the generated condition. Instead of showing the paired-associate directly, in 

the generated condition a word phrase was given: ‘b-nd –id = adhesive strip’. Subjects were 

asked to solve the phrase by finding a single letter to complete it. At test, ‘band’ was shown, and 

subjects had to respond at the recall test with the position of the letter they had filled in (i.e., ‘2’). 

Thus, responses were identical in the paired and the generated conditions. The assumption was 

that subjects would show greater representational activity in the generated case because they had 

to solve the phrase at study and extract the response at test. 

Figure 3 shows the behavioral results, accuracy on the left and response times on the right 

[for details see 9]. The effect of the delay manipulation is clear: subjects made more errors and 

were slower to respond when the delay between study and test was longer (response times of 

correct responses are shown). The effect of the representational manipulation on behavior was 

more modest: no effects on accuracy, and only a marginal effect on response times (F(1,17) = 

2.99, p = .10), with the generated condition leading to slightly slower responses. This illustrates 
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why behavioral data are often not detailed enough to constrain computational models: in these 

data there is almost no difference between the paired and the generated condition. However, the 

fMRI results will show that there are clear differences between these conditions that are captured 

in the ACT-R model of the task. Before we turn to the fMRI results we will discuss that ACT-R 

model, and how such a model can be used to generate fMRI predictions. 

 

The Model 

As explained above, an ACT-R model consists of procedural rules and declarative 

knowledge that ‘runs’ on the cognitive architecture. Anderson, Byrne, et al. (2008) presented a 

model that performs the associative recognition task.2 Figure 4 shows a schematic of model 

activity for four different trial types. In all conditions, the model starts with encoding the start 

fixation. When the pair or the phrase is presented two seconds later, it also encodes those, and 

represents the information in the problem state module (ACT-R’s capacity-limited working 

memory store). In the paired condition, the model then actively stores the pair in declarative 

memory. In the generated condition, it completes the phrased based on information retrieved from 

declarative memory, and stores the completed phrase in memory [see 9 for details]. As the figure 

indicates, the model assumes no difference in memory activity between the paired and the 
                                                        
2 A version of the model that was adapted for this chapter can be downloaded from http://act-
r.psy.cmu.edu, under the title of this chapter. 
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generated condition in the study phase. However, in the generated condition an extra problem 

state action is performed to extract the position of the letter that was filled in (i.e., bAnd => 2), 

resulting in more representational activity. 

In the immediate test conditions (i.e., study and test are in the same trial, cf. Figure 2), the 

model retrieves the pair (in the paired condition) or the position (in the generated condition) from 

memory. It then represents this information in the problem state module and generates a response. 
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Figure 4. An overview of model activity in four representative conditions. Boxes are 

not drawn to scale, but indicate the general pattern of module activity. Colors 

correspond to Figure1a; orange corresponds to visual activity, blue to problem state, 

pink to declarative memory, and red-brown to motor activity. Adapted from Figure 

6 in Anderson, Byrne, et al. (2008) by permission of the publisher. Copyright 2008 

of the original by Oxford University Press. 
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Thus, both memory and representational requirements are the same in the immediate test phase of 

the paired and generated conditions. If there is a delay between study and test, it is harder to 

retrieve the pair from memory, which results in longer declarative memory activity than in the 

immediate conditions. In addition, in the generated delay condition it is assumed that the model 

cannot directly remember the position that it filled in, but that has to retrieve the phrase from 

memory. As a consequence, an extra representational step has to be performed to extract the 

position again [see 9 for the rationale behind this]. Thus, in the generated delay condition 

additional representational activity is predicted in the test phase as compared to the other three 

conditions. 

One of the advantages of using a cognitive architecture is that it provides us with latency 

information of the modules (e.g., visually encoding a stimulus, representing a pair, generating a 

response). For the current model all parameters were left at their default values, except for the 

time it takes to retrieve information from memory. This was estimated to fit the model to the 

behavioral data. The resulting fit is shown in Figure 3b (accuracy was not modeled). The 

correspondence between model and data is acceptable: the main effects in the data are reflected 

by the model (originally, the model was compared to data of two experiments, which yielded a 

better overall fit).  

 

Predicting the BOLD response 

The next step in using ACT-R with fMRI data is generating BOLD (blood-oxygen-level-

dependent) response predictions. As is known from the fMRI literature, the BOLD response is 

sluggish with respect to neural activity. This is illustrated in Figure 5a: if there is a spike of neural 

activity at time 0, the BOLD or hemodynamic response function (HRF) rises slowly to a peak 

around 5 seconds, declines again and dips under the baseline until it eventually comes back to 

baseline at around 30 seconds. The HRF is often described with a gamma function or a mix of 
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gamma functions [e.g., 11–13]. In this chapter we will use a difference of two gamma functions 

from the SPM software package [14]. 

