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In this study, we used model-based functional MRI (fMRI) to locate
two functions of the fronto-parietal network: declarative memory
retrievals and updating of working memory. Because regions in the
fronto-parietal network are by definition coherently active, locat-
ing functions within this network is difficult. To overcome this
problem, we applied model-based fMRI, an analysis method that
uses predictions of a computational model to inform the analysis.
We applied model-based fMRI to five previously published datasets
with associated computational cognitive models, and subsequently
integrated the results in a meta-analysis. The meta-analysis showed
that declarative memory retrievals correlated with activity in the
inferior frontal gyrus and the anterior cingulate, whereas updating
of working memory corresponded to activation in the inferior
parietal lobule, as well as to activation around the inferior frontal
gyrus and the anterior cingulate.

n this study, we used model-based functional MRI (fMRI) to

locate two functions of the so-called “fronto-parietal network.”
The fronto-parietal network consists of brain areas that are co-
herently active and assumed to implement cognitive control func-
tions: working memory, attentional selection, and error monitoring
(1-5). It typically involves at least the dorsolateral prefrontal cor-
tex, the anterior cingulate, and a region around the intraparietal
sulcus. Because the regions in the fronto-parietal network are by
definition active at the same time, distinguishing the precise func-
tional characteristics of those regions is difficult with conventional
fMRI methods. Model-based fMRI is particularly well suited for
dissociating between highly correlated contributions to the blood
oxygen level-dependent (BOLD) signal. We used model-based
fMRI to locate two functions within the fronto-parietal network:
declarative memory retrieval and updating of working memory.
These functions are often assumed to be part of the fronto-parietal
network, but the hypothesized locations within the network differ
among studies (2, 6-11).

Model-based fMRI is a relatively recent approach to analyzing
fMRI data. Instead of using the condition structure of the experi-
ment to inform the analysis, as in a conventional fMRI analysis,
model-based fMRI uses information derived from a computational
model (12, 13). For example, Daw et al. (14) fitted a mathematical
reinforcement learning model to the behavior of their study par-
ticipants and then used parameter values of the model as regressors
in the fMRI analysis. This resulted in brain regions that correlated
significantly with those parameter values, and thus with certain
features of their model. Another recent study showed that model-
based fMRI can be used successfully in combination with more
high-level information-processing models (15). By regressing the
activity of model components (e.g., visual processing, declarative
memory retrieval) against neural activity, the neural correlates of
the model components can be located.

To identify the neural correlates of declarative memory retrievals
and working memory updates, we applied model-based fMRI to
five previously published studies. These studies all consist of an fMRI
experiment and an associated computational cognitive model in
the Adaptive Character of Thought-Rational (ACT-R) cognitive
architecture (16). This has two advantages: (i) Because the tasks
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ranged from paired-associate learning to multitasking, we can be
reasonably sure that the located regions are task-independent, and
(ii) because the models were all developed in the same framework,
the results of the different model-based analyses reflect the same
underlying constructs. Thus, the results can be combined in a meta-
analysis, removing idiosyncrasies of the tasks and models.

The ACT-R architecture consists of a set of independent mod-
ules that interact through a central production system. For in-
stance, the visual and aural modules process perceptual input, and
the manual module is used to interact with the world. ACT-R has
a number of central cognitive modules for processing information,
two of which are of particular interest for this work:

e Declarative memory is used to store facts. Facts have a certain
activation level, which determines how easily and how quickly
they can be retrieved. The more frequent and the more recent
a fact has been used, the easier and faster it is to use it again (16).

e The problem state module (sometimes referred to as the imag-
inal module) is used to maintain intermediate representations
necessary for performing a task. Its function is similar to the
focus of attention in current working memory theories (17), and
it can hold only one coherent chunk of information (18). We use
the problem state module to locate working memory updates.

The goal of the present work was to identify the neural cor-
relates of these modules—model components—with model-based
fMRI. We analyzed five different components: retrieval of de-
clarative facts, working memory updates, visual perception, aural
perception, and right-manual actions. Although we are interested
mainly in declarative memory and working memory, the percep-
tion and action components serve as a proof of concept.

