
In:$B.$Kennedy,$D.$Rei/er,$R.$St.$Amant$(Eds.),$Proceedings+of+the+22nd+Annual+Conference+on+Behavior+
Representa9on+in+Modeling+and+Simula9on.$$O/awa,$Canada:$BRIMS$Society,$2013.

1

Advantages of ACT-R over Prolog for Natural Language Analysis

Jerry T. Ball

Air Force Research Laboratory, Wright-Patterson AFB, OH 45433

jerry.ball@wpafb.af.mil

Keywords:

Prolog, ACT-R, Language Analysis, NLP

ABSTRACT: This paper discusses the advantages of using the ACT-R cognitive architecture over the Prolog

programming language for the research and development of a large-scale, functional, cognitively motivated model of

natural language analysis. Although Prolog was developed for Natural Language Processing (NLP), it lacks any

probabilistic mechanisms for dealing with ambiguity and relies on failure detection and algorithmic backtracking to

explore alternative analyses. These mechanisms are problematic for handling ill-formed or unexpected inputs, often

resulting in an exploration of the entire search space, which becomes intractable as the complexity and variability of

the allowed inputs and corresponding grammar grow. By comparison, ACT-R provides context dependent and

probabilistic mechanisms which allow the model to incrementally pursue the best analysis. When combined with a non-

monotonic context accommodation mechanism that supports modest adjustment of the evolving analysis to handle cases

where the locally best analysis is not globally preferred, the result is an efficient pseudo-deterministic mechanism that

obviates the need for failure detection and backtracking, aligns with our basic understanding of Human Language

Processing (HLP) and is scalable to broad coverage. The successful transition of the natural language analysis model

from Prolog to ACT-R suggests that a cognitively motivated approach to natural language analysis may also be

suitable for achieving a functional capability.

1. Introduction

This paper discusses the advantages of using the ACT-R

cognitive architecture (Anderson, 2007) over the Prolog

programming language (Clocksin & Mellish, 1984; Ball,

1985) for development of a large-scale, functional,

cognitively motivated natural language analysis model

(Ball, 2011b). The paper follows two papers which

discuss the advantages and challenges of using ACT-R to

model natural language analysis (Ball, 2011a, Ball, 2012).

This paper provides the historical background for those

papers, motivating the transition from Prolog to ACT-R.

Over six years in the mid to late 1980’s, Prolog was used

to develop a natural language analysis system that became

the English analysis component of an English-Japanese

Machine Translation (MT) system (Ball, 1992). Although

the MT system failed to achieve commercial success, the

English analysis component was capable of processing an

interesting range of inputs with a vocabulary of several

hundred words. During development, it became clear that

Prolog lacked several features needed to support creation

of a fully functional language analysis system capable of

processing unrestricted text. In particular, Prolog’s

inherent non-determinism and its weak, file order based

mechanism for selecting between competing logic

clauses, combined with failure detection and algorithmic

backtracking as the mechanisms for trying alternatives

when the selected alternative fails, proved inadequate to

handle the rampant ambiguity of natural language.

A non-deterministic process is one in which there are

multiple options at some processing step, necessitating a

mechanism for choosing between the options. A

deterministic process is one in which there is only one

option at each step in processing. A monotonically

evolving representation is one which can be added to (e.g.

the value of a variable in the representation can be

instantiated), but does not otherwise change (i.e. the value

of a variable which has already been determined cannot

be changed).

In 2002, the Prolog based natural language analysis

system was ported to ACT-R (Ball, 2003). ACT-R

replaces Prolog’s file order based selection, serial

execution, failure detection and backtracking mechanisms

with probabilistic and context dependent mechanisms that

support choosing the best alternative at each step in the

serial analysis via a parallel conflict resolution process.

This combination of a probabilistic and context dependent

parallel conflict resolution mechanism followed by a

serial execution mechanism allows the natural language

analysis model to pursue the best analysis given the

preceding context and current input. When combined with

a non-monotonic context accommodation mechanism

that allows the model to make modest adjustments to the

evolving analysis without backtracking when the locally

best analysis turns out not to be globally preferred (e.g. in

incrementally processing the expression “a few books”,

the initial processing of “a” suggests a singular expression

while the subsequent processing of “few” and “books”

suggests a plural expression which non-monotonically

overrides the initial singular analysis), the result is a

pseudo-deterministic language analysis capability which

presents the appearance and efficiency of deterministic

processing, despite the rampant ambiguity which makes

truly deterministic processing impossible (Ball, 2011a).

