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Abstract

research, application

Computational process models are implemented in computer code and run over time to simulate
phenomena of interest. In cognitive science the phenomena of interest involve human cognitive
processes and performance outcome data. Cognitive stressors are temporary circumstances or
environmental stimuli that degrade, interfere with, or otherwise negatively impact cognitive
processing. The focus of this chapter is the intersection of the methodology of computational process
modeling with the phenomenology of cognitive stressors. Part literature review and part prospective
commentary, the chapter provides an opportunity to consider the use of formal modeling and
simulation methods to explain and predict human performance precisely when it matters
most—when the person’s cognitive system is stressed.
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Introduction

It is a natural progression in science for an initial
period of observation, experimentation, and docu-
mentation of the basic phenomena of interest to
precede a subsequent period of deeper inquiry into
explanatory mechanisms and proposals for engi-
neering applications. That is not to suggest that this
is a purely unidirectional progression. The deeper
inquiries and engineering efforts often reveal gaps in
knowledge and capability that motivate new areas
of scientific investigation, leading to productive,
bidirectional influences between fundamental sci-
ence and exploratory technological innovation.

The emerging interest in cognitive engineering
is consistent with this general conceptualization of
scientific discovery preceding engineering applica-
tion. The rise of cognitive engineering comes sev-
eral decades after the “cognitive revolution” of the
1950s to 1970s and is enabled by the breadth and

depth of scientific contributions from the growing

community of cognitivists who have observed,
experimented, and documented empirical findings
and explanatory models for more than 50 years.
These decades of scientific and technological
advances in cognitive science have provided ample
opportunity for increasing levels of specializa-
tion. Entire books have been written on particu-
lar sub-processes within and related to the human
cognitive system, such as problem solving (Newell
& Simon, 1972), vision (Marr, 1982), attention
(Pashler, 1998), and working memory (Miyake &
Shah, 1999), to pick as examples just a few particu-
lar topic areas with well-writren texts as examples.
Such specialization is a mostly desirable conse-
quence of striving for ever deeper understanding of
the underlying mechanisms and processes that give
rise to complex systems. Scientists simplify, isolate,
and abstract in order to achieve understanding.
However, it also has become clear that ele-
gant descriptions of distinct phenomena and




parsimonious models of separate mechanisms,
by themselves, are an insufficient account of the
mind. They have to come together in some way in
order to produce the level of robustness, adaptabil-
ity, and generality that we see in humans interact-
ing with their environments. Thus, there also have
been calls for theoretical unification (Newell, 1973,
1990) and formal methodological cross-fertilization
(Kirlik, 2006) and integration (Gray, 2007), with
an increasing emphasis on rigorous, formal methods
from mathematics and computation.

The focus of this chapter is the intersection of
the methodology of computational process modeling
and the phenomenology of cognitive stressors. Part
literature review and part prospective commentary,
the chapter provides an opportunity to consider the
use of formal modeling and simulation methods to
explain and predict human performance precisely
when it matters most—when the person’s cognitive
system is stressed. Before getting into the literature,
however, it is important to clearly define these two
themes. What do we mean, exactly, when we refer
to computational process modeling? What are cog-
nitive stressors?

Computational Process Modeling

Computational process models are implemented
in computer code and run over time to simulate
phenomena of interest (see Byrne, this handbook).
In cognitive science, the phenomena of interest
are human cognitive processes and performance
outcome data (and increasingly neurophysiologi-
cal and neurofunctional imaging data) associated
with understanding the nature of the human mind.
Thé idea that the mind can be rigorously studied
in modeling and simulation traces its intellectual
roots to the landmark Newell, Shaw, and Simon
(1958) paper in which they proposed informa-
tion processing models, implemented in computer
code no less (in 1958!), as explanations of human
problem-solving capabilities.

A decade and a half later, Newell (1973) adopted
the stronger position that these information pro-
cessing models must be developed as unified theo-
ries of cognition in order to achieve the desired goal
of understanding the human mind. Since then,
Newell’s prescription has served as either the direct
motivation or the second-order scientific backstory
for dozens of new research programs intending to
develop unified theories, sometimes called cognitive
architectures—see Byrne (2003), Gluck (2010), or
Taatgen and Anderson (2010) for introductions
and overviews on this topic. Cognitive architectures

formally represent the knowledge, processes, and
mechanisms that enable the components of the
human cognitive system to come together to pro-
duce the mind. This is the category of computational
process models in which we are most interested in
this chapter and in our broader research agenda—
models implemented within a guiding framework or
architecture, not simply one-shot computer code.