The ACT-R modules have been mapped onto brain regions
before (see ref. 19 for a concise introduction); however, these
mappings were done a priori, based on the literature on regional
functions, and might not be optimal. The current research does
not use these a priori mappings, but instead applies model-based
fMRI to evaluate in a data-driven way whether the existing
mapping is correct. Thus, the current analysis differs from most
previous work that has connected ACT-R to fMRI, although we
do use a previously developed method to generate BOLD pre-
dictions from ACT-R models (19).

Results

We identified the neural correlates of the model components
with model-based fMRI through the following steps: (i) record
the activity of the model components over the course of the
experiments, (The experiments that we reanalyzed are described
in SI Materials and Methods.) (ii) convolve this activity with a
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hemodynamic response function (HRF), and (iii) regress the
resulting signal against the measured BOLD response. To record
the activity of model components, we used the models published in
the original articles. (The model presented in (20) was updated to
reflect recent findings that the problem state module can only
maintain a single chunk of information at a time (18). The updated
model can be downloaded from www.jelmerborst.nl/models. A
discussion of the effects of the updated model compared with the
old model is provided in SI Materials and Methods.)

For each individual participant, we ran a model using the same
trials as the participant underwent.(Three of the five models are
deterministic, whereas the other two models incorporate noise
on memory retrievals. However, because the noise is relatively
small compared with the effects of lining up key presses between
model and data, and because the convolution with the HRF blurs
the effects further, we ran the models only once.) For these
trials, ACT-R predicts the onset and duration of model com-
ponent activity. For instance, a paired-associate task will start
with encoding a stimulus on the screen, followed by a declarative
retrieval. ACT-R predicts how long the encoding persists, and
depending on that, when the retrieval starts and how long it takes
(the duration of memory retrievals is dependent on the activation of
facts in memory; see ref. 16 for a detailed explanation and ratio-
nale). Because model activity is regressed directly against the pre-
processed BOLD data, correct time mapping between model and
data is important (12). To ensure that we were not comparing, for
example, response activity in the model with fixation activity in the
data, we lined up the start and the response of each trial between
model and data with a linear transformation (see ref. 15 for details
of this procedure). We then convolved the activity of the model
components with an HRF to enable direct comparison with the
BOLD response. Note that ACT-R predicts the onset and du-
ration of model component activity, but does not distinguish
amplitude between different model components or different
actions of a single component. This means that the amplitude of
the regressors depends solely on the duration and frequency of
model component activity.

Fig. 1 shows an example of model activity over two trials in one
of the studies that we reanalyzed, the paired associates study (6).
The top graph shows declarative memory retrievals, and the bot-
tom graph updates to the problem state. The two trials represent
different conditions in the experiment, which result in different
patterns of predicted BOLD activity. It is clear that updating the
problem state and declarative memory retrievals are closely related
and thus provide highly correlated predictions (especially consid-
ering that only the shape of the predictions, and not the amplitude,
is of importance for the regression analysis). This is a typical pat-
tern seen in ACT-R models. On the one hand, information that is
retrieved from declarative memory is often stored in the prob-
lem state module for further processing. On the other hand,
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Fig. 1. Example of predicted model activity over two trials of the experi-
ment of Anderson et al.(6).

information stored in the problem state module (e.g., from per-
ception) is often used to initiate declarative retrievals (but see, e.g.,
ref. 20 for a study that manipulated these functions independently).
The strong correlation between these two functions is probably the
reason why they both typically activate large parts of the fronto-
parietal network.

Table 1 shows the correlations among predicted activities of the
model components in the five studies. In general, the predictions
correlated moderately within the studies, possibly making it diffi-
cult to identify different regions for the different model compo-
nents. The relatively high correlations are largely caused by the
convolution with the HRF; even though model components show
different raw activation patterns, the convolution makes the pre-
dicted BOLD responses very similar (Fig. 1). Over all studies, the
highest correlation was between problem state activity and de-
clarative memory activity. This is in accordance with the assump-
tion that both components are part of the fronto-parietal network,
which is by definition coherently active. Although some correla-
tions are high, there was sufficient variation across these experi-
ments to suggest the possibility of separating these functions.

