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Abstract 
Short-term prospective time estimation is an important part of 
many tasks and there is a large body of research on the topic. 
However, the relationship between time awake and time 
estimation performance is unclear due to mixed and 
conflicting results. This paper focuses on two studies: one that 
provides evidence of a relationship between time estimation 
performance and time awake, and one that does not. In the 
former, the task required participants to estimate 10s time 
intervals, while the latter used a motion extrapolation 
paradigm. Using computational cognitive models, we 
implemented a mechanism to fatigue the timing module in 
ACT-R, which leads to one possible explanation for 
contrasting results in these two task paradigms. 

Keywords: ACT-R; time estimation; sleep deprivation; 
cognitive model. 

Introduction 
Prospective short-term time estimation is an integral—and 
often overlooked—component of cognitive performance 
that plays a role in many daily tasks. When we drive to 
work, for example, short term time estimation might be used 
to gauge whether we will traverse an intersection before a 
street light switches from yellow to red. Short-term time 
estimation is also used extensively during human-computer 
interaction. Computer performance is often such that 
clicking a button does not produce instantaneous results, 
which we have learned to accept, but still interpret as an 
error if no response is evident within some short period of 
time.  

 Perhaps in response to the prevalence of cognitive 
activities that entail prospective time estimation, a large 
literature has emerged. Some of the earliest work revealed 
evidence of a relationship between time estimation 
performance and body temperature (Francois, 1927). Over 
the subsequent years, many other factors have been linked 
to time estimation performance, including age (Gilliland & 
Humphreys, 1943), light intensity (Morita, Fukui, Morofusi 
& Tokura, 2007), caffeine (Stine, O’Connor, Yatko, 
Grunberg & Klein, 2002) and others (see Panda & Pati, 
2010, for a survey). 

Most of these factors also have relationships to 
performance under conditions of sleep loss. For example, 
diurnal body temperature fluctuations are associated with 

circadian rhythm (Kräuchi & Deboer, 2010), and are often 
used as a dependent measure in sleep deprivation research. 
Age also influences performance under sleep loss conditions 
(Philip et al., 2004; Webb & Levy, 1982), as well as light 
intensity (Lewy, Wehr, Goodwin, Newsome & Markey, 
1980), and caffeine (Zwyghuizen-Doorenbos, Roehrs, 
Lipschutz, Timms & Roth, 1990).  

Given the large number of common relationships that 
time estimation and sleep deprivation share, it seems 
reasonable to hypothesize some impact of sleep loss on time 
estimation performance. However, the literature on this 
subject is sparse and contradictory (Miró, Cano-Lozano, 
Espinosa-Fernández & Buela-Casal, 2003).  

Many studies have reported no change in time estimation 
performance with sleep loss. For instance, Balkin, 
O’Donnell, Kamimori, Redmond, and Belenky (1989), 
found no effects in time estimation during 48 hours of 
restricted sleep, despite significant effects in seven other 
tasks testing a variety of aspects of cognitive performance. 
Similarly, participants performing a dual time estimation 
and tracking task (Bohnen and Gaillard, 1994) showed no 
significant effects in the time estimation portion after one 
night of sleep loss. Lastly, Ashcroff (1998) found no 
relationship between time awake and short-term time 
estimation performance in a study that examined the effects 
of living underground with a free-running circadian rhythm. 

In contrast, Miró, Cano, Espinosa-Fernández, and Buela-
Casal (2003) did find evidence for effects of both circadian 
and time awake on participants’ ability to judge a 10 second 
time interval over the course of 60 hours of sleep 
deprivation. The circadian findings were subsequently 
confirmed by Kuriyama et al. (2003; 2005).  

Although this more recent evidence seems to support the 
conclusion that a relationship exists between time estimation 
performance and alertness, it raises questions about the 
earlier results. Some researchers have noted that ambiguity 
in terminology has contributed to confusion in interpreting 
time estimation study results (Pana & Pati, 2010).  

Beyond the terminology, the myriad factors that can 
influence time estimation performance may easily confound 
results as well. For example, Hancock, Vercuyssen, and 
Rodenburg (1992) explain discrepancies in time estimation 
effects in their study as resulting from an interaction 
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between gender and time-of-day. Zakay (1990) has noted 
methodological issues in time estimation research that may 
contribute to the mixed results in past research. 

