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ABSTRACT: This paper discusses the advantages of using the ACT-R cognitive architecture over the Prolog 

programming language for the research and development of a large-scale, functional, cognitively motivated model of 

natural language analysis. Although Prolog was developed for Natural Language Processing (NLP), it lacks any 

probabilistic mechanisms for dealing with ambiguity and relies on failure detection and algorithmic backtracking to 

explore alternative analyses. These mechanisms are problematic for handling ill-formed or unexpected inputs, often 

resulting in an exploration of the entire search space, which becomes intractable as the complexity and variability of 

the allowed inputs and corresponding grammar grow. By comparison, ACT-R provides context dependent and 

probabilistic mechanisms which allow the model to incrementally pursue the best analysis. When combined with a non-

monotonic context accommodation mechanism that supports modest adjustment of the evolving analysis to handle cases 

where the locally best analysis is not globally preferred, the result is an efficient pseudo-deterministic mechanism that 

obviates the need for failure detection and backtracking, aligns with our basic understanding of Human Language 

Processing (HLP) and is scalable to broad coverage. The successful transition of the natural language analysis model 

from Prolog to ACT-R suggests that a cognitively motivated approach to natural language analysis may also be 

suitable for achieving a functional capability. 

 

1. Introduction 

This paper discusses the advantages of using the ACT-R 

cognitive architecture (Anderson, 2007) over the Prolog 

programming language (Clocksin & Mellish, 1984; Ball, 

1985) for development of a large-scale, functional, 

cognitively motivated natural language analysis model 

(Ball, 2011b). The paper follows two papers which 

discuss the advantages and challenges of using ACT-R to 

model natural language analysis (Ball, 2011a, Ball, 2012). 

This paper provides the historical background for those 

papers, motivating the transition from Prolog to ACT-R. 

Over six years in the mid to late 1980’s, Prolog was used 

to develop a natural language analysis system that became 

the English analysis component of an English-Japanese 

Machine Translation (MT) system (Ball, 1992). Although 

the MT system failed to achieve commercial success, the 

English analysis component was capable of processing an 

interesting range of inputs with a vocabulary of several 

hundred words. During development, it became clear that 

Prolog lacked several features needed to support creation 

of a fully functional language analysis system capable of 

processing unrestricted text. In particular, Prolog’s 

inherent non-determinism and its weak, file order based 

mechanism for selecting between competing logic 

clauses, combined with failure detection and algorithmic 

backtracking as the mechanisms for trying alternatives 

when the selected alternative fails, proved inadequate to 

handle the rampant ambiguity of natural language.  
 

A non-deterministic process is one in which there are 

multiple options at some processing step, necessitating a 

mechanism for choosing between the options. A 

deterministic process is one in which there is only one 

option at each step in processing. A monotonically 

evolving representation is one which can be added to (e.g. 

the value of a variable in the representation can be 

instantiated), but does not otherwise change (i.e. the value 

of a variable which has already been determined cannot 

be changed). 
 

In 2002, the Prolog based natural language analysis 

system was ported to ACT-R (Ball, 2003). ACT-R 

replaces Prolog’s file order based selection, serial 

execution, failure detection and backtracking mechanisms 

with probabilistic and context dependent mechanisms that 

support choosing the best alternative at each step in the 

serial analysis via a parallel conflict resolution process. 

This combination of a probabilistic and context dependent 

parallel conflict resolution mechanism followed by a 

serial execution mechanism allows the natural language 

analysis model to pursue the best analysis given the 

preceding context and current input. When combined with 

a non-monotonic context accommodation mechanism   

that allows the model to make modest adjustments to the 

evolving analysis without backtracking when the locally 

best analysis turns out not to be globally preferred (e.g. in 

incrementally processing the expression “a few books”, 

the initial processing of “a” suggests a singular expression 

while the subsequent processing of “few” and “books” 

suggests a plural expression which non-monotonically 

overrides the initial singular analysis), the result is a 

pseudo-deterministic language analysis capability which 

presents the appearance and efficiency of deterministic 

processing, despite the rampant ambiguity which makes 

truly deterministic processing impossible (Ball, 2011a).  
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The ACT-R based language analysis model has been 

under development since 2003. Currently, the model 

comprises ~1100 productions and ~58,000 declarative 

memory (DM) elements (primarily part of speech and 

form specific lexical items) and is capable of processing a 

much broader range of English language constructions 

than its Prolog predecessor (www.doublertheory.com/ 

comp-grammer/comp-grammar.htm; Ball, Heiberg & 

Silber, 2007). The ACT-R based model accepts text input 

from single words to entire documents, and processes the 

input incrementally one word or multi-word unit at a time. 