Manual Results for All Five Studies. To illustrate our analysis, Fig. 2
presents results of the model-based fMRI analyses of the
manual component in the five studies. Regions that correlate
significantly with the predicted manual activity are shown [P <
0.05, uncorrected (see Materials and Methods for a discussion of
significance thresholds)]. All studies show a significant region in

Table 1. Correlations between predicted activity of the model components in the five studies

Model components Paired associates  Visual and aural fan  Algebra  Information processing  Multitasking  Average
Declarative memory—problem state 0.50 0.88 0.89 0.91 0.78 0.79
Declarative memory-visual -0.32 0.50 0.83 0.52 0.41 0.39
Declarative memory-manual -0.30 0.79 0.63 0.83 0.39 0.47
Declarative memory-aural — 0.54 — 0.60 — 0.57
Problem state-visual 0.12 0.58 0.99 0.49 0.46 0.53
Problem state-manual 0.43 0.88 0.85 0.87 0.39 0.68
Problem state-aural — 0.60 — 0.77 0.13 0.50
Visual-manual 0.68 0.46 0.91 0.44 0.93 0.68
Visual-aural — —-0.28 — 0.41 0.29 0.14
Manual-aural — 0.50 — 0.67 0.28 0.48

Correlations were calculated over the entire experiments, at time points at which at least one of the two model components predicted nonzero activity.
The multitasking study does not a have an aural-declarative memory correlation, because these functions were not analyzed on the same trials (24).
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the left motor cortex (z = +52), which overlaps in four of the five
studies with the previously identified ACT-R region (indicated
by the left white square in Fig. 2) (19). All studies also show
additional significant correlations throughout the brain. This is
not unexpected, given that other functions may correlate with
motor processing, given the task demands of specific experi-
ments. Although these other areas sometimes correlate more
significantly than the motor areas (e.g., the visual cortex in the
multitasking study), the meta-analysis should pull out areas that
correlate consistently over the five studies.

Meta-Analysis. Fig. 3 shows the results of the meta-analyses, and
Table 2 characterizes the identified clusters. The statistical maps
were thresholded based on the results of the manual model com-
ponent. We decreased the minimum P value and increased the
minimal cluster size until we found a single cluster for the manual
component. This cluster was located in the left motor cortex, which
should correspond to right manual actions, indicating that the
analysis can give reasonable results. We used the same thresholds
for the other model components as well.

The aural component correlated significantly with an area
around the superior temporal gyrus, which is known to be involved
in speech processing (21). Visual processing of the models revealed
the strongest effects in the left and right middle occipital gyri,
extending into the inferior parietal lobules. These areas are typi-
cally involved in visual spatial attention (22). Manual processing of
the model correlated with the BOLD response in the precentral
gyrus, as expected, and extended into the postcentral gyrus and the
inferior parietal lobule.

Both problem state updates and declarative memory retrievals
correlated significantly with areas of the fronto-parietal network.
Problem state updates were reflected by the inferior parietal lobule,
a prefrontal region around the inferior frontal gyrus, and the an-
terior cingulate, whereas memory retrievals correlated significantly
with activity around the inferior frontal gyrus and the anterior
cingulate. The prefrontal region for both functions extended

Visual & Aural Fan Paired Associates

Information Proc. Algebra

Multitasking

from the insula, via the inferior and middle frontal gyri, to the
premotor cortex.

To further dissociate between those functions, we investigated the
voxels in which the problem state regressor explained significantly
more variance than the declarative memory regressor, and vice
versa. (For this analysis, we first normalized the regressors to a mean
of 0 and an SD of 1; otherwise, the amplitude of the regressors
would have influenced the analysis.) Fig. 4 shows the results of
these analyses within the regions that were identified with the
standard meta-analysis (compare Fig. 3). Table 3 provides details of
the located clusters. In Fig. 4, orange areas indicate regions in which
the declarative memory regressor explained more variance than the
problem state regressor, and blue areas indicate the opposite.