In this paper, we use cognitive modeling as a tool to re-
examine the results found in two of the papers mentioned 
above: Miró et al. (2003), which found significant effects of 
sleep loss on time estimation performance, and Balkin et al. 
(1989), which did not. We begin by describing a cognitive 
model that performs the Miró et al. (2003) counting task, 
and use it to develop and validate a fatigue mechanism for 
time estimation. Next, we describe two alternative cognitive 
models of the Balkin et al. (1989) motion extrapolation task 
and demonstrate that the models’ performance 
characteristics change little when the fatigue mechanism is 
applied. Based on the modeling results, we examine how 
characteristics of the tasks used in the original empirical 
studies influence how time estimation is calibrated, leading 
to a dissociation in the observed impacts of sleep loss on 
performance in the model.  

Counting Task 
In Miró et al. (2003), participants performed a time 
estimation task every two hours during a 60-hour period of 
sleep deprivation. In their task, participants were instructed 
to estimate a 10-second interval by counting.  They received 
no feedback regarding their accuracy. In this study, Miró et 
al. (2003) found clear evidence of both circadian and 
homeostatic effects on participants’ ability to judge a 10 
second interval over the time duration of the experiment.  
The results are shown in Figure 1.  
 

  
Figure 1: A reproduction of the original Miró et al. (2003) 

findings, showing mean 10s time estimates from 
participants over the course of 60 hours of sleep deprivation. 

Counting Model 
We used the ACT-R cognitive architecture (Anderson, 
2007) to create a computational model to perform the 
counting task. The ACT-R software is well documented, 
and includes an 8-unit tutorial for beginners with several 
models discussed in each. The very first unit includes a 
simple model that counts, and that model formed the basis 
for our model of the Miró et al. (2003) time estimation task. 
As provided, the model counts as quickly as possible, so 

some additions were required to count in timed intervals. 
Specifically, we made use of the temporal module (Taatgen, 
van Rijn, & Anderson, 2007) – an ACT-R component that 
adds cognitively plausible timing mechanisms. The 
temporal module provides an empirically validated 
instantiation of the “internal-clock” model that is frequently 
referenced in the time estimation literature (Matell & Meck, 
2000).  

The internal-clock model is comprised of three 
components: the clock component, the memory component, 
and the comparison component. The clock component is a 
repeatable stream of successively longer pulses or ticks that 
is triggered upon receipt of a start signal. These are exposed 
as a tick count in the temporal buffer in ACT-R. The 
memory component provides the basis for remembering the 
number of ticks related to an event. Taatgen, van Rijn, and 
Anderson (2007) rely on the standard ACT-R declarative 
memory system to fill this role. Lastly, the comparison 
component provides the mechanism for making decisions 
based on comparisons of tick counts from memory to the 
current pulse stream. The ACT-R production matching 
system allows for buffer comparisons between temporal and 
declarative memory buffers to provide this service. 

In our model of the Miró counting task, the internal clock 
is signaled to start at the same time that a request is made to 
declarative memory for the next number in the counting 
sequence. Using the ACT-R tutorial model as the 
foundation, we added a constraint on the production that 
responds to the result of the declarative memory retrieval so 
that it could not fire until a specified period of time had 
passed. 

We consider the subjective time span of 1 second to be a 
piece of knowledge, much like a math fact, and it is coded 
directly into the model as the number of ticks to wait before 
count increments. Under the alert condition, participants 
underestimated the 10s interval and produced a mean 
estimate of 8.5s. The corresponding number of ticks per 
second to produce that estimate can be calculated by solving 
Equation 1 for k: 

 

 Equation 1. 
 

where t0 is ACT-R’s :time-master-start-increment 
parameter, which indicates the initial tick duration, and a is 
ACT-R’s :time-mult parameter, which is the factor that is 
used to compute the increase in each subsequent tick 
duration. Using default values for t0 and a, the resulting 
value for k is approximately 23 ticks. 

Based on their findings, Miró et al. (2003) theorized that 
internal clock ticks slowed down under conditions of sleep 
loss. For modeling purposes, this translates directly into 
slower clock ticks in the temporal module in ACT-R. Both 
:time-master-start-increment and :time-mult could 
accomplish such a slow down. Without experimental data to 
distinguish between the two potential mechanisms, the work 
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in this paper arbitrarily leverages :time-mult. The default 
value is 1.1, meaning that each subsequent tick becomes 
10% longer.  By increasing this value, we can effectively 
slow down ACT-R’s internal clock much the same way that 
Miró et al. (2003) described. 