2

The ACT-R based language analysis model has been

under development since 2003. Currently, the model

comprises ~1100 productions and ~58,000 declarative

memory (DM) elements (primarily part of speech and

form specific lexical items) and is capable of processing a

much broader range of English language constructions

than its Prolog predecessor (www.doublertheory.com/

comp-grammer/comp-grammar.htm; Ball, Heiberg &

Silber, 2007). The ACT-R based model accepts text input

from single words to entire documents, and processes the

input incrementally one word or multi-word unit at a time.

On a 64-bit quad-core Windows machine with 8 Gig

RAM, the model incrementally processes ~200 words per

minute without slowing down with the length of the input.

2. Prolog

Prolog (i.e. programming in logic) is a programming

language developed in the 1970’s (cf. Kowalski, 1982;

Clocksin & Mellish, 1984; Colmerauer & Roussel, 1993).

It is a computational implementation of a logic theorem

prover which combines the resolution theorem proving

algorithm (Robinson, 1965) and unification based pattern

matching. (The unification mechanism is monotonic.)

Prolog contrasts with Lisp, which is grounded in the

mathematical notion of function application, and

procedural languages like Fortran and C which are based

on the execution of a sequence of instructions

supplemented with jumps, branches and loops. At the

time of its introduction, Prolog was viewed primarily as a

competitor to Lisp for the development of Artificial

Intelligence (AI) programs.

In 1985, I began working on the development of a natural

language analysis system using Prolog. At the time,

Prolog was considered by many to be the best available

programming language for building Natural Language

Processing (NLP) systems (cf. Gazdar & Mellish, 1989;

Gal et al., 1991). In fact, Prolog was specifically designed

for this purpose (Colmerauer & Roussel, 1993) and it was

the language of choice in our NLP lab (Wilks & Gomez,

1988). Prolog even comes with a built-in capability for

building natural language parsers and generators using the

Definite Clause Grammar (DCG) formalism (Pereira &

Warren, 1980). DCG supports the specification of

grammar rules in a grammar like notation within Prolog.

For example, consider the following DCG based rules:

s  np, vp.

np  det, n.

vp  v, np.

det  [the].

n  [dog].

n  [cat].

v  [chased].

These rules look very much like the rules of a typical

context-free grammar:

S  NP VP

NP  Det N

VP  V NP

N  “dog”

with the addition of a comma to indicate the separation

between elements, a period to indicate the end of a rule,

the use of a list notation (e.g. [the], [dog]) to indicate

lexical items, and the use of lowercase letters for rule

elements (uppercase letters indicate variables in Prolog).

Besides these syntactic differences with typical context

free grammar notation, the DCG notation hides two

variables that correspond to the list of lexical items to be

parsed or generated, split into two difference lists. For

example, the list [the, dog, chased, the,

cat] and the empty list [] correspond to difference lists

for [the, dog, chased, the, cat] as do the

lists [the, dog] and [chased, the, cat]. The

simple DCG described above is capable of processing

inputs like “the dog chased the cat”, “the dog chased the

dog”, “the cat chased the dog”, and “the cat chased the

cat”. With additional lexical items, many more inputs can

be handled. As the input is processed during parsing,

words are consumed from the first list until all the words

have been consumed. For example,[the, dog] is

consumed by the np rule leaving [chased, the,

cat] and [chased, the, cat] is consumed by the

vp rule, leaving []. To start the parsing process a rule is

called and the difference lists provided. For example,

?- s([the, dog, chased, the,

cat],[]).

calls the s rule. Prolog will try to prove that [the,

dog, chased, the, cat] is consistent with the

rules. In this case, the input is consistent and Prolog

reports success. If the input were

?- s([the, dog, chased],[]).

Prolog will determine that the input is inconsistent with

the rules since the vp rule fails to match. In this case,

Prolog reports failure.

Of course, parsers typically do more than report success

or failure, and it is possible to add extra arguments to

Prolog rules to create a structural representation of the

input, called a parse tree. If we revise the rules as follows,

Prolog will return a parse tree in addition to success when

the parse succeeds:

s(s(NP,VP)) np(NP), vp(VP).

np(np(D,N)) det(D), n(N).

det(det(the))  [the].

n(n(dog))  [dog].

n(n(cat))  [cat].

v(v(chased))  [chased].

For the input [the, dog, chased, the, cat],

the parse tree will look like:

3

s(

 np(

 det(the), n(dog)),

 vp(

 v(chased),

 np(

 det(the), n(cat))))

Using the DCG formalism, it is very easy to specify a

simple grammar for a fragment of English. It is also

possible to specify a grammar that can then be used to

either parse inputs or generate outputs, depending on how

the variables constituting the difference lists are

instantiated. For example, invocation of the s rule with

variables for the parse tree and first list will cause Prolog

to generate sequences of lexical items that are compatible

with the grammar:

?- s(Tree,Text,[]).

This bi-directional character of Prolog is often cited as a

major strength of the language.