Taken together, our analyses show that the parietal regions re-
spond exclusively to problem state updates. The anterior cingulate
reflects a mix of problem state updates and memory retrieval activity,
but responds more strongly to working memory updates. The pre-
frontal region is mixed as well. The area around the inferior frontal
gyrus corresponding to memory retrievals is larger than the area
contributing to problem state updates, and in part of this area the
declarative memory regressor explains significantly more variance
than the problem state regressor (z =+16). However, most of the area
seems to reflect problem state activity in addition to retrieval activity.

Discussion

Although the predicted activation traces of the model compo-
nents were highly correlated, they turned out to be sufficiently
different to identify separate regions for the different model
components. The results of the aural, visual, and manual com-
ponents were consistent with the literature on those functions,
suggesting that the model-based fMRI analysis is able to identify
neural correlates corresponding to the model components. Both
the problem state and declarative memory components corre-
lated significantly with multiple regions of the frontoparietal
network. These analyses suggest that working memory updates are
reflected by activity in a large area around the intraparietal sulcus

Fig. 2. Results of the model-based fMRI analysis of the manual module for the five studies. Statistical maps were thresholded at P < 0.05, uncorrected. White

squares indicate previously defined ACT-R regions.
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Fig. 3. Results of the meta-analyses. Statistical maps were thresholded at P < 1 x 1077 (uncorrected) and at least 250 contiguous voxels. White squares

indicate previously defined ACT-R regions.

in both hemispheres. In addition, working memory updates corre-
lated with the anterior cingulate and with the left inferior frontal
gyrus. Declarative memory retrievals showed a strong correlation
with activity in a large area around the inferior frontal gyrus, and
with the anterior cingulate. Although part of the prefrontal region is
a better indicator of declarative memory retrievals than of working
memory updates, most of the region seems to respond to
both functions.

Fronto-Parietal Network. The fronto-parietal network is assumed to
implement cognitive control, through working memory, attentional

Table 2. Results of the meta-analysis, per connected cluster

selection, and error monitoring (2-5). The current model-based
analysis of five very different tasks, ranging from paired-associate
learning to multitasking, suggests that the fronto-parietal network
is indeed involved in working memory updates and declarative
memory retrievals. Nonetheless, there is a region of the intraparietal
sulcus that exclusively reflects working memory updates and a region
of the left prefrontal cortex that exclusively reflects retrieval. Using
these two “exclusive” regions would enable maximal dissociation of
the two cognitive functions.

The parietal region of the fronto-parietal network was pre-
viously linked to “start-cue” activity, instantiating information

Coordinates Maximum Average Size in

Region BAs X, Y, z z-value z-value voxels
Aural

Right superior temporal gyrus 21, 22, 38, 41, 42 60, —13, -2 8.22 6.48 844

Left superior temporal gyrus 13, 21, 22, 41, 42 -63, =19, 1 8.28 6.45 799
Visual

Right middle occipital gyrus 7,19, 39 30, =73, 25 8.69 6.48 709

Left middle occipital gyrus 7,19 -30, -88, 13 8.82 6.36 516
Manual

Left postcentral gyrus, inferior parietal lobe, precentral gyrus 2,3,4,6,40 -48, -28, 49 7.86 6.10 760
Problem state updates

Left inferior parietal lobule, superior parietal lobule 7, 40 -36, =55, 49 7.60 6.11 623

Right inferior parietal lobule, superior parietal lobule 7, 40 42, -52, 43 7.44 6.02 511

Left inferior frontal gyrus, insula, middle frontal gyrus, 6,9, 13,44 —54, 11, 31 7.82 6.01 510

precentral gyrus

Left/right anterior cingulate cortex 32 3, 20, 40 7.53 6.12 273
Declarative memory retrieval

Left inferior frontal gyrus, middle frontal gyrus, 6,9, 13, 45, 46, 47 -30, 23, -2 9.20 6.64 832

insula, precentral gyrus
Left/right anterior cingulate cortex, medial frontal gyrus 6, 8, 32 -6, 20, 43 9.45 6.59 283