We then fit the model to the final session in the 
experiment by adjusting the :time-mul parameter in the 
fatigue module. We found that a value of 1.112 resulted in 
time estimates of approximately 9.5-10s, corresponding to 
participant performance after 59 hours awake (Figure 1). To 
estimate parameter values for the intervening sessions, we 
scaled this parameter using a biomathematical model of 
fatigue developed at Washington State University 
(McCauley, Kalechev, Smith,  Belenky, Dinges & Van 
Dongen, 2009). The biomathematical model produces 
predictions of fatigue based on functions representing time 
awake and circadian rhythms. Using the estimated values 
for :time-mult for the first and last sessions, combined with 
estimates of fatigue from the biomathematical model for 
each session, we were able to identify a linear function to 
map fatigue values onto values for :time-mult as follows: 

 
:time-mult = .0011 B(t) + 1.1   Equation 2. 
 

where B(t) is the biomathematical prediction of fatigue at 
time t.  

Results 
Figure 2 shows model performance using the :time-mult 
values from Equation 2 where t ranged from 1 to 59 in two 
hour increments as in the original study. We also enabled 
stochasticity in production firing times. The remaining 
parameters were unchanged from the original ACT-R 
counting model provided in the tutorial.  

 

 
Figure 2: Counting model predictions of a 10s time 

estimation (blue) shown with a reproduction of the original 
Miró et al. (2003) findings (black). 

 
We ran the model 1000 times to produce a consistent 

central tendency, and compared its performance to estimates 
of the original Miró et al. (2003) data. This comparison 
produced a root mean square error (RMSD) of .41 sec and a 
correlation of .86.  

Discussion 
While the counting model reproduces the trends of 
participant performance fairly well, Figure 2 shows a phase 
difference between the model and empirical data. It has 
been shown that an individual’s chronotype (i.e. whether 
they are a “morning person” or an “evening person”) can 
play a role the phase of their circadian rhythm (Kerkhof & 
Van Dongen, 1996), which may account for some of the 
phase difference between the empirical data and the 
circadian predictions from the biomathematical model. 

To simulate the course of 60 hours of sleep deprivation, 
the :time-mult model parameter was manipulated.  In the 
first hour it was left to its default value of 1.1, but it was 
explicitly adjusted to 1.112 to fit performance in the final 
hour of the experiment. Even though the delta is only 1.2%, 
it is enough to produce approximately 2 seconds difference 
in mean time estimations. This provides an illustration of 
how quite modest fluctuations in the underlying cognitive 
mechanisms can produce substantial changes in observed 
behavior. 

Dropping Ball Task 
The Balkin et al. (1989) protocol consisted of 24 hours of 
sleep deprivation, followed by 6 hours of sleep recovery, 
and another 18 hours of sleep deprivation. Some participants 
received an injection of triazolam prior to the recovery 
period, the effects of which were the focus of the study. 
Every two hours participants were asked to perform a 
battery of tasks, one of which involved observing a ball 
dropping at a constant velocity on a computer screen until it 
was occluded in the lower third.  Participants responded 
with a key press to indicate their prediction of when the ball 
would cross a notch at the bottom of the screen. The ball’s 
traversal of the screen to the notch was consistently 10s, so 
that would be the ideal response time. There were 10 trials 
per bout. Participants received no feedback on their 
performance during the course of the experiment. 

As mentioned in the introduction, Balkin et al. (1989) 
failed to find any significant effects of sleep loss in their 
time estimation task over the course of sleep restriction, 
independent of the triazolam administration. Presumably 
due to their null findings, they did not report any data. To 
establish the validity of the model’s baseline behavior, we 
chose to recreate their task and conduct a study to gather 
data under baseline conditions. 