The reason it is easy to build simple grammars in Prolog

is because of the built-in inferencing mechanisms. One

need only specify the grammar rules declaratively, and

the built-in inferencing mechanisms provide the capability

to parse inputs or generate outputs. The details of this

processing are largely hidden from the grammar

developer. The developer need only specify the starting

rule and provide the input list (for parsing) or a variable

(for generation). Prolog matches the left hand side of the

starting rule and expands the right hand side of the rule.

For parsing, the first difference list is unified with a

variable in the matching rule; for generation, the variable

is pushed down until a rule that provides a list is unified

with the variable at some point. Overall, Prolog’s

inferencing mechanisms are based on non-deterministic

selection of a matching rule, an attempt to prove the right

hand side of the rule, and failure detection as the

mechanism for backtracking and trying alternative rules.

Prolog’s inferencing mechanisms work well as long as

there are few matching choices at each choice point, as is

typical of simple grammars. This parsing model is based

on techniques used to develop computer programming

languages which are specifically designed to limit the

number of choices at each choice point during parsing,

often using limited lookahead (which Prolog does not

provide) to reduce the number of choices to just one.

Systems which resolve to a single choice at each “choice

point” are referred to as deterministic.

Unfortunately, natural languages are not like computer

programming languages in this respect. Natural languages

exhibit rampant ambiguity which means that there will be

multiple choices at each choice point. Across choice

points, the number of alternatives multiplies and the result

is an explosion of alternatives (i.e. if choice point A has 4

alternatives and choice point B has 3 alternatives, there

are 12 alternatives across both choice points). A non-

deterministic processor like that in Prolog is not capable

of dealing efficiently with this explosion of alternatives.

Anyone who has tried to build more than a simple

grammar in Prolog has run into this problem. Non-

deterministic systems operating over ambiguous

languages are difficult to scale.

As a concrete example, consider the processing of verbs.

Verbs can be subcategorized as intransitive, transitive or

ditransitive based on the number of arguments they

combine with.

1. He1 ran (intransitive)

2. He1 kicked (transitive) it2

3. He1 gave (ditransitive) me2 it3

The simple grammar above only handled the case of

transitive verbs like “chased”. We can add additional

rules to handle the other cases:

vp  v. (intransitive)

vp  v, np. (transitive)

vp  v, np, np. (ditransitive)

We now have 3 vp rules. How does Prolog decide which

rule to apply? Most variants of Prolog rely on the order of

rules in the program file, selecting matching rules from

top to bottom in the file. Given the order above, Prolog

will first try the intransitive rule, followed by the

transitive rule and the ditransitive rule. With 3 rules, there

is only a 33% chance of Prolog picking the correct rule on

the first attempt (unless rules are frequency ordered such

that more frequently correct rules are attempted first).

Ignoring frequency, 67% of the time Prolog will select the

wrong rule and have to backtrack on failure until the

correct rule is selected. As our grammar gets more

complex and additional vp rules are added (e.g. to handle

verbs like “think” which take a full clause as an argument

as in “I think he likes you”), and np rules get more

complex to handle relative clauses and other modifiers

(e.g. “the dog that chased the cat with the red and white

striped hat likes you”), the performance of the grammar

will degrade.

Worse, it is not always possible to know when a rule

should fail. In “what did he eat”, “eat” is a transitive verb

with an object argument (i.e. “what”) that does not occur

in normal position. If we treat “eat” as an intransitive verb

based on the absence of the object in the normal position

following “eat” (e.g. “I eat it”), then we cannot represent

that fact that “what” is really the object of “eat”. In

English, wh-words are moved to the front of sentences to

indicate a question, creating what is called a long-distance

dependency between the wh-word and the normal object

position. Long-distance dependencies create a serious

challenge for grammar development.

As another concrete example, sentences in English come

in many different forms, including declarative,

imperative, wh-question, yes-no-question, exclamative:

4

4. He gave me the ball. (declarative)

5. Give me the ball! (imperative)

6. Who gave me the ball? (wh-question)

7. Did he give me the ball? (yes-no-question)

8. Him give me the ball, no way! (exclamative)

If we generalize sentences to non-finite as well as finite

clauses, even more forms are possible:

9. To give me the ball (infinitive clause)

10. For you to give me the ball (“for” infinitive)

11. Giving me the ball (v-ing clause)

12. Given the ball (v-en clause)

13. Who he gave the ball (wh-clause)

A single sentence rule like s  np, vp. is

insufficient to handle these alternatives. If we add

multiple rules with the same left hand element s, Prolog’s

fixed order mechanism will pick alternatives based on

program file order during parsing and generation. As the

grammar grows to encompass more English language

alternatives, the likelihood of choosing the right

alternative decreases and the performance of the Prolog

grammar degrades. Since the alternatives get multiplied

across choice points, as the length of the input (or

generated output) increases, the performance of the

Prolog grammar program will deteriorate as it has to

consider more and more alternatives at each choice point.