On a 64-bit quad-core Windows machine with 8 Gig 

RAM, the model incrementally processes ~200 words per 

minute without slowing down with the length of the input.  

 

2. Prolog 

Prolog (i.e. programming in logic) is a programming 

language developed in the 1970’s (cf. Kowalski, 1982; 

Clocksin & Mellish, 1984; Colmerauer & Roussel, 1993). 

It is a computational implementation of a logic theorem 

prover which combines the resolution theorem proving 

algorithm (Robinson, 1965) and unification based pattern 

matching. (The unification mechanism is monotonic.) 

Prolog contrasts with Lisp, which is grounded in the 

mathematical notion of function application, and 

procedural languages like Fortran and C which are based 

on the execution of a sequence of instructions 

supplemented with jumps, branches and loops. At the 

time of its introduction, Prolog was viewed primarily as a 

competitor to Lisp for the development of Artificial 

Intelligence (AI) programs.  
 

In 1985, I began working on the development of a natural 

language analysis system using Prolog. At the time, 

Prolog was considered by many to be the best available 

programming language for building Natural Language 

Processing (NLP) systems (cf. Gazdar & Mellish, 1989; 

Gal et al., 1991). In fact, Prolog was specifically designed 

for this purpose (Colmerauer & Roussel, 1993) and it was 

the language of choice in our NLP lab (Wilks & Gomez, 

1988). Prolog even comes with a built-in capability for 

building natural language parsers and generators using the 

Definite Clause Grammar (DCG) formalism (Pereira & 

Warren, 1980). DCG supports the specification of 

grammar rules in a grammar like notation within Prolog. 

For example, consider   the following DCG based rules: 

s  np, vp. 

np  det, n. 

vp  v, np. 

det  [the]. 

n  [dog]. 

n  [cat]. 

v  [chased]. 

These rules look very much like the rules of a typical 

context-free grammar: 

S  NP VP 

NP  Det N 

VP  V NP 

N  “dog” 

with the addition of a comma to indicate the separation 

between elements, a period to indicate the end of a rule, 

the use of a list notation (e.g. [the], [dog]) to indicate 

lexical items, and the use of lowercase letters for rule 

elements (uppercase letters indicate variables in Prolog). 

Besides these syntactic differences with typical context 

free grammar notation, the DCG notation hides two 

variables that correspond to the list of lexical items to be 

parsed or generated, split into two difference lists. For 

example, the list [the, dog, chased, the, 

cat] and the empty list [] correspond to difference lists 

for [the, dog, chased, the, cat] as do the 

lists [the, dog] and [chased, the, cat]. The 

simple DCG described above is capable of processing 

inputs like “the dog chased the cat”, “the dog chased the 

dog”, “the cat chased the dog”, and “the cat chased the 

cat”. With additional lexical items, many more inputs can 

be handled. As the input is processed during parsing, 

words are consumed from the first list until all the words 

have been consumed. For example,[the, dog] is 

consumed by the np rule leaving [chased, the, 

cat] and [chased, the, cat] is consumed by the 

vp rule, leaving []. To start the parsing process a rule is 

called and the difference lists provided. For example,  

?- s([the, dog, chased, the, 

cat],[]). 

calls the s rule. Prolog will try to prove that [the, 

dog, chased, the, cat] is consistent with the 

rules. In this case, the input is consistent and Prolog 

reports success. If the input were 

?- s([the, dog, chased],[]). 

Prolog will determine that the input is inconsistent with 

the rules since the vp rule fails to match. In this case, 

Prolog reports failure.  
 