Cognitive Stressors

For the purposes of this chapter, our definition
of cognitive stressors is that they are temporary cir-
cumstances or environmental stimuli that degrade,
interfere with, or otherwise negatively impact
cognitive processing. Thus, the state change effects
associated with stressors are distinct from longitu-
dinally occurring trait changes, such as aging. For
this reason, and because it is the focus of a different
chapter in this handbook (Rogers, O’Brien, & Fisk,
this handbook), aging is not included in this chapter.

Background on Computational Process
Models of Cognitive Stressors

Based upon our definitions, cognitive stressors
might seem like an odd focus for computational
process models that center on information process-
ing explanations of human cognition and behavior.
This empbhasis, however, is derived from the dual
influences of (1) important concerns in cognitive
engineering and human factors (e.g., Gawron,
French, & Funke, 2001; Grether, 1971), and (2) an
increasing appreciation of the important role of
internal and external stressors in influencing cogni-
tive performance.

Psychology has long recognized the importance
of certain stressors on cognitive performance. For
instance, empirical research on fatigue dates back
more than a century (e.g., Patrick & Gilbert, 1896).
Another example is research on the important inter-
actions between human cognirtive performance and
the environment. This perspective is often expressed
under the guise of embodiment (Thelen, Schéner,
Scheier, & Smith, 2001) and is related to discus-
sions of situated cognition (Clancey, 1997). There
are many circumstances and stimuli that can be said
to stress the human cognitive system, but two cat-
egories of these stand out as having rich histories of
formal empirical study and also a more recent criti-
cal mass of effort in the development of computa-
tional process models. They are emotions (especially
anxiety) and fatigue. The latter is an active area of
computational modeling research for the authors.
What follows is not intended to be a comprehensive
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review of the literature on these stressors. Such
a treatment is well beyond the scope of this short
overview chapter, and for that the interested reader
will have to go to some of the source documents
cited below. Rather, the following are brief descrip-
tions of contemporary formal implementations of
the processes and effects of these stressors in com-
putational process models.

Emotions as Cognitive Stressors

Acknowledgment of the important role of emo-
tion in cognitive systems can be found in the early
years of computational cognitive process modeling
(e.g., Simon, 1967), yet only a few serious proposals
have been put forward in implemented computa-
tional systems. It is noteworthy that all of the pub-
lished research we have found on computational
implementations of emotions either bears some
family resemblance to or is explicitly and directly
motivated by appraisal theory (Lazarus, 1991;
Ortony, Clore, & Collins [OCC], 1988; Roseman
& Smith, 2001).

Gratch and Marsella (2004, 2007) consider
appraisal theory to be the most influential contem-
porary theory of emotion and draw directly from
that theory in implementing their computational
model. The model is named EMA, after the title
of Lazarus’ (1991) book, Emotion & Adaptation.
True to the notion that appraisal involves an evolv-
ing interpretation of an agent’s interaction with the
environment, EMA includes perceptual and mem-
ory components, appraisal processes that update
affective state, and coping strategies that enable
interaction with the world. EMA has been devel-
oped by Gratch and colleagues in the broader con-
text of their virtual human training technologies,
intended to improve the quality of social interac-
tions in peacekeeping operations (Swartout et al.,
2001) and stability and support operations (Traum,
Swartout, Marsella, & Gratch, 2005).

Silverman  (2007) and Silverman, Johns,
Cornwell, and O’Brien (2006) describe their work
on the development of a Performance Moderator
Function Server (PMFserv), which is an agent-based
modeling system thart attempts to synthesize dozens
of performance moderator functions (PMFs) into a
unifying framework. PMFs are mathematical char-
acterizations of the influences of individual factors
(sleep, affect, role in group) on performance. They
are organized into seven modules: perception, biol-
ogy/stress, personality/culture/emotion, memory,
social, decision making, and expression. PMFserv’s
implementation of emotion processing and its

relationship with physiological stress and deci-
sion making borrows from OCC appraisal theory;
Bayesian weighted Goals, Standards, and Preferences
(GSP) trees; and Damasio’s (1994) position on the
dependence of rationality (subjective expected util-
ity) on emotion.