The task was originally described as part of the Walter 
Reed performance assessment battery (Thorne, Genser, 
Sing, Frederick & Hegge, 1985), and our recreation was 
based on that description. The task was written in Python 
using Pygame, and the graphics were constrained to an 
effective 14 inch diagonal area to account for the smaller 
screens in 1989. We also altered some of the colors, to aid 
in clarity for the instructions. The original task instructions 
were not described in the Thorne et al. (1985) report, so we 
opted to focus on the task goal without providing any 
guidance for strategy (see Figure 3). We increased the 
number of trials to 100, and collected data from 6 
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participants (4 males and 2 females), with ages ranging from 
19 to 44. 

 

 
Figure 3: Instructions and diagram of the dropping ball 

task. 
 

Following the experiment, participants were queried 
about the strategy they used to inform the development of 
the model. The task itself is very similar to one used heavily 
in the motion extrapolation literature (Peterken et al., 1991), 
so we expected to model a motion extrapolation process. At 
the same time, all participants in our study reported 
developing a timing strategy. They learned how long to 
count during the period where the ball passes behind the 
occlusion before responding. We developed cognitive 
models of both strategies to explore the capacity of each to 
capture baseline performance and to evaluate the impact of 
our fatigue mechanism in both cases. We did not, however, 
model strategy selection or transition. 

Motion Extrapolation Model 
The motion extrapolation model of the dropping ball task 
was based on findings by Lyon and Waag (1995). Using a 
circular version of the task, they conducted several 
experiments that helped isolate the mechanisms and strategy 
that participants used. The mathematical model that best 
explained participant performance in their task was one in 
which motion was extrapolated based on a steady velocity, 
with variability arising from error in velocity estimate. The 
first of our ACT-R models uses the same strategy that Lyon 
and Waag (1995) identified in their paper. 

We tested three modeling approaches to implementing the 
tracking process in ACT-R.  The first approach employed 
the commonly used two-stage attend and encode paradigm, 
but it proved to be problematic because the object was 
moved before the encoding could successfully complete.  
An ACT-R parameter to adjust the movement tolerance 
during encoding could have been adjusted, but it would add 
an additional degree of freedom to the model.  

The second approach we tested used ACT-R’s visual 
tracking feature, which allows an object’s motion to be 
tracked after it has been encoded.  This approach worked 

reasonably well once the object was encoded, but again, it 
required an adjustment to the visual movement tolerance 
parameter for the initial encoding of the object to succeed.   

While the ACT-R visual system accepts requests for 
visual locations, it can also identify location information 
automatically, without a request.  This approach, known as 
“buffer stuffing,” was used in our model. As the ball is the 
only moving object on the screen, the ACT-R visual system 
proactively provides the ball’s location information in the 
visual location buffer. The visual location is all the 
information that is required by the model to calculate the 
distance traversed. Since there is only one moving object in 
the task, encoding for identity information is unnecessary.  

As a result of the visual location buffer stuffing process, a 
production fires regularly that tracks the location of the ball.  
The effect is identical to what occurs when using ACT-R’s 
visual tracking feature, without the necessity to pre-attend 
the object. 

Within the goal buffer, the distance and time (i.e. the 
components of speed) of the ball’s motion are tracked after 
each sighting. The occlusion of the ball in the task is 
accomplished by simply removing the ball from the virtual 
task screen.  At this point the model begins predicting the 
ball’s position using the last observed speed. We used the 
last observed speed as opposed to an averaging technique 
because it leads to greater variability in time estimates that 
more closely matched human performance. The now-
imaginary ball’s position is repeatedly updated with the 
same speed until it reaches the bottom of the virtual 
window.  At this time, the model responds with a key press.  

Timing Model 
Participants reported varying strategies to determine how 
long to count while the ball is occluded. Our second model 
uses a strategy that relies on recognition that the occlusion 
area is 1/3 of the vertical distance, but other approaches 
would produce similar model results. While the ball is 
visible, the model counts in estimated one-second 
increments until the ball is occluded.  

Counting was implemented in the same fashion as the 
counting model: 23 ticks were used to approximate a 
second, and the timer was reset after at the start of each 
increment. All parameters values were identical to the 
counting model. 

After the ball is occluded, the model recounts half the 
amount at the same rate, and responds with a key press. The 
task provides no feedback to the model, so there is no 
opportunity for learning and correction. 