Of course, parsers typically do more than report success 

or failure, and it is possible to add extra arguments to 

Prolog rules to create a structural representation of the 

input, called a parse tree. If we revise the rules as follows, 

Prolog will return a parse tree in addition to success when 

the parse succeeds: 

s(s(NP,VP)) np(NP), vp(VP). 

np(np(D,N)) det(D), n(N). 

det(det(the))  [the]. 

n(n(dog))  [dog]. 

n(n(cat))  [cat]. 

v(v(chased))  [chased]. 

For the input [the, dog, chased, the, cat], 

the parse tree will look like: 
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s( 

  np( 

    det(the), n(dog)), 

  vp( 

    v(chased), 

    np( 

      det(the), n(cat)))) 

Using the DCG formalism, it is very easy to specify a 

simple grammar for a fragment of English. It is also 

possible to specify a grammar that can then be used to 

either parse inputs or generate outputs, depending on how 

the variables constituting the difference lists are 

instantiated. For example, invocation of the s rule with 

variables for the parse tree and first list will cause Prolog 

to generate sequences of lexical items that are compatible 

with the grammar: 

?- s(Tree,Text,[]). 

This bi-directional character of Prolog is often cited as a 

major strength of the language.  
 

The reason it is easy to build simple grammars in Prolog 

is because of the built-in inferencing mechanisms. One 

need only specify the grammar rules declaratively, and 

the built-in inferencing mechanisms provide the capability 

to parse inputs or generate outputs. The details of this 

processing are largely hidden from the grammar 

developer. The developer need only specify the starting 

rule and provide the input list (for parsing) or a variable 

(for generation). Prolog matches the left hand side of the 

starting rule and expands the right hand side of the rule. 

For parsing, the first difference list is unified with a 

variable in the matching rule; for generation, the variable 

is pushed down until a rule that provides a list is unified 

with the variable at some point. Overall, Prolog’s 

inferencing mechanisms are based on non-deterministic 

selection of a matching rule, an attempt to prove the right 

hand side of the rule, and failure detection as the 

mechanism for backtracking and trying alternative rules. 

Prolog’s inferencing mechanisms work well as long as 

there are few matching choices at each choice point, as is 

typical of simple grammars. This parsing model is based 

on techniques used to develop computer programming 

languages which are specifically designed to limit the 

number of choices at each choice point during parsing, 

often using limited lookahead (which Prolog does not 

provide) to reduce the number of choices to just one. 

Systems which resolve to a single choice at each “choice 

point” are referred to as deterministic.  
 

Unfortunately, natural languages are not like computer 

programming languages in this respect. Natural languages 

exhibit rampant ambiguity which means that there will be 

multiple choices at each choice point. Across choice 

points, the number of alternatives multiplies and the result 

is an explosion of alternatives (i.e. if choice point A has 4 

alternatives and choice point B has 3 alternatives, there 

are 12 alternatives across both choice points). A non-

deterministic processor like that in Prolog is not capable 

of dealing efficiently with this explosion of alternatives. 

Anyone who has tried to build more than a simple 

grammar in Prolog has run into this problem. Non-

deterministic systems operating over ambiguous 

languages are difficult to scale. 
 

As a concrete example, consider the processing of verbs. 

Verbs can be subcategorized as intransitive, transitive or 

ditransitive based on the number of arguments they 

combine with. 

1. He1 ran (intransitive) 

2. He1 kicked (transitive) it2 

3. He1 gave (ditransitive) me2 it3 

The simple grammar above only handled the case of 

transitive verbs like “chased”. We can add additional 

rules to handle the other cases: 

vp  v. (intransitive) 

vp  v, np. (transitive) 

vp  v, np, np. (ditransitive) 

We now have 3 vp rules. How does Prolog decide which 

rule to apply? Most variants of Prolog rely on the order of 

rules in the program file, selecting matching rules from 

top to bottom in the file. Given the order above, Prolog 

will first try the intransitive rule, followed by the 

transitive rule and the ditransitive rule. With 3 rules, there 

is only a 33% chance of Prolog picking the correct rule on 

the first attempt (unless rules are frequency ordered such 

that more frequently correct rules are attempted first). 

Ignoring frequency, 67% of the time Prolog will select the 

wrong rule and have to backtrack on failure until the 

correct rule is selected. As our grammar gets more 

complex and additional vp rules are added (e.g. to handle 

verbs like “think” which take a full clause as an argument 

as in “I think he likes you”), and np rules get more 

complex to handle relative clauses and other modifiers 

(e.g. “the dog that chased the cat with the red and white 

striped hat likes you”), the performance of the grammar 

will degrade.  
 