Besides the problem of fixed order selection, Prolog relies

on failure detection to determine when to backtrack and

try an alternative rule. Unfortunately, English grammar is

too extensible and variable for failure detection to be used

as a viable processing mechanism. Consider the following

examples:

14. asing fewplur booksplur

15. a Bin Laden confident

16. the paperboy porched the newspaper

17. the airspped restriction

18. www.thefreedictionary.com

In 14, there is an incompatibility in number between “a”

and “few books”. A grammar that insisted on

compatibility in number would fail on this input. In 15,

the proper noun “Bin Laden” is being used as a modifier,

an atypical use for a proper noun. A grammar which

didn’t allow proper nouns to function as modifiers would

fail on this input. In 16, the word “porched” functions as a

verb, although it is derived from the noun “porch”. A

grammar which only allowed “porch” to be a noun would

fail. In 17, “airspeed” is misspelled and in 18, “the”,

“free” and “dictionary” are concatenated together to

create a URL. A grammar which didn’t handle such

variability would fail to handle these examples. Failure of

the best (if somewhat faulty) alternative in a Prolog based

grammar is very problematic. Once the grammar fails on

the best alternative, it will explore all possible alternatives

before terminating with failure (or returning a less

desirable, but grammatically acceptable alternative). This

is effectively worst case behavior which in Prolog is c
n

(exponential!) where c is a constant that depends on the

number of logic clauses and n is the number of words in

the input (cf. Allen, 1995, p. 73). In a complex grammar,

exploring the entire space of alternatives can consume

extensive time and memory even for relatively small n.

Some of these problems can be addressed by tying rule

selection more closely to the actual input, effectively

converting Prolog’s rules from being context free to being

context dependent. To accomplish this, it is necessary to

precede rule selection with a rule that first extracts the

next input and then ties rule selection to the extracted

input. This approach creates a more efficient parser, but

gives up on the bidirectional capabilities of Prolog in the

process. It is easier to work with the new approach

outside the DCG formalism. The parse rule shown

below (the model is now specific to parsing or language

analysis), ties the rule selection (process_rule) to the

actual input via the preceding lookup rule. The variables

Text_in and Text_out are the difference lists for the

text input and the variables Tree_in and Tree_out

are the difference lists for the parse tree. The variable

Entry in the lookup rule holds the result of the lookup.

Note that selection of process_rule is now dependent

on the result of the lookup rule variable Entry and this

variable is dependent on the text input. In the sample

lookup rule, the word “cat” is extracted from [cat|R]

(in Prolog, [H|T] is the notation for the head (H) and tail

(T) of a list, where tail is everything but the head). The

variable Entry is set to n(cat)(i.e. “cat” the noun)

when the lookup rule is matched using Prolog’s

powerful unification mechanism, and Rest is set to the

remainder of the input via unification.

parse(Text_in,Text_out,

 Tree_in,Tree_out):-

lookup(Entry,Text_in,Text_out),

process_rule(Entry,

 Tree_in,Tree_out).

lookup(n(cat),[cat|Rest],Rest).

process_rule(n(N),

[np(det(D),_)|R],

[np(det(D),n(N))|R]).

The lookup rule works well as long as there is no

ambiguity – i.e. if “cat” is always a noun. But many

words can be used in different parts of speech – even

“cat” in “he likes to cat about on the weekend”. Once we

add multiple lookup rules for each possibility,

lookup(n(cat),[cat|Rest],Rest).

lookup(v(cat),[cat|Rest],Rest).

we are back in the position of relying on Prolog’s fixed

order selection mechanism to select a lookup rule. In

this case, we can put the noun use of “cat” before the verb

5

use, since the noun use is much more frequent. However,

we would like to be able to condition the preference on

the context. Following “to”, “cat” is more likely to be a

verb (“to cat about”), then following “the”. We need some

way to adjust the preferences based on the context. Prolog

does not support this (short of the draconian use of

retracts followed by asserta/assertz to change the order of

the lookup clauses).