Results 
Both the motion extrapolation model and the timing model 
were run 1000 times to reveal the central tendency for 
comparison with the empirical data. In the absence of any 
fatigue mechanisms, the motion extrapolation model 
produced a mean response time of 10.13s with a standard 
deviation of .46, while the timing model produced a mean 
response time of  9.77 with a standard deviation of .31. 
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The mean response from participants in our study was 
9.80s, and the individual mean response times produced a 
95% confidence interval ranging from 9.06s to 10.54s. The 
mean standard deviation was .46, with a 95% confidence 
interval ranging from .32 to .76. The model’s mean 
predictions fit within expected human performance range 
(see Figure 4), although the standard deviation of the timing 
model is slightly low. 

 

 
 

Figure 4: Box plot of mean participant estimates of 10s 
intervals under baseline conditions. Model predictions from 
motion extrapolation under alert (o) and fatigue (triangle) 
conditions, as well as the timing model under alert (+) and 

fatigue (x) conditions are also shown. 
 

To simulate 59 hours of sleep loss, we set :time-mult to 
1.112 in both models, matching the value we estimated in 
our analysis of the counting model for the task in Miró et al. 
(2003). Under fatigue conditions the motion extrapolation 
model produced a mean response time of 10.14s, while the 
timing model’s mean response time was 9.71s. 

Discussion 
The mean response times for both models fell within the 
confidence intervals of the empirical data under alert, 
baseline conditions. We then applied the temporal fatigue 
mechanism (previously validated with the counting model) 
and showed that the performance of both models was still 
within the confidence interval of alert human response times 
from our baseline study (see Figure 4). These results are 
consistent with the null effects found by Balkin et al. 
(1989), though, as mentioned above, they did not report any 
data from this task. Still, an analysis of the models provides 
a clear explanation for the lack of impact of sleep loss on 
performance in this task. 

The critical distinction between the counting task and the 
dropping ball task is one of feedback during the trial.  In the 
counting task, the participant receives no feedback 
whatsoever. In contrast, during the dropping ball task, the 
speed of the ball at the start of each trial provides the 

participants (and both models) with an opportunity to 
calibrate time estimates to the task.  

Recall that the ACT-R mechanism to simulate fatigue in 
the temporal module increases the tick multiplier. Thus, for 
a given distance of traversal for the dropping ball, the model 
will estimate that it took more ticks under alert conditions 
than it would under sleep deprivation conditions. As speed 
is described by distance divided by time, a smaller number 
of ticks would make the ball appear to be moving 
marginally faster under conditions of sleep loss.  

Even though the model perceives the ball moving faster 
or slower depending on :time-mult, this has little impact on 
its motion extrapolation or timing performance. The models 
predict that the performance impact would be the same as 
that of predicting balls moving at slightly different speeds.  

It is interesting to note that in Figure 4 the timing model 
more closely matches participant performance than does the 
motion extrapolation model. This may reflect an early 
strategy shift from motion extrapolation to timing so that 
most of the trials are representative of the timing strategy. 

Conclusion 
Our model for the task used by Miró et al. (2003) was based 
on a very well known and heavily scrutinized model of 
counting in ACT-R. With minimal changes we were able to 
fit the empirical data well across 30 sessions of data 
spanning 60 hours of total sleep deprivation. A significant 
contribution of this model was the development of a 
mechanism that affects the tick multiplier of the temporal 
module based on sleep patterns and time awake. The 
mechanism amounts to an instantiation of the general theory 
proposed by Miró et al. (2003).   

The mechanism was parameterized using the Miró et al. 
(2003) data and it was found that modest changes to the tick 
multiplier parameter (1.2%) in the ACT-R temporal module 
could account for significant performance changes observed 
over the course of 60 hours of sleep deprivation. The 
mechanism was then tested in a different context with the 
Balkin et al. (1989) time estimation task. Two model 
strategies were tested, and when combined with the 
previously established mechanism for temporal fatigue we 
were able to provide a possible explanation why the original 
experiment may not have found any significant time 
estimation effects. 

Analysis of a task very similar to the dropping ball 
experiment (Peterken et al., 1991) showed that performance 
was most closely correlated with the amount of time that the 
ball was obscured.  Thus, the design seems like a reasonable 
way to measure time estimation performance. However, our 
model suggests that the experiment provides indirect 
feedback to the participant that allows them to adjust to any 
internal clock slow down. Our model is able to reveal the 
potential weakness of this task for exposing changes in that 
component of cognitive functioning. 
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