Worse, it is not always possible to know when a rule 

should fail. In “what did he eat”, “eat” is a transitive verb 

with an object argument (i.e. “what”) that does not occur 

in normal position. If we treat “eat” as an intransitive verb 

based on the absence of the object in the normal position 

following “eat” (e.g. “I eat it”), then we cannot represent 

that fact that “what” is really the object of “eat”. In 

English, wh-words are moved to the front of sentences to 

indicate a question, creating what is called a long-distance 

dependency between the wh-word and the normal object 

position. Long-distance dependencies create a serious 

challenge for grammar development.  

 

As another concrete example, sentences in English come 

in many different forms, including declarative, 

imperative, wh-question, yes-no-question, exclamative: 
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4. He gave me the ball. (declarative) 

5. Give me the ball! (imperative) 

6. Who gave me the ball? (wh-question) 

7. Did he give me the ball? (yes-no-question) 

8. Him give me the ball, no way! (exclamative) 

If we generalize sentences to non-finite as well as finite 

clauses, even more forms are possible: 

9. To give me the ball (infinitive clause) 

10. For you to give me the ball (“for” infinitive) 

11. Giving me the ball (v-ing clause) 

12. Given the ball (v-en clause) 

13. Who he gave the ball (wh-clause) 

A single sentence rule like s  np, vp. is 

insufficient to handle these alternatives. If we add 

multiple rules with the same left hand element s, Prolog’s 

fixed order mechanism will pick alternatives based on 

program file order during parsing and generation. As the 

grammar grows to encompass more English language 

alternatives, the likelihood of choosing the right 

alternative decreases and the performance of the Prolog 

grammar degrades. Since the alternatives get multiplied 

across choice points, as the length of the input (or 

generated output) increases, the performance of the 

Prolog grammar program will deteriorate as it has to 

consider more and more alternatives at each choice point.   
 

Besides the problem of fixed order selection, Prolog relies 

on failure detection to determine when to backtrack and 

try an alternative rule. Unfortunately, English grammar is 

too extensible and variable for failure detection to be used 

as a viable processing mechanism. Consider the following 

examples: 

14. asing fewplur booksplur 

15. a Bin Laden confident 

16. the paperboy porched the newspaper 

17. the airspped restriction 

18. www.thefreedictionary.com 

In 14, there is an incompatibility in number between “a” 

and “few books”. A grammar that insisted on 

compatibility in number would fail on this input. In 15, 

the proper noun “Bin Laden” is being used as a modifier, 

an atypical use for a proper noun. A grammar which 

didn’t allow proper nouns to function as modifiers would 

fail on this input. In 16, the word “porched” functions as a 

verb, although it is derived from the noun “porch”. A 

grammar which only allowed “porch” to be a noun would 

fail. In 17, “airspeed” is misspelled and in 18, “the”, 

“free” and “dictionary” are concatenated together to 

create a URL. A grammar which didn’t handle such 

variability would fail to handle these examples. Failure of 

the best (if somewhat faulty) alternative in a Prolog based 

grammar is very problematic. Once the grammar fails on 

the best alternative, it will explore all possible alternatives 

before terminating with failure (or returning a less 

desirable, but grammatically acceptable alternative). This 

is effectively worst case behavior which in Prolog is c
n
 

(exponential!) where c is a constant that depends on the 

number of logic clauses and n is the number of words in 

the input (cf. Allen, 1995, p. 73). In a complex grammar, 

exploring the entire space of alternatives can consume 

extensive time and memory even for relatively small n. 
 

Some of these problems can be addressed by tying rule 

selection more closely to the actual input, effectively 

converting Prolog’s rules from being context free to being 

context dependent. To accomplish this, it is necessary to 

precede rule selection with a rule that first extracts the 

next input and then ties rule selection to the extracted 

input. This approach creates a more efficient parser, but 

gives up on the bidirectional capabilities of Prolog in the 

process. It is easier to work with the new approach 

outside the DCG formalism. The parse rule shown 

below (the model is now specific to parsing or language 

analysis), ties the rule selection (process_rule) to the 

actual input via the preceding lookup rule. The variables 

Text_in and Text_out are the difference lists for the 

text input and the variables Tree_in and Tree_out 

are the difference lists for the parse tree. The variable 

Entry in the lookup rule holds the result of the lookup. 