A third example of a computational system that
attempts to describe the dynamics of cognitive
appraisal is Hudlicka’s (2002, 2007) Methodology
for Analysis and Modeling of Individual Differences
(MAMID). The name of this system is informa-
tive with respect to its primary motivation and
use to date—it is a system for exploring architec-
tural structures and parameters in order to produce
individual differences in the effects of emotion on
cognition. MAMID has seven modules (including
an affect appraiser), buffers that allow communica-
tion among the modules, belief nets representing
a long-term memory system, and a flexible collec-
tion of parameters that can manipulate architectural
structures and processes. Hudlicka (2007) adopts
the interesting perspective that these parameters
“are defined outside of the architecture proper”
(p- 269), despite their substantive impacts on impor-
tant characteristics such as the speed and capacity of
the modules and their ability to bias memory, goal
management, interpretation, and action selection
components of the architecture.

An alternative to developing an entirely new
computational architecture for appraisal and emo-
tion is to develop the new capabilities within an
existing architecture. This is the approach adopted
by Marinier, Laird, and Lewis (2009), who used
the Soar architecture (Newell, 1990) as a theoreti-
cal base for unifying a theory of behavioral control
with an appraisal theory of emotion. Marinier et al.
detail the implementation of their unified account;
explain its functionality in both a simpler, shorter
duration task and also a more complex, longer
duration task; and evaluate their theory by explicit
assessment against eight functional characteristics.
An interesting feature of their implementation is
that due to the tight integration with the processing
cycle of the Soar architecture, both appraisals and
emotions develop over time, and they can change
dynamically as new information comes in during
the processing of a single stimulus. It turns out this
is not the case in MAMID, for instance, where the
appraisals are computed instantaneously.

Ritter, Reifers, Klein, Quigley, & Schoelles
(2004) used the ACT-R architecture (Anderson &
Lebiere, 1998) to model a serial subtraction task
and then added cognitive appraisal to the model by
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adopting an “overlay” approach. An overlay is a gen-
eral modification to the structure, mechanisms, or
parameters of a computational architecture in order
to achieve a domain-independent effect (Ritter,
Avraamides, & Councill, 2002). A more dramatic
extension might be considered a new architecture.
Overlays are intended to preserve existing core
theoretical commitments while still supporting
experimentation with the architecture to extend its
explanatory breadth. The particular overlay imple-
mented by Ritter et al. involved two components:
(1) a challenge/threat appraisal that modifies the
amount of noise in the procedural knowledge selec-
tion process and (2) math anxiety that simulates
active worrying as distracting thoughts. These two
components interact, such that appraisals of the task
as challenging result in more focused cognitive pro-
cessing, while appraisals of the task as threatening
result in more distracted worrying. A comparison of
simulation results with previously published human
data (Tomaka, Blascovich, Kelsey, & Leitten, 1993)
showed the baseline model to be a good replication
of the human data. Additionally, the model with
math anxiety showed worse performance, as one

would hope.

Fatigue as a Cognitive Stressor

A critical feature of biological cognitive sys-
tems is that the quality and efficiency of informa-
tion processing fluctuates over time. Some of the
most well-documented changes in cognitive pro-
cessing are the result of variations in alertness that
arise because of the interacting influences of time
awake, circadian rhythms, and time on task (e.g.,
Doran, Van Dongen, & Dinges, 2001; Lim &
Dinges, 2008). Degradations in overall alertness
have a variety of impacts on cognitive performance,
ranging from relatively subtle changes in response
times and likelihood of success (e.g., Dinges, 1992)
to substantial breakdowns in attention and perfor-
mance (e.g., Doran et al., 2001; Peters, Kloeppel, &
Alicandri, 1999).

Fatigue has been an important topic of research
in psychology (see Dinges & Kribbs, 1991, for a
review) and human factors (e.g., Bartlett, 1948;
Brown, 1994) for decades, but has received little
attention in the cognitive modeling community
until recently. This section describes some of the
research that has emerged on this important topic
over the last 10 to 15 years. This research has tended
to treat the effects of time on task separately from
the effects of sleep loss (although see Gunzelmann,
Moore, Gluck, Van Dongen, & Dinges, 2010).