Coordinates indicate the maximum voxel in the cluster. All areas that exceed the significance threshold are listed; Brodmann area (BA) numbers are given

for BAs in which at least 15 voxels lie within the significant area.
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Fig. 4. Results of the additional dissociation analysis. Orange-red areas indicate where the declarative memory regressor explained more variance than the
problem state regressor; blue areas indicate the opposite. The results were thresholded at P < 0.05, uncorrected.

for the current task (3, 23). Although this is subtly different from
updating working memory, it seems to be closely related. In addi-
tion, the inferior parietal lobule and the intraparietal sulcus have
been repeatedly implicated in working memory research (6-11, 24,
25). The function of the prefrontal region in the fronto-parietal
network is less clear; whereas Dosenbach et al. (3, 23) reported start-
cue, sustained task activation, and error-related activity in this re-
gion, our present data suggest that it is involved in memory retrievals
as well as updating of working memory. This is consistent with the
literature on memory, which reports activity in this prefrontal region
in response to episodic memory retrievals (26-29), working memory
activity (11, 30), or both (31-33).

In addition to the parietal and prefrontal regions, both memory
retrievals and working memory updating were also significantly
correlated with activity in the anterior cingulate cortex (ACC). The
ACC, part of the fronto-parietal network, is reportedly involved in
task preparation (2) and task onset, sustained activity during a task,
and error activity (23). In the general literature, the ACC is often
hypothesized to be a conflict monitoring system (34), whereas the
ACT-R theory assumes that it maintains control states that guide
behavior during a task (16). Our present results imply that the ACC
is closely involved in controlling memory retrievals and working
memory updating. This seems to be broadly consistent with previous
accounts; task onset and control state activity often lead to updates of
working memory (sometimes by retrieving information), and errors
and conflict trials should typically lead to better-controlled memory
retrievals. However, it might be interesting to include conflict
monitoring and control state regressors in future model-based
analyses, to determine the precise function of the ACC in the
fronto-parietal network.

Model-Based fMRI. Our present results were obtained with model-
based fMRI. Instead of using demand functions that are either on
or off during complete trials, as in conventional fMRI analyses,
model-based fMRI uses predictions from computational models to
create more detailed demand functions. In ACT-R models, these
demand functions reflect when and how often a certain model
component is used over the course of the experiment. Although
convolution with the HRF smoothed out much of the detail of the
predictions, the differences were still large enough to result in
different regions for the model components. The combination of

computational models with model-based fMRI is a potentially
powerful approach to locating brain functions. Computational
models provide detailed characterization of what occurs during
an experiment, and using model-based fMRI allows for identifi-
cation of the simulated functions.

The disadvantage of model-based fMRI is that it depends on the
correctness of the models. If the assumptions underlying a model
are incorrect, then the results will either not reach significance or
indicate an incorrect region. By using a meta-analysis of five dif-
ferent studies, we made sure that our results were consistent over
five very different tasks.

Comparison with Previously Identified ACT-R Regions. The modules
of the ACT-R architecture were previously mapped onto brain
regions, based on a reading of the literature (16, 19). This previous
mapping is indicated by white squares in Fig. 3. The areas identified
in the present study are located in the same location as the original
mappings, except for the visual module. The visual module was
previously assumed to correspond to activity in the fusiform gyrus,
but actually seems to respond better to activity in the middle oc-
cipital gyrus, at least for the five tasks that we analyzed. The middle
occipital gyrus is typically involved in visual-spatial attention (22,
35). Given that the visual regressor that we used corresponds to
attending objects, this seems to be a sensible match.

Our present results can serve as the basis for more precise regions-
of-interest (ROIs) that indicate the activity of model components.
These ROIs can then be used to validate new ACT-R models, by
comparing predictions of model components in the new models to
activity in the ROISs, as has been done with the previous mapping
(19). This will provide an additional method of validating cognitive
models, along with response times and accuracy.