Summarizing, a Prolog based parser could be significantly

improved by incorporating context and probabilities into

the rule selection process, and eliminating the use of

failure detection and backtracking. To achieve this, rule

selection must be conditioned on the current lexical item

and its part of speech, and the wider context, as well. For

example, handling the occurrence of a wh-word at the

beginning of a sentence that corresponds to the object of

the main verb (e.g. “whati did he eat obji”) necessitates

consideration of the wider context. The more context that

is brought to bear, the more specialized the rules can be,

and the less likely they are to be misapplied. The basic

value of using context to guide parsing when there is

ambiguity is overlooked in the predominant focus on

context free grammar formalisms with their efficient

processing algorithms relative to context sensitive

grammars. The addition of probabilities to context free

rules (probabilistic context free grammars or PCFGs) is a

means of encoding global context. Further conditioning

rule selection on specific lexical items (lexicalized

probabilistic context free grammars or LPCFGs)—the

current state of the art in computational linguistics (cf.

Collins, 2003)—brings additional context to bear.

Combined with algorithms which only retain a subset of

the most likely outputs across choice points, parsing can

be relatively efficient, but with some risk that the

ultimately best choice may be pruned away.

The common assumption that a context sensitive grammar

would necessarily be less efficient than a context free

grammar is based on theoretical notions having to do with

the power of grammar formalisms. Context sensitive

grammars have been shown to be more powerful than

context free grammars (Chomsky, 1956). A subset of

context sensitive grammars called mildly context sensitive

grammars, require on the order of n
6
 computations (where

n is the length of the input) in the worst case where all

alternatives have to be explored in comparison to n
3
 for

context free grammars (Joshi, 1985). Note the implication

that the parser gets slower and slower with the length of

the input (in the worst case) since the function, n
6
,

is

polynomial. But a context sensitive grammar has the

important advantage of not needing to explore all

alternatives. Combining a context sensitive grammar with

probabilistic mechanisms for rule selection makes it

possible for the parser to explore a single, or very few

number of alternatives, resulting in a highly efficient best-

first parse (cf. Allen, 1995, p. 216) requiring on the order

of n serial computations—i.e. linear with the length of the

input when only a single alternative is pursued and

assuming constant time for the context sensitive pattern

matching computations needed for rule selection. Human

language processing (HLP) appears to use a combination

of serial and parallel mechanisms which support linear

processing overall (the human language processor does

not slow down with the length of the input). However, on

serial hardware, the parallel pattern matching

computations must be computed serially which affects the

linear slope.

3. ACT-R

The ACT-R computational cognitive architecture is the

culmination of more than 40 years of empirical and

computational research (Anderson, 2007). ACT-R

integrates a procedural memory system (skill knowledge)

implemented as a production system (on top of a discrete

event simulation) with a declarative memory (DM)

system (knowledge of facts) implemented in frame-like

chunks (named and typed lists of slot/value pairs)

organized into an inheritance hierarchy. ACT-R includes

several peripheral modules including visual, aural, vocal,

and manual which provide the perceptual-motor

capabilities of ACT-R. There is also a goal module which

determines the current goal and an imaginal module to

support problem solving. Procedural memory is the

central component of ACT-R. Each peripheral module

contains at least one buffer for storing the current output

from the module. Processing within modules to determine

buffer outputs occurs in parallel. The outputs in the

buffers are accessible to the central procedural memory

system (see Figure 1).

Figure 1. ACT-R cognitive architecture (Anderson,

2007)

Processing in ACT-R’s procedural memory involves the

parallel selection and serial execution of a sequence of

productions. Production execution can result in a

perceptual-motor action (e.g. visual attention shift, mouse

movement), a modification to the contents of a buffer, or

a DM retrieval.

Productions in ACT-R correspond to the logic rules of

Prolog and DM chunks correspond roughly to Prolog

facts (a type of logic rule, like the lookup rule, that only

has a left hand-side). The parallel production selection

6

process in ACT-R is inherently context dependent.

Productions match against the contents of buffers which

provide the context for production selection. In addition,

ACT-R productions are assigned utilities that determine

which matching production is selected for execution. The

process of matching productions and selecting the

production with highest utility if referred to as conflict

resolution. The closest equivalent in Prolog relies on the

fixed top to bottom order for serial selection of logic rules

which match the current context.

Beside the use of utilities for production selection during

conflict resolution, ACT-R provides an activation

mechanism for retrieval of chunks from DM. This

retrieval mechanism functions like the lookup rule

above which determines the part of speech of the current

input—using a fixed top to bottom selection order if there

are multiple alternatives. However, ACT-R’s activation

based retrieval mechanism is probabilistic. If a production

which attempts a retrieval is selected and executed, the

production provides a retrieval template that determines

what kind of chunk is eligible to be retrieved. The chunk

matching the retrieval template with the highest activation

based on the prior history of use of the chunk (base level

activation) and current context (context activation) is

selected. The retrieval mechanism integrates hard

constraints based on the retrieval template (e.g. retrieve a

chunk that is a part of speech) with soft constraints based

on spreading activation (e.g. activate chunks in memory

which match the letters and trigrams of the input, and the

preceding context) and base level activation. To see how

the retrieval mechanism works, consider the processing of

the word “cat”. The retrieval template will specify

retrieval of a part of speech. Only chunks which are parts

of speech are eligible to be retrieved. In addition, the

letters “c”, “a”, and “t” and the trigrams “wbca”, “cat”