However, recent research has provided some evi-
dence to suggest that a common underlying mecha-
nism could provide an explanation for both kinds of
effects (Krueger et al., 2008; Van Dongen, Belenky,
& Krueger, 2011).

In the context of time on task alertness effects,
the earliest computational cognitive model we have
found is described in Jongman (1998; Jongman &
Taatgen, 1999). The model implements two strat-
egies for a decision-making task—a more effective
strategy requiring more effort, and a less effective
strategy requiring less effort. The negative impact
of time on task is modeled as a transition from the
more effective to the less effective strategy, which
captures the trends in the human performance data.
This is accomplished by manipulating a parameter
in ACT-R that has been associated with motivation
(Belavkin, 2001). This parameter impacts all avail-
able actions, but more severely impacts actions with
high utilities, thereby decreasing the differentiabil-
ity among alternative actions.

More recently, Gonzalez and colleagues (e.g., Fu,
Gonzalez, Healy, Kole, & Bourne, 2006; Gonzalez,
Best, Healy, Kole, & Bourne, 2011) extended this
research to explore the interaction between learn-
ing and fatigue on a data entry task. Human perfor-
mance on the data entry task exhibited a speed-up
over time, but with a corresponding increase in
errors. However, because there was no evidence
for a “strategy shift” in human performance, these
results were not easily attributable to a traditional
speed-accuracy trade-off. Instead, Gonzalez et al.
accounted for the performance results through a
combination of learning and fatigue. They manipu-
lated the same parameter as Jongman and Taatgen
(1999), but also manipulated a parameter associated
with working memory capacity (e.g., Lovett, Reder,
& Lebiere, 1999), which impacts the influence of
the current context on the availability of declarative
knowledge in the cognitive system. This research
has helped to reinforce the mechanism proposed by
Jongman, while extending it to an interesting new
task and context.

There has been somewhat more research involv-
ing computational process modeling in the context
of the impact of sleep loss on cognitive process-
ing and performance. An early effort in this area is
described in Jones, Laird, and Neville (1998). This
research incorporated mechanisms into the Soar
cognitive architecture to account for the negative
consequences of fatigue. Specifically, the model
included a longer cognitive cycle time, combined
with a probabilistic mechanism to produce gaps in
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processing, or lapses. These mechanisms instantiated
two common theoretical constructs that have been
proposed in the sleep research literature to describe
performance changes associated with fatigue—
slowing and lapses (see Dinges & Kribbs, 1991,
for a review). These mechanisms were incorporated
into the TacAir-Soar model of pilot performance
(Laird et al., 1998). Whereas formal validation
was not attempted, the authors demonstrated that
the model produced qualitatively appropriate per-
formance changes with the introduction of these
mechanisms.

Much of the computational modeling research
on sleep loss since Jones et al. (1998) has used as a
foundation existing mathematical models of alertness
that have been developed in the sleep research lit-
erature (e.g., Jewett & Kronauer, 1999; Neri, 2004;
McCauley etal., 2009). These models characterize the
dynamics of alertness as a function of time awake and
circadian rhythms, but do not contain mechanisms
to reflect the consequences of those fluctuations in
terms of information processing and behavior. Thus,
they are not computational models, but they provide
potentially critical insights regarding the dynamics of
fatigue over long periods of time.

Mathematical models of alertness have been
integrated with PMFserv (Silverman et al., 2006),
which is introduced above in the discussion of emo-
tion. The implementation of the effects of fatigue
is located in the biology/stress module, as a com-
ponent of the Gillis and Hursh (1999) model of
stressed performance, which is a linear additive
model that includes event stress, time pressure,
and effective fatigue. Effective fatigue is described
in Silverman et al. (2006) as “a normalized metric
based on current level of many of the physiological
reservoirs” (p. 147).

Our own modeling of cognitive stressors has
been primarily in the context of fatigue related to
sleep loss and circadian rhythms. Like PMFserv,
we leverage existing mathematical models of alert-
ness to inform our models. However, in our case,
we have focused on the integration of mathemati-
cal models of alertness within an existing cognitive
architecture, specifically ACT-R (e.g., Gunzelmann,
Gross, Gluck, & Dinges, 2009; Gunzelmann
& Gluck, 2009; Gunzelmann, Gluck, Moore,
& Dinges, 2012; Gunzelmann, Moore, Salvucci, &
Gluck, 2011). The motivation for our research is a
recognition that there are limitations in the range
of applications where mathematical accounts of
fatigued performance can be suitably applied (see
Dinges, 2004; Gunzelmann & Gluck, 2009).