Materials and Methods

Meta-Analysis. fMRI preprocessing is discussed in S/ Materials and Methods. To
combine the results of the five studies, we used Stouffer’s z-transform (36, 37),

ko1 (1-p)
Zneta =y ———",
meta ; \/E

where P; is the resulting P value of study j, k is the number of studies, and o
is the inverse normal distribution function.

Table 3. Results of the additional dissociation analysis per connected cluster

Coordinates Maximum Average

Region BA X, Y z z-value z-value Size in voxels
Problem state updates > declarative memory retrievals

Left inferior parietal lobule, superior parietal lobule 7, 40 —51, -37, 49 5.62 3.40 509

Right inferior parietal lobule, superior parietal lobule 7, 40 48, -40, 52 7.26 4.74 511

Left inferior frontal gyrus, insula 13, 44 -39, 11, 1 4.78 2.78 207

Left/right anterior cingulate cortex 32 -6, 14, 31 4.71 3.02 206

Left middle frontal gyrus — -42, 32, 34 5.05 3.17 25
Declarative memory retrievals > problem state updates

Left inferior frontal gyrus, middle frontal gyrus 45 -51, 26, 13 4.00 2.55 111

Coordinates indicate the maximum voxel in the cluster. All areas that exceed the significance threshold are listed; Brodmann area (BA) numbers are given

for BAs in which at least 15 voxels lie within the significant area.
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Significance Thresholds. One issue in our analyses was the selection of proper
significance thresholds. Fig. 2 illustrates the analysis, which led to an un-
corrected P < 0.05 threshold, clearly showing how the results differed
among studies. Given that the raw t-values were used for the meta-analysis,
this threshold did not influence the final results.

The meta-analysis (Fig. 3) resulted in large numbers of highly significant
voxels. Because we were interested in finding regions that correlated most
closely with our model components (because they are most likely to imple-
ment the functions of the model components), we needed to set a high
threshold. Because we know ground truth for the right-manual component
(the left motor cortex), we used this component to calibrate our threshold.
We increased the threshold until we were left with a single cluster (un-
corrected P < 1 x 1077 and at least 250 contiguous voxels). This cluster indeed
included the left motor cortex, and the threshold also resulted in reasonable
regions for the other components.

One might wonder what happens when this threshold is increased or
decreased. If we increase the threshold, we end up with the most significant
areas shown in Fig. 3. These are the main areas that we reported, indicating
that these results are robust. If we lower the threshold, we find the fol-
lowing additional regions. For the manual component, we find evidence for
involvement of the middle cingulate gyrus and visual regions. For the aural
component, we see two very small regions in the cerebellum. For the visual
component, we start to see activity in the middle and inferior frontal gyri,
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and activity throughout the brain when we lower the threshold further. Fi-
nally, for the problem state and declarative memory components, we find the
whole fronto-parietal network at a lower threshold. We believe that at least
a number of these regions are spurious. For example, the visual regions that
one gets for the manual component are based on two of the studies (algebra
and multitasking), and reflect the high correlation between the visual and
manual regressors in those studies (Table 1). Calibrating the results based on
the manual component seems to deal with these spurious areas and results in
a set of reasonable regions. Especially considering that we are interested in
finding the best-fitting regions—which are most likely to implement the
model functions—we believe that the method is successful.