Note that selection of process_rule is now dependent 

on the result of the lookup rule variable Entry and this 

variable is dependent on the text input. In the sample 

lookup rule, the word “cat” is extracted from [cat|R] 

(in Prolog, [H|T] is the notation for the head (H) and tail 

(T) of a list, where tail is everything but the head). The 

variable Entry is set to n(cat)(i.e. “cat” the noun) 

when the lookup rule is matched using Prolog’s 

powerful unification mechanism, and Rest is set to the 

remainder of the input via unification. 

parse(Text_in,Text_out, 

     Tree_in,Tree_out):-                      

lookup(Entry,Text_in,Text_out), 

process_rule(Entry, 

      Tree_in,Tree_out). 

lookup(n(cat),[cat|Rest],Rest). 

process_rule(n(N), 

[np(det(D),_)|R], 

[np(det(D),n(N))|R]). 

The lookup rule works well as long as there is no 

ambiguity – i.e. if “cat” is always a noun. But many 

words can be used in different parts of speech – even 

“cat” in “he likes to cat about on the weekend”. Once we 

add multiple lookup rules for each possibility,  

lookup(n(cat),[cat|Rest],Rest). 

lookup(v(cat),[cat|Rest],Rest). 

we are back in the position of relying on Prolog’s fixed 

order selection mechanism to select a lookup rule. In 

this case, we can put the noun use of “cat” before the verb 
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use, since the noun use is much more frequent.  However, 

we would like to be able to condition the preference on 

the context. Following “to”, “cat” is more likely to be a 

verb (“to cat about”), then following “the”. We need some 

way to adjust the preferences based on the context. Prolog 

does not support this (short of the draconian use of 

retracts followed by asserta/assertz to change the order of 

the lookup clauses). 
 

Summarizing, a Prolog based parser could be significantly 

improved by incorporating context and probabilities into 

the rule selection process, and eliminating the use of 

failure detection and backtracking. To achieve this, rule 

selection must be conditioned on the current lexical item 

and its part of speech, and the wider context, as well. For 

example, handling the occurrence of a wh-word at the 

beginning of a sentence that corresponds to the object of 

the main verb (e.g. “whati did he eat obji”) necessitates 

consideration of the wider context. The more context that 

is brought to bear, the more specialized the rules can be, 

and the less likely they are to be misapplied. The basic 

value of using context to guide parsing when there is 

ambiguity is overlooked in the predominant focus on 

context free grammar formalisms with their efficient 

processing algorithms relative to context sensitive 

grammars. The addition of probabilities to context free 

rules (probabilistic context free grammars or PCFGs) is a 

means of encoding global context. Further conditioning 

rule selection on specific lexical items (lexicalized 

probabilistic context free grammars or LPCFGs)—the 

current state of the art in computational linguistics (cf. 

Collins, 2003)—brings additional context to bear. 

Combined with algorithms which only retain a subset of 

the most likely outputs across choice points, parsing can 

be relatively efficient, but with some risk that the 

ultimately best choice may be pruned away. 
 

The common assumption that a context sensitive grammar 

would necessarily be less efficient than a context free 

grammar is based on theoretical notions having to do with 

the power of grammar formalisms. Context sensitive 

grammars have been shown to be more powerful than 

context free grammars (Chomsky, 1956). A subset of 

context sensitive grammars called mildly context sensitive 

grammars, require on the order of n
6
 computations (where 

n is the length of the input) in the worst case where all 

alternatives have to be explored in comparison to n
3
 for 

context free grammars (Joshi, 1985). Note the implication 

that the parser gets slower and slower with the length of 

the input (in the worst case) since the function, n
6
,
 
is 

polynomial. But a context sensitive grammar has the 

important advantage of not needing to explore all 

alternatives. Combining a context sensitive grammar with 

probabilistic mechanisms for rule selection makes it 

possible for the parser to explore a single, or very few 

number of alternatives, resulting in a highly efficient best-

first parse (cf. Allen, 1995, p. 216) requiring on the order 

of n serial computations—i.e. linear with the length of the 

input when only a single alternative is pursued and 

assuming constant time for the context sensitive pattern 

matching computations needed for rule selection. Human 

language processing (HLP) appears to use a combination 

of serial and parallel mechanisms which support linear 

processing overall (the human language processor does 

not slow down with the length of the input). However, on 

serial hardware, the parallel pattern matching 

computations must be computed serially which affects the 

linear slope.  