To generate BOLD predictions, we convolve module activity – which resembles neural 

activity with respect to its direct timing – with the HRF. This is shown in Figure 5b (declarative 

memory retrievals) and Figure 5c (problem state updates). The red lines indicate the activity of 

the modules (cf. Figure 4). Two different trial types are shown: a paired trial without a delay 

between study and test on the left, and a generated trial with a long delay on the right. As 

explained in the model description above, a long delay leads to a slower second memory retrieval 

than no delay, and the generated condition shows more representational activity than the paired 

condition. The green lines depict the predicted BOLD response: longer activities lead to longer 

and higher BOLD predictions (declarative memory), and multiple short module activations can be 
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added up to a single large BOLD response (problem state).3 In the next two sections we will 

describe how these predictions can be used for a region-of-interest analysis and for a model-based 

fMRI analysis.  

 

Region-of-Interest Analysis 

Most ACT-R/fMRI papers to date have used so-called region-of-interest (ROI) analyses 

[e.g., 6,9,11,15,16]. For this analysis stream, all ACT-R modules have been mapped onto small 

regions of the brain (Figure 1b; see [6] for Talairach coordinates and details of the regions, or 

[15] for MNI coordinates). The assumption is that these regions are active when the 

corresponding module predicts activity. For example, declarative memory retrievals should lead 

to activity in the prefrontal cortex and problem state updates to activity in the posterior parietal 

cortex. Note that we do not assume that these are the only regions that are active in response to 

the modules, and neither that these regions exclusively indicate activity of ACT-R modules. 

Using predefined ROIs has a number of advantages. By comparing model predictions and 

data one can validate and constrain models (i.e., if the predictions are off, the model should be 

improved), which would not be possible without a predefined mapping. In addition, because only 

a limited number of predefined regions are inspected the typical multiple-comparison problem of 

fMRI is avoided. This makes is possible to analyze much smaller differences than is possible with 

conventional fMRI analyses. The obvious disadvantage of an ROI analysis is that it is constrained 

to the predefined ROIs and ignores the rest of the brain. 

                                                        
3 The amplitude of the predicted BOLD response for declarative memory is much larger than for 
the problem state module. However, the amplitude is typically fitted separately for each module 
in a region-of-interest analysis and is not important for the model-based fMRI analysis. 
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Figure 6 (declarative memory) and 7 (problem state updates) show the results for our 

example dataset. The top panels show the model predictions; the bottom panels show the data. 

For declarative memory, the model predicted no difference between the paired and the generated 

conditions, but a clear difference between the no, short, and long delay conditions at test. In the 

data, we see hardly any differences between these conditions at study – as predicted – and some 

differences – in the right order – at test, especially in the generated condition (if we average over 

the paired and the generated conditions the effect is clear, see also [9]). In addition, the peak 

seems to be larger in the generated condition, but this difference was not significant (see 

Anderson, Byrne, et al., 2008, for details). With respect to the problem state updates (Figure 7), 

the model predicted a larger response in the generated condition than in the paired condition, and 

only an effect of delay in the generated condition at test. These predictions were matched by the 

data. 
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We can conclude that the prefrontal region indeed mostly reflects declarative memory 

retrievals, while the posterior parietal cortex reflects updating problem representations. The 

model’s predictions matched the data reasonably well, although there were some discrepancies 

(e.g., for problem state updates the data shows a larger peak at test than at study in the generated 

condition, the model did not predict this). Such discrepancies can be due to several different 

reasons: the model might be inaccurate, the mapping of ACT-R on the brain might be incomplete, 

or – with respect to the noisy results for declarative memory at test – we might have to test more 

subjects. In addition, it is known that the shape of the BOLD response is different in different 

brain regions, as well as between different subjects. Here we presented a priori BOLD predictions 

based on SPM’s HRF, but it would be reasonable to fit the shape and magnitude of the BOLD 

response separately for each region. 

 

Figure 7. ROI results for problem state updates. Top panels show 

model predictions; bottom panels data. 1 scan = 2 seconds. 
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Model-Based fMRI Analysis 

The ROI analysis has one clear disadvantage: it is dependent on the correctness of the 

predefined mapping. The current mapping was based on a reading of the literature on regional 

functions, and might therefore not be optimal. To find regions that map best on our module 

predictions we can use model-based fMRI [e.g., 17,18]. Whereas in conventional fMRI the 

experimental structure is typically used as the basis for the regressors in the general linear model 

(GLM, see Chapter 4), in model-based fMRI predictions stemming from a computational model 

are used. In the case of ACT-R this means that predictions such as the ones in Figure 5 are 

regressed against the BOLD response in all voxels in the brain. This shows which voxels 

correlate significantly with the predictions of a module, indicating that these voxels might 

implement the functionality of the module. 