and “atwb” (“wb” stands for word boundary) will spread

activation from specialized letter and trigram

buffers. Further, if “the” occurs before “cat”, a bias for a

noun part of speech will be spread from a specialized

context buffer. If “to” occurs before “cat”, a bias for a

verb part of speech will be spread instead. These

specialized buffers represent an extension of the ACT-R

architecture that is specific to language analysis (Ball,

2011b). Note that if the actual input were “catt”, “cat” the

noun might still be retrieved if it is the most highly

activated part of speech in DM (if there is no chunk

corresponding to “catt” that is a part of speech). The

spreading activation mechanism supports a form of

partial matching based on soft constraints or preferences

(cf. Wilks, 1975). By comparison, Prolog’s unification

mechanism does not allow for partial matching. Once a

part of speech is retrieved and placed in the retrieval

buffer, it becomes part of the context for subsequent

production selection and execution.

ACT-R integrates the probabilistic, context dependent

production selection and DM retrieval mechanisms

described above, with support for a hierarchy of chunk

types and a single inheritance mechanism. The language

analysis model makes extensive use of ACT-R’s

inheritance mechanism, both in the definition of the

grammatical ontology and in the production matching and

selection process. As noted above, productions are

matched against buffers during production selection.

Productions may selectively match against any number of

buffers, from 0 (in which case the production may always

match) to all the buffers. Productions which match against

a chunk in a buffer must specify the type of the chunk

being matched. The match to the type succeeds if the

chunk in the buffer is of the specified type (isa verb in

the production matches isa verb in the buffer) or the

specified type is a super-type of the chunk in the buffer

(isa part-of-speech in the production matches

isa verb in the buffer). We use the capability to match

to a type or super-type extensively. Specialized

productions match to chunks in buffers of a very specific

type (isa verb in the production), whereas a more

general production may match the same chunk as a high

level super-type (isa part-of-speech in the

production). Specialized productions have higher utility

than competing general productions since they are more

likely to be useful in a matching context than the more

general production.

As a simple example of the use of the inheritance

hierarchy, consider the process of retrieving a part of

speech followed by the processing of the retrieved part of

speech. To retrieve a part of speech, a production

executes that provides a retrieval template specifying the

part-of-speech super-type. Any chunk which is a

subtype of part-of-speech is eligible to be retrieved.

Once a chunk is retrieved, productions which are specific

to the retrieved part of speech (e.g. noun, verb) can

match the retrieved chunk. For the input “cat”, if a noun

part of speech is retrieved, this noun chunk will provide

part of the context in which subsequent productions

execute. If the context also includes a noun-phrase

chunk whose head is yet to be integrated, a production

which matches the noun and noun-phrase chunks can

be selected. This production can then integrate the noun

chunk as the head of the noun-phrase chunk. If there

is no noun-phrase chunk with an empty head, a

lower utility production which creates a new noun-

phrase chunk and integrates the noun as the head can

be selected and executed. This lower utility production

will only be selected if the higher utility production does

not match the context and is not in the conflict set. This

makes it possible for the model to handle the case where a

determiner like “the” projects a noun-phrase chunk

with a missing head (e.g. “the…”) as well as the case

where a noun occurs without a determiner (e.g. “rice is

good for you”).

7

4. Probabilistic Prolog

Although there is little interest in adopting cognitively

plausible mechanisms like those provided in ACT-R into

Prolog, there have been attempts to add probabilistic

mechanisms to Prolog and DCG to bring them in

alignment with prevailing PCFG formalisms. According

to Nivre (downloaded from http://w3.msi.vxu.se/~nivre/

teaching/statnlp/pdcg.html):

A very simple way of parsing with a probabilistic

context-free grammar (PCFG) is to use the built-in

DCG available in most implementations of Prolog. All

that is required is that every category symbol (term) is

extended with an extra argument for the probability of

that constituent, and that every rule is extended with a

Prolog call in order to multiply the probabilities of the

daughters with the probability of the rule in order to

obtain the probability of the entire constituent. Thus a

PCFG rule of the form:

x0 --> x1...xn : p

where p is the rule probability, will be translated into

the following DCG rule:

x0(P0) --> x1(P1), ..., xn(Pn),

{ P0 is p*P1*...*Pn }.