3. ACT-R  

The ACT-R computational cognitive architecture is the 

culmination of more than 40 years of empirical and 

computational research (Anderson, 2007). ACT-R 

integrates a procedural memory system (skill knowledge) 

implemented as a production system (on top of a discrete 

event simulation) with a declarative memory (DM) 

system (knowledge of facts) implemented in frame-like 

chunks (named and typed lists of slot/value pairs) 

organized into an inheritance hierarchy. ACT-R includes 

several peripheral modules including visual, aural, vocal, 

and manual which provide the perceptual-motor 

capabilities of ACT-R. There is also a goal module which 

determines the current goal and an imaginal module to 

support problem solving. Procedural memory is the 

central component of ACT-R. Each peripheral module 

contains at least one buffer for storing the current output 

from the module. Processing within modules to determine 

buffer outputs occurs in parallel. The outputs in the 

buffers are accessible to the central procedural memory 

system (see Figure 1).  

 

Figure 1. ACT-R cognitive architecture (Anderson, 

2007) 

Processing in ACT-R’s procedural memory involves the 

parallel selection and serial execution of a sequence of 

productions. Production execution can result in a 

perceptual-motor action (e.g. visual attention shift, mouse 

movement), a modification to the contents of a buffer, or 

a DM retrieval.  

Productions in ACT-R correspond to the logic rules of 

Prolog and DM chunks correspond roughly to Prolog 

facts (a type of logic rule, like the lookup rule, that only 

has a left hand-side). The parallel production selection 
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process in ACT-R is inherently context dependent. 

Productions match against the contents of buffers which 

provide the context for production selection. In addition, 

ACT-R productions are assigned utilities that determine 

which matching production is selected for execution. The 

process of matching productions and selecting the 

production with highest utility if referred to as conflict 

resolution. The closest equivalent in Prolog relies on the 

fixed top to bottom order for serial selection of logic rules 

which match the current context. 
 

Beside the use of utilities for production selection during 

conflict resolution, ACT-R provides an activation 

mechanism for retrieval of chunks from DM. This 

retrieval mechanism functions like the lookup rule 

above which determines the part of speech of the current 

input—using a fixed top to bottom selection order if there 

are multiple alternatives. However, ACT-R’s activation 

based retrieval mechanism is probabilistic. If a production 

which attempts a retrieval is selected and executed, the 

production provides a retrieval template that determines 

what kind of chunk is eligible to be retrieved. The chunk 

matching the retrieval template with the highest activation 

based on the prior history of use of the chunk (base level 

activation) and current context (context activation) is 

selected. The retrieval mechanism integrates hard 

constraints based on the retrieval template (e.g. retrieve a 

chunk that is a part of speech) with soft constraints based 

on spreading activation (e.g. activate chunks in memory 

which match the letters and trigrams of the input, and the 

preceding context) and base level activation. To see how 

the retrieval mechanism works, consider the processing of 

the word “cat”. The retrieval template will specify 

retrieval of a part of speech. Only chunks which are parts 

of speech are eligible to be retrieved. In addition, the 

letters “c”, “a”, and “t” and the trigrams “wbca”, “cat” 

and “atwb” (“wb” stands for word boundary) will spread 

activation from specialized letter and trigram 

buffers. Further, if “the” occurs before “cat”, a bias for a 

noun part of speech will be spread from a specialized 

context buffer. If “to” occurs before “cat”, a bias for a 

verb part of speech will be spread instead. These 

specialized buffers represent an extension of the ACT-R 

architecture that is specific to language analysis (Ball, 

2011b). Note that if the actual input were “catt”, “cat” the 

noun might still be retrieved if it is the most highly 

activated part of speech in DM (if there is no chunk 

corresponding to “catt” that is a part of speech). The 

spreading activation mechanism supports a form of 

partial matching based on soft constraints or preferences 

(cf. Wilks, 1975). By comparison, Prolog’s unification 

mechanism does not allow for partial matching. Once a 

part of speech is retrieved and placed in the retrieval 

buffer, it becomes part of the context for subsequent 

production selection and execution. 
 