Many issues in cognitive engineering relate to
the design of systems and interfaces to support
human cognition and decision making, oftentimes
in high-impact, mission-critical task contexts (see,
for example, Militello & Klein, this handbook;
Endsley, this handbook; Liu, this handbook; Kirlik,
this handbook; Katsikopoulos & Gigerenzer, this
handbook). In such environments, the impact of
fatigue can have devastating consequences (e.g.,
Caldwell, 2003; Dinges, 1995). While mathematical
models may be appropriate for designing work-rest
schedules and managing personnel to minimize
fatigue, they are insufficient in cases where fatigue
is unavoidable. In such cases, the goal is to mini-
mize errors associated with fatigue. This requires an
understanding of changes in human cognitive pro-
cessing as a function of alertness, as well as an under-
standing of how cognitive mechanisms interact with
environmental factors in producing behavior.

We have demonstrated the value of our approach
in the context of evaluating alternative theories of
fatigue, and in predicting the impact of sleep loss
on performance in flying (Gunzelmann & Gluck,
2009) and in driving (Gunzelmann et al., 2011).
Although these demonstrations are encouraging,
substantial additional work is still necessary to real-
ize the full vision and potential of this approach.
The critical feature of our research is the idea that
greater explanatory depth and breadth is possible by
integrating mathematical accounts of the dynamics
of alertness with computational mechanisms that
specify how those changes impact information pro-
cessing in different components of cognition.

Summary

Fatigue and negative emotions, such as anxiety,
have detrimental impacts on cognitive processing.
Degradations in the efficiency and effectiveness
of human information processing in real-world
contexts can have dramatic consequences, in both
human and economic terms. Computational mod-
els that can accurately account for and predict how
stressors like fatigue and anxiety will impact perfor-
mance and decision making in particular contexts
would be influential in designing systems to mini-
mize the likelihood of catastrophic errors. To achieve
this, however, requires models that appropriately
integrate insights from physiological, cognitive, and
behavioral levels of analysis. The research reviewed
here shows the promise of computational modeling
for the integration of scientific insights into systems
that make useful predictions about changes in cogni-
tive performance resulting from cognitive stressors.

.
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Future Directions: Prospects for
Application in Cognitive Engineering

In this final section of the chapter, we rake up
the topic of the prospects for transitioning com-
putational cognitive process models, such as those
described above and others not yet conceived, to
applications in cognitive engineering. In consider-
ing this possibility, it would be helpful to have in
hand some examples of successful applications in
cognitive engineering so that we know what success
might look like.

Conveniently, Cooke and Durso (2007) pro-
vided seven such examples. Their brief, captivat-
ing book, titled Modern Technology Failures and
Cognitive Engineering Successes, is a collection of
nonfiction stories, each of which met several impor-
tant criteria:

* A dramatic catalyst (accident, disaster,
impending design change with potentially
significant consequences) occurred, in which
human cognition played an important role, and
that created a need for a cognitive engineering
solution.

* A solution was proposed that would address
one or more of the cognitive problems.

* The solution was implemented in some way
in the field.

¢ There is some evidence (of the pre-post,
before-after variety) that the implemented solution
was indeed a solution.

Their seven examples range across consequential
environments such as military operations, com-
mercial aircraft, hospital operating rooms, and
high-volume call centers. The results are compel-
ling. For instance, applied research using Cognitive
Engineering Based on Expert Skill (CEBES) analyses
to improve training for land mine detection resulted
in huge increases in land mine detection rates, lit-
erally saving the lives of U.S. Army personnel
(Staszewski, 2000; Staszewski & Davison, 2004).

The other examples in Cooke and Durso (2007)
use a variety of other methods in different contexts
to achieve similarly positive results. Not one of those
cognitive engineering success stories involves the
use of computational models of cognitive stressors.
That is telling, and it begs the questions addressed
below. First, we clarify what we mean by cognitive
engineering.