Using this approach with the simple grammar in section 2,

with a few extra np, vp and lexical rules added, gives

s(P0) np(P1), vp(P2),

{PO is 1.0*P1*P2}.

np(P0) det(P1), n(P2),

{PO is 0.7*P1*P2}.

np(P0) pn(P1),

 {PO is 0.3*P1}.

vp(P0) v(P1), np(P2),

{PO is 0.5*P1*P2}.

;; transitive

vp(P0) v(P1),{PO is 0.3*P1}.

;; intransitive

vp(P0) v(P1), np(P2), np(P3),

{PO is 0.2*P1*P2*P3}.

;; ditrans

det(1) [the].

n(0.5) [dog].

n(0.5) [cat].

v(0.6) [ate].

v(0.4) [chased].

While this approach adds probabilities, it provides no

mechanism for selecting the most probable parse when

there is ambiguity, other than using file order. Prolog does

provide a findall relation that exhaustively finds all

solutions. Findall could be used to collect and then

order the solutions in terms of probabilities, but this

requires an exhaustive search which results in exponential

worst case behavior. Just adding probabilities to Prolog is

a non-solution. By comparison, ACT-R’s conflict

resolution mechanism leads to selection and execution of

the production with the highest utility at each step in

processing—implementing a breadth-first search at each

step, and pursuing only the best path. Although it is

possible to implement breadth-first search in Prolog,

breadth-first search alone is insufficient if it is exhaustive.

Some mechanism for pursuing the best, or at least a

bounded number of alternatives, at each step in

processing, is also needed. A version of Prolog with this

combination of mechanisms would be quite far removed

from standard Prolog. ACT-R provides just this

combination out of the box.

5. Conclusions

Although Prolog provides mechanisms that support the

rapid development of simple grammars, Prolog lacks

several features that are needed for development of a

large-scale, functional language analysis capability. ACT-

R’s combination of probabilistic and context dependent

mechanisms for production selection and DM retrieval

with inheritance based pattern matching, combined with

best-first search, overcome the main limitations of Prolog.

The transition from Prolog to ACT-R has made it possible

to expand the capabilities of the language analysis system

well beyond those of the Prolog predecessor and suggests

that a cognitively motivated approach to natural language

analysis may also be suitable for achieving a functional

capability.

Although Prolog and ACT-R are superficially very

different (logic theorem prover vs. production system),

and the motivations behind their development also differ

(NLP vs. computational cognitive modeling), ACT-R’s

productions share much in common with Prolog’s logic

clauses. It is not too big a stretch to view ACT-R as a

probabilistic and context dependent variant of Prolog

which implements best first search via the combination of

parallel conflict resolution at each step with serial

execution of the best alternative. The introduction of

probabilities and context dependence into a logic theorem

proving language like Prolog has important theoretical

and computational efficiency implications. Logical

deduction, which is grounded in the philosophical

tradition of valid inference and correct reasoning, is often

considered to be incompatible with notions of probability

and uncertainty which can lead to logical contradictions.

It is only recently that probabilistic or Markov logics have

gained some acceptance and are becoming more common

(Richardson & Domingos, 2006). Beyond the introduction

of probabilities and context dependence, a best first

search mechanism which pursues the best, or limited

number of preferred alternatives, is needed to support

efficient processing.

ACT-R provides probabilistic functionality similar to a

Markov logic within the framework of a psychologically

motivated production system architecture. In addition to

probabilities, the production system architecture puts

8

context dependence center stage. The combination of

probabilities and context dependence in a production

system architecture that implements a best first search

strategy—supplemented with a context accommodation

capability for recovering when the locally best solution is

not globally preferred—results in an efficient pseudo-

deterministic language analysis system. Computational

challenges remain. With a mental lexicon approaching

60,000, a serial implementation of ACT-R’s parallel

retrieval mechanism leads to a steep linear slope that is

computationally expensive if all lexical items are

candidates for retrieval. We have had to constrain this

mechanism to reduce the slope constant and make it less

expensive (Freiman & Ball, 2010). We have also run into

process space limitations on a 32-bit computer system,

necessitating upgrade to a 64-bit system. We remain

optimistic that the upgrade to a 64-bit system will be

sufficient to meet our research and development

requirements for a large-scale, functional, general purpose

language analysis capability that executes at near human

reading rates of 200-300 words per minute.

6. Acknowledgements

My thanks to Jeffrey Jackson for providing helpful
comments on an earlier draft of this paper.

7. References

Allen, J. (1995). Natural Language Understanding, 2nd Ed.

Redwood City, CA: Benjamin/Cummings.

Anderson, J. (2007). How Can the Human Mind occur in the

Physical Universe? NY: Oxford.

Ball, J. (2012). Explorations in ACT-R Based Language

Analysis – Memory Chunk Activation, Retrieval and

Verification without Inhibition. In N. Russwinkel, U.