ACT-R integrates the probabilistic, context dependent 

production selection and DM retrieval mechanisms 

described above, with support for a hierarchy of chunk 

types and a single inheritance mechanism. The language 

analysis model makes extensive use of ACT-R’s 

inheritance mechanism, both in the definition of the 

grammatical ontology and in the production matching and 

selection process. As noted above, productions are 

matched against buffers during production selection.  

Productions may selectively match against any number of 

buffers, from 0 (in which case the production may always 

match) to all the buffers. Productions which match against 

a chunk in a buffer must specify the type of the chunk 

being matched. The match to the type succeeds if the 

chunk in the buffer is of the specified type (isa verb in 

the production matches isa verb in the buffer) or the 

specified type is a super-type of the chunk in the buffer 

(isa part-of-speech in the production matches 

isa verb in the buffer). We use the capability to match 

to a type or super-type extensively. Specialized 

productions match to chunks in buffers of a very specific 

type (isa verb in the production), whereas a more 

general production may match the same chunk as a high 

level super-type (isa part-of-speech in the 

production). Specialized productions have higher utility 

than competing general productions since they are more 

likely to be useful in a matching context than the more 

general production.   
 

As a simple example of the use of the inheritance 

hierarchy, consider the process of retrieving a part of 

speech followed by the processing of the retrieved part of 

speech. To retrieve a part of speech, a production 

executes that provides a retrieval template specifying the 

part-of-speech super-type. Any chunk which is a 

subtype of part-of-speech is eligible to be retrieved. 

Once a chunk is retrieved, productions which are specific 

to the retrieved part of speech (e.g. noun, verb) can 

match the retrieved chunk. For the input “cat”, if a noun 

part of speech is retrieved, this noun chunk will provide 

part of the context in which subsequent productions 

execute. If the context also includes a noun-phrase 

chunk whose head is yet to be integrated, a production 

which matches the noun and noun-phrase chunks can 

be selected. This production can then integrate the noun 

chunk as the head of the noun-phrase chunk. If there 

is no noun-phrase chunk with an empty head, a 

lower utility production which creates a new noun-

phrase chunk and integrates the noun as the head can 

be selected and executed. This lower utility production 

will only be selected if the higher utility production does 

not match the context and is not in the conflict set. This 

makes it possible for the model to handle the case where a 

determiner like “the” projects a noun-phrase chunk 

with a missing head (e.g. “the…”) as well as the case 

where a noun occurs without a determiner (e.g. “rice is 

good for you”). 
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4. Probabilistic Prolog 

Although there is little interest in adopting cognitively 

plausible mechanisms like those provided in ACT-R into 

Prolog, there have been attempts to add probabilistic 

mechanisms to Prolog and DCG to bring them in 

alignment with prevailing PCFG formalisms. According 

to Nivre (downloaded from http://w3.msi.vxu.se/~nivre/ 

teaching/statnlp/pdcg.html):  

A very simple way of parsing with a probabilistic 

context-free grammar (PCFG) is to use the built-in 

DCG available in most implementations of Prolog. All 

that is required is that every category symbol (term) is 

extended with an extra argument for the probability of 

that constituent, and that every rule is extended with a 

Prolog call in order to multiply the probabilities of the 

daughters with the probability of the rule in order to 

obtain the probability of the entire constituent. Thus a 

PCFG rule of the form:  

x0 --> x1...xn : p  

where p is the rule probability, will be translated into 

the following DCG rule:  

x0(P0) --> x1(P1), ..., xn(Pn),  

{ P0 is p*P1*...*Pn }.  

Using this approach with the simple grammar in section 2, 

with a few extra np, vp and lexical rules added, gives 

s(P0) np(P1), vp(P2),  

{PO is 1.0*P1*P2}. 

np(P0) det(P1), n(P2),  

{PO is 0.7*P1*P2}. 

np(P0) pn(P1),  

      {PO is 0.3*P1}. 

vp(P0) v(P1), np(P2),  

{PO is 0.5*P1*P2}.  