For the additional dissociation analysis (Fig. 4), we used P < 0.05 (un-
corrected) as the threshold, with the added requirement that we only searched
within the previously identified regions from the standard meta-analysis. Be-
cause we are looking within previously identified regions, and because we use
this analysis to detail the main analysis, we believe that such a relatively low
threshold is warranted.
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Studies. We used model-based functional MRI (fMRI) to identify
the neural correlates of model components in the five studies
described herein. We analyzed declarative memory retrievals,
problem state updates, manual (right hand) actions, and visual
perception in all of the studies. We also evaluated aural perception
in the fan, information-processing, and multitasking studies.
Paired associates. In the first study, experiment 2 of Anderson et al.
(1), participants had to learn and recall paired associates. Both
retrieval difficulty and problem state requirements were manipu-
lated. Retrieval difficulty was manipulated by varying the time
between studying a paired associate and having to recall it, with
a longer delay between study and recall leading to longer retrieval
times. Problem state requirements were manipulated by varying
how the paired associates were presented. In one condition, the
paired associates were simply shown in the study phase (e.g.,
“band-2”). In the test phase, ‘band’ was presented, and partic-
ipants had to respond “2.” In the other condition, participants had
to generate the paired associates themselves. In the study phase,
“b-nd-id = adhesive strip” was presented. In the recall phase,
participants were presented with “band.” They had to respond
with the position of the letter they had provided at study (i.e., “27).
In the Adaptive Character of Thought-Rational (ACT-R) model,
the second condition involved more updates to the problem state.
Visual and aural fan. The second study, experiment 2 of Sohn et al.
(2), was a fan experiment in which participants had to learn paired
associates with different fan. Here “fan” refers to the number of
facts to which items are associated in memory. The higher the fan,
the longer it takes to retrieve an item from memory (see ref. 3 for
for a review of the fan effect). In the study phase of the experi-
ment, participants studied items with a fan of 1, 2, or 3. In the test
phase, they had to judge whether presented items were among the
studied items or not, which takes longer for higher fan items. In
addition, items could be presented either visually or aurally; thus,
this experiment manipulated retrieval duration and modality of
input. Problem state requirements were assumed to be the same in
all conditions; the problem state module was used to represent the
presented items before a retrieval was initiated.

Algebra. Stocco and Anderson (4) investigated the neural correlates
of algebraic problem solving. Their study participants were asked
to solve an equation such as 8 x x — 2 = 36 — 6 in three steps:
eliminate the addend on the left side of the equation (8 x x = 32),
unwind the unknown (x = 4), and provide the correct result. Two
factors were manipulated in the experiment: whether equations
contained numbers or parameters (@ X x —a = a X b — a), and
whether the equations were updated internally or externally. In
the external condition, the results of each intermediate step were
presented on the screen. In the internal condition, the initial
equation was shown on the screen until the participant gave the
final response. Thus, in the internal condition, the participant was
required to maintain intermediate solutions in working memory,
leading to the prediction of greater problem state activity than in
the external condition. With respect to declarative memory re-
trievals, it was assumed that in the numeric condition, number
facts were retrieved, whereas in the parametric condition this was
not the case.

Information processing. The fourth study was a relatively complex
information-processing task that was designed to elicit differential
activity in eight ACT-R modules (5). Before the experiment in
the scanner, the participant was asked to memorize associations
between two-letter words and two-digit numbers, such as “AT-
23.” In the scanner, the participant was presented with three

Borst and Anderson www.pnas.org/cgi/content/short/1221572110

names, for example, “Tom-Dick-Fred.” These names were fol-
lowed by an instruction in the form of either a two-letter word or
a two-digit number. If a word was presented, the participant had
to recall the associated number. The number (either presented
or recalled) indicated which names should be switched. For ex-
ample, if the number was “23,” the participant was to respond
“Tom-Fred-Dick.” Instructions could also be “impossible,” such
as “14.” Because there is no fourth name, in this case the par-
ticipant was to repeat the names in the order in which they were
presented. In addition to these manipulations, the names could
be presented either visually or aurally, whereas responses had to
be given either with the right hand or by speaking the names.

In this task, declarative memory retrievals were manipulated by

presenting numbers vs. two-letter words, because in the latter case
the associated numbers had to be retrieved from memory. Problem
state requirements depended on whether a transformation had to
be made to the names, with a transformation leading to more
problem state activity.
Multitasking. Our final study was multitask in which participants
had to continuously switch between solving 10-column sub-
traction problems and entering 10-letter words (6). The sub-
traction task and the text-entry task both had two conditions:
a hard condition that required maintaining a problem state from
one response to the next and an easy condition that did not. For
the subtraction task, this was implemented as carrying between
columns (hard) or not (easy): “64-36" vs. “64-32.” In the easy
condition of the text-entry task, the participant had to enter
letters that were presented one-by-one on the screen (see “A,”
type “A,” solve subtraction column; see “B,” type “B,” etc.),
whereas in the hard condition they had to enter 10-letter words
without feedback (see “INFORMATION?” at the start of a trial,
type “I,” solve a subtraction column, type “N,” etc.). The par-
ticipant could not see what he or she had entered in either
condition. Because participants had to switch between the sub-
traction and text-entry tasks after every letter and number, they
had to maintain whether a carry was in progress and what the to-
be-entered word was while performing the other task. As a third
task, participants also had to listen to short stories in half of the
trials, and answer questions about these stories.