Using model-based fMRI with ACT-R involves generating model predictions for all trials 

for all subjects, because model activity is regressed against the BOLD response over the whole 

experiment. This has not typically been done in ROI analysis although it could be. Generating 

predictions for single trials requires representing any differences that might occur because of the 

specific stimuli on each trial, as these can lead to different behavior and different model 

predictions [see 19, for an example]. Second, because we are regressing the model predictions 
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directly against the brain data, it is important to have an exact time-mapping between data and 

model, to avoid, for instance, comparing a fixation in the data with a key-press in the model [17]. 

To this end, trial onset and key-presses were lined up between model and data. That is, the model 

predictions on each trial were subjected to a linear transformation to create a perfect response-

time match to the data (i.e. all model activity was increased or decreased in length on each trial; 

see [19] for details). The resulting predictions were used for the model-based analysis. 

Figure 8 shows the results of a model-based analysis for our example task (originally 

reported in [20]). The top panel shows that declarative memory updates were exclusively 

reflected by activity in a left prefrontal region, located directly on top of the predefined ACT-R 

region (indicated by white squares). The bottom panel shows that problem state activity was 

reflected by a large number of regions. This is not very surprising, given that many regions will 

be active in response to the task, and we search for correlating regions. A number of regions show 

a strong response: the largest and most significant regions included the inferior parietal lobule and 

the anterior cingulate. In addition, we see strong correlations in the thalamus (slice +4) and 

inferior frontal gyrus (-8). This illustrates a weakness of model-based fMRI: multiple regions 

might correlate with the predictions, yielding imprecise results. A meta-analysis combining these 

results with four additional studies indicated that the parietal and anterior cingulate activity was 

consistent over the five studies, while the other regions in Figure 8 are probably due to 

idiosyncrasies of the current task and model [20]. 

 

Concluding Remarks 

In this chapter we discussed how ACT-R can be used in combination with fMRI data. We 

described two different analyses: ROI analysis and model-based fMRI analysis. The remaining 

question is which analysis to use. This naturally depends on the situation: If one wants to test the 

predictions of a cognitive model it is more constraining to have pre-specified regions as in the 

ROI analysis. If one wants to understand how a cognitive function maps onto the brain, the 
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model-based approach allows one to see the full picture. With respect to model-based fMRI, the 

analysis is not limited to the current modules – any prediction from a model can be used (e.g., 

only numerical retrievals or representational activity in response to visual encoding). In effect, 

model-based fMRI yields a mapping that can be used for ROI analyses. However, the results of 

model-based fMRI are strongly dependent on the quality of the model and on how well the 

experiment dissociated different model processes. For this reason it either should be used over 

multiple different tasks as in [20] or in combination with conventional fMRI analyses. 

 

Further Reading 

• ‘You can’t play 20 questions with nature and win’ [1] is Allen Newell’s commentary in 

which he argues for a cognitive architecture approach. Four decades later the paper is still a 

thought-provoking and entertaining must-read for every cognitive scientist. In a companion 

piece in the same volume he presents his initial production system approach to cognitive 

architectures [21]. 

• Chapter 1 of [6] gives a very clear introduction to cognitive architectures and ACT-R. In case 

you do not have the book available, [22] provides an introduction to ACT-R and its mapping 

on brain regions. For a more concise introduction to ACT-R’s mapping on brain regions, see 

[11]. 

• Gläscher and O’Doherty [17] give a general introduction to model-based fMRI analysis. 

Borst and Anderson [20] show how model-based fMRI can be applied in combination with an 

ACT-R model. 
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Exercises 

1. Read Newell (1973a). Do you agree or disagree with Newell’s diagnosis? Explain why. 

2. Do you think cognitive architectures are a solution to Newell’s problem? 

3. Use the included Matlab code to generate model predictions for the manual and visual 

modules (like Figure 6 & 7). Do the predictions match your expectations? 

4. Give three possible reasons for discrepancies between model predictions (such as in 

Figure 6 and 7) and fMRI data. 

5. What do you think is more interesting: fitting the BOLD response of the model to the 

data by changing the parameters of the HRF, or only using a priori predictions? Explain 

why. 

6. Discuss advantages of ROI analysis as compared to conventional exploratory fMRI 

analysis. 

7. Discuss advantages of model-based fMRI analysis as compared to conventional 

exploratory fMRI analysis. 

8. Discuss advantages of conventional fMRI analysis as compared to the methods described 

in this chapter. 