Drewitz & H. van Rijn (eds), Proceedings of the 11th

International Conference on Cognitive Modeling, 131-136.

Berlin: Universitaets der TU Berlin.

Ball, J. (2011a). Explorations in ACT-R Based Cognitive

Modeling – Chunks, Inheritance, Production Matching and

Memory in Language Analysis. Proceedings of the AAAI Fall

Symposium: Advances in Cognitive Systems.

Ball, J. (2011b). A Pseudo-Deterministic Model of Human

Language Processing. In L. Carlson, C. Hölscher, & T.

Shipley (Eds.), Proceedings of the 33rd Annual Conference

of the Cognitive Science Society (pp. 495-500). Austin, TX:

Cognitive Science Society.

Ball, J. (2003). Beginnings of a Language Comprehension

Module in ACT-R 5.0. Proceedings of the Fifth International

Conference on Cognitive Modeling. Edited by F. Detje, D.

Doerner and H. Schaub. Universitaets-Verlag Bamberg.

ISBN 3-933463-15-7.

Ball, J. (1992). PM, Propositional Model, a Computational

Psycholinguistic Model of Language Comprehension Based

on a Relational Analysis of Written English. Ann Arbor, MI:

UMI Dissertation Information Service.

Ball, J. (1985). A Consideration of Prolog. Report No. MCCS-

85-171. Memoranda in Computer and Cognitive Science,

Computing Research Laboratory, New Mexico State

University, Las Cruces, NM 88003.

Ball, J., Heiberg, A. & Silber, R. (2007). Toward a Large-Scale

Model of Language Comprehension in ACT-R 6. In R.

Lewis, T. Polk & J. Laird (Eds.) Proceedings of the 8th

International Conference on Cognitive Modeling. 173-179.

NY: Psychology Press.

Ball, J., Myers, C., Heiberg, A., Cooke, N., Matessa, M.,

Freiman, M. and Rodgers, S. (2010). The synthetic teammate

project. Computational and Mathematical Organization

Theory, 16(3), 271-299.

Chomsky, N. (1956). Three models for the description of

language. IRE Transactions on Information Theory (2): 113–

124.

Clocksin, W. & Mellish, C. (1984). Programming in Prolog, 2nd

Ed. NY: Springer-Verlag.

Collins, M. (2003). Head-Driven Statistical Models for Natural

Language Parsing. Journal of the Association for

Computational Linguistics, 29, 589-637.

Colmerauer, A. & Roussel, A. (1993). The birth of Prolog. ACM

SIGPLAN Notices 28: 37.

Freiman, M. & Ball, J. (2010). Improving the Reading Rate of

Double-R-Language. In D. D. Salvucci & G. Gunzelmann

(Eds.), Proceedings of the 10th International Conference on

Cognitive Modeling (pp. 1-6). Philadelphia, PA: Drexel Univ.

Gal, A., Lapalme, G., Saint-Dizier, P. & Somers, H. (1991).

Prolog for Natural Language Processing. Chichester, UK:

Wiley.

Gazdar, G., Klein, E., Pullum, G. & Sag, I. (1985). Generalized

Phrase Structure Grammar. Oxford: Basil Blackwell.

Gazdar, G. & Mellish, C. (1989). Natural Language Processing

in Prolog. Addison-Wesley.

Joshi, A. (1985). How much context-sensitivity is necessary for

characterizing structural descriptions? In D. Dowty, L.

Karttunen & A. Zwicky (eds.) Natural Language Parsing:

Theoretical, Computational and Psychological Perspectives.

NY: Cambridge University Press, 206-250.

Kowalski, R. (1982). Logic as a computer language. Logic

Programming. Edited by K. Clark and S. Tarnlund. NY:

Academic Press.

Pereira, F. & Warren, D. (1980). Definite clause grammars for

language analysis – A Survey of the Formalism and a

Comparison with Augmented Transition networks. Artificial

Intelligence, 13:231-2787.

Richardson, M & Domingos, P. (2006). Markov logic networks.

Machine Learning, 62:107-136.

Robinson, J.A. 1965. A machine-oriented logic based on the

resolution principle. Journal of the ACM, 12(1): 23-41.

Wilks, Y. (1975). A Preferential Pattern-Seeking Semantics for

Natural Language Inference. Artificial Intelligence 6: 53-74.

Wilks, Y. & Gomez, R. (1988). New Mexico State University’s

Computing Research Laboratory. AI Magazine, 9 (1), 79-94.

Author Biography

JERRY BALL is a senior research psychologist in the

Human Effectiveness Directorate, 711
th

 Human

Performance Wing, Air Force Research Laboratory. He

has a Masters Degree in Computer Science from the

University of Florida and a PhD in Cognitive Psychology

from New Mexico State University.