The hard conditions of the subtraction and text-entry tasks
required more problem state updates than the easy conditions. In
addition, when both tasks were hard, the problem state was
swapped out via declarative memory, because only a single chunk
of information can be maintained in the problem state module at
a time. Thus, when both tasks were hard, problem-state activity
was even higher. Declarative memory retrievals increased with
the difficulty of the subtraction task, given that more difficult
subtraction problems require more and more difficult retrievals
(e.g., “64-32” requires retrieving “4-2 and “6-3,” whereas “64—
36” requires retrieving, for instance, “4-6,” “14-6,” and “5-3”).
In addition, when both tasks were hard, the contents of the
problem state were swapped out via declarative memory, further
increasing the number of retrievals (see ref. 7 for details of the
model). This study was analyzed previously with model-based
fMRI (8).

fMRI Preprocessing. All fMRI data were analyzed using SPM8
(Wellcome Trust Centre for Neuroimaging). This included re-
aligning the functional images, coregistering them with the struc-
tural images, normalizing the images to Montreal Neurological
Institute space, and smoothing them with an 8-mm FWHM
Gaussian kernel. For each study, we entered the predicted demand
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functions of the model components into a general linear model.
[Except for the multitasking study, for which the model compo-
nents were entered into separate generalized linear models, as
was done in the original analysis of that dataset. Given the ex-
perimental setup of the multitasking study, the analysis could not
otherwise distinguish between the aural and declarative memory
components (see ref. 6 for details).] Note that each model com-
ponent was added as a separate regressor into SPMS. This means
that they were not orthogonalized, and thus that they explain only
their own unique variance. In addition, motion parameters from
the realignment step were used as regressors. For each model
component and each voxel, we then obtained a ¢-value, indicating
whether the model component explained significant variance in
that voxel. We transformed these #-maps to maps containing the
corresponding P values, which were used for the meta-analysis.

Updated Model for Information Processing. We updated our pre-
vious model (5) to reflect recent findings that the problem state

. Anderson JR, Byrne D, Fincham JM, Gunn P (2008) Role of prefrontal and parietal
cortices in associative learning. Cereb Cortex 18(4):904-914.
2. Sohn MH, et al. (2005) An information-processing model of three cortical regions:
Evidence in episodic memory retrieval. Neuroimage 25(1):21-33.
3. Anderson JR, Reder LM (1999) The fan effect: New results and new theories. J Exp
Psychol Gen 128(2):186-197.
4. Stocco A, Anderson JR (2008) Endogenous control and task representation: An fMRI
study in algebraic problem-solving. J Cogn Neurosci 20(7):1300-1314.
. Anderson JR, Qin Y, Jung KJ, Carter CS (2007) Information-processing modules and
their relative modality specificity. Cognit Psychol 54(3):185-217.
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module can maintain only a single chunk of information at a time
(7). In addition, we removed motor rehearsals during a delay in
the task, because they did not seem to be warranted by the data.
One might wonder how these changes influenced the results of the
model-based analysis. The results of the old model were compa-
rable to those of the updated model for the aural, visual, retrieval,
and problem state components. This is because the same experi-
mental factors still influence the same model components, even
though the precise time course differs between the two models.
Convolution with the slow HRF means that the final regressors—
and the results—were very similar. The manual component of
the old model shows activation in the motor cortex as well as
throughout the fronto-parietal network, unlike the updated model.
However, our meta-analysis would have ensured that this extra ac-
tivation would not have reached the final results, given that it was
not present for the other studies. Thus, although the updated model
might be theoretically better, it did not influence our final results.
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