;; transitive 

vp(P0) v(P1),{PO is 0.3*P1}.            

;; intransitive 

vp(P0) v(P1), np(P2), np(P3),  

{PO is 0.2*P1*P2*P3}.  

;; ditrans 

det(1) [the]. 

n(0.5) [dog]. 

n(0.5) [cat]. 

v(0.6) [ate]. 

v(0.4) [chased]. 

 

While this approach adds probabilities, it provides no 

mechanism for selecting the most probable parse when 

there is ambiguity, other than using file order. Prolog does 

provide a findall relation that exhaustively finds all 

solutions. Findall could be used to collect and then 

order the solutions in terms of probabilities, but this 

requires an exhaustive search which results in exponential 

worst case behavior. Just adding probabilities to Prolog is 

a non-solution. By comparison, ACT-R’s conflict 

resolution mechanism leads to selection and execution of 

the production with the highest utility at each step in 

processing—implementing a breadth-first search at each 

step, and pursuing only the best path. Although it is 

possible to implement breadth-first search in Prolog, 

breadth-first search alone is insufficient if it is exhaustive. 

Some mechanism for pursuing the best, or at least a 

bounded number of alternatives, at each step in 

processing, is also needed. A version of Prolog with this 

combination of mechanisms would be quite far removed 

from standard Prolog. ACT-R provides just this 

combination out of the box. 

5. Conclusions 

Although Prolog provides mechanisms that support the 

rapid development of simple grammars, Prolog lacks 

several features that are needed for development of a 

large-scale, functional language analysis capability. ACT-

R’s combination of probabilistic and context dependent 

mechanisms for production selection and DM retrieval 

with inheritance based pattern matching, combined with 

best-first search, overcome the main limitations of Prolog. 

The transition from Prolog to ACT-R has made it possible 

to expand the capabilities of the language analysis system 

well beyond those of the Prolog predecessor and suggests 

that a cognitively motivated approach to natural language 

analysis may also be suitable for achieving a functional 

capability.  
 

Although Prolog and ACT-R are superficially very 

different (logic theorem prover vs. production system), 

and the motivations behind their development also differ 

(NLP vs. computational cognitive modeling), ACT-R’s 

productions share much in common with Prolog’s logic 

clauses. It is not too big a stretch to view ACT-R as a 

probabilistic and context dependent variant of Prolog 

which implements best first search via the combination of 

parallel conflict resolution at each step with serial 

execution of the best alternative. The introduction of 

probabilities and context dependence into a logic theorem 

proving language like Prolog has important theoretical 

and computational efficiency implications. Logical 

deduction, which is grounded in the philosophical 

tradition of valid inference and correct reasoning, is often 

considered to be incompatible with notions of probability 

and uncertainty which can lead to logical contradictions. 

It is only recently that probabilistic or Markov logics have 

gained some acceptance and are becoming more common 

(Richardson & Domingos, 2006). Beyond the introduction 

of probabilities and context dependence, a best first 

search mechanism which pursues the best, or limited 

number of preferred alternatives, is needed to support 

efficient processing. 

 

ACT-R provides probabilistic functionality similar to a 

Markov logic within the framework of a psychologically 

motivated production system architecture. In addition to 

probabilities, the production system architecture puts 
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context dependence center stage. The combination of 

probabilities and context dependence in a production 

system architecture that implements a best first search 

strategy—supplemented with a context accommodation 

capability for recovering when the locally best solution is 

not globally preferred—results in an efficient pseudo-

deterministic language analysis system. Computational 

challenges remain. With a mental lexicon approaching 

60,000, a serial implementation of ACT-R’s parallel 

retrieval mechanism leads to a steep linear slope that is 

computationally expensive if all lexical items are 

candidates for retrieval. We have had to constrain this 

mechanism to reduce the slope constant and make it less 

expensive (Freiman & Ball, 2010). We have also run into 

process space limitations on a 32-bit computer system, 

necessitating upgrade to a 64-bit system. We remain 

optimistic that the upgrade to a 64-bit system will be 

sufficient to meet our research and development 

requirements for a large-scale, functional, general purpose 

language analysis capability that executes at near human 

reading rates of 200-300 words per minute. 
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