What Is Cognitive Engineering?
We have taken it for granted up to this point that
the reader understands what cognitive engineering

is, perhaps from his or her own prior education and
experience, or perhaps thanks to the definitions and
examples provided elsewhere in this handbook. For
purposes of the current discussion, however, it scems
important to be explicit about the interpretation of
cognitive engineering that we are adopting.

Hammond (2006) has an interesting perspective
on this. He writes that the goal of cognitive engi-
neering is “replacing the uncertainty-geared natural
environment with a certainty-geared environment;
the optimal replacement created by cognitive engi-
neers” (p. ix). Hammond adopts the position that
“such replacement defines the field of cognitive
engineering” because the inherent uncertainty of
the real world leads to errors in judgment, which
can be costly in life and treasure. Thus, complex,
ambiguous, potentially consequential environments
are excellent targets for cognitive engineering,
which seeks to eliminate or at least reduce uncer-
tainty in order to improve judgment and thereby
save lives and lower costs. Reductions in uncertainty
allow reductions in risk, and that is highly desirable
when the consequences are dire. We adopt that as
the mission statement and definition of cognitive
engineering,.

How Well Positioned Are Computational
Process Models of Cognitive Stressors

Jor Successful Application in Cognitive
Engineering?

Kirlik’s (2006) book on human-technology inter-
action is dedicated to Egon Brunswik and Kenneth
R. Hammond. Hammond (2006) wrote the book’s
foreword about Brunswikian theory and the his-
torical context in which Brunswik was working.
Hammond notes that although Brunswik’s scientific
contributions focused on the interaction of people
with natural environments, there is a clear implica-
tion for those whose research uses artificial, or “engi-
neered,” environments. It is that “The environment
toward which the researcher intends to generalize
should be specified in advance of the design of the
experiment” (p. viii). In other words, there needs to
be a logical transition path and defensible relevance
between the environments and experimental designs
we are using for our basic research (such as in cogni-
tive modeling) and the environments in which we
want to have a beneficial, applied impact (such as in
cognitive engineering).

The problem here is that cognitive modeling has
focused predominantly on human cognition as it
occurs in normal circumstances, where normal is a
typical psychology laboratory and the participants
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are typical college undergraduates—young adults
performing a relatively simple, short task repeatedly
over a maximum period of one hour. Only a small
percentage of the research conducted in cognitive
psychology actually involves systematic empirical
study of cognitive stressors, which means good data
are hard to find. With little data available for evalu-
ating the validity of models, and little money avail-
able from funding agencies to support new studies,
cognitive modelers are not often drawn to develop
mechanistic, explanatory models of cognitive stres-
sors. This leaves us in a poor position, with respect
to the near-term prospects for application in cogni-
tive engineering.

What Is Needed to Bring These
Two Together?

Dismukes (2010) briefly mentions the potential
and challenges of computational modeling for under-
standing human error in complex socio-technical
systems: “Although still primarily a research tool,
computational modeling has great potential for
helping evaluate how human performance will be
affected by the design of displays, controls, and pro-
cedures under consideration” (p. 359).

We would add to this, especially in the context
of the current chapter, that computational process
models of the effects of stressors on the cognitive
system have similarly great potential for providing
critical additional insight into the true state of the
human, thereby reducing uncertainty and provid-
ing novel opportunities for system-level adaptation
and intervention. How do we convert possibility
into actuality?

One of the cognitive engineering successes included
in Cooke and Dursos (2007) book is the Navy's
Tactical Decision Making Under Stress (TADMUS)
program (Cannon-Bowers & Salas, 1998), which
was motivated by the USS Vincennes’ tragic misiden-
tification and destruction of an Iranian commercial
aircraft in 1988. Howell (2007) notes that large,
sustained investments of basic research funds across
several related scientific disciplines had positioned the
scientific and practitioner communities for the suc-
cesses achieved in that program. In particular:

“...for decades prior to this disaster, the Office

of Naval Research (ONR) was among the world’s
leading sponsors of fundamental research on

human decision making (as well as other cognitive
functions). So when the SOS was sounded following
the Vincennes disaster, the rescue effort wasn’t

obliged to start from scracch.” (p. 108)

Clearly, one requirement for bringing together
computational models of cognitive stressors with
successful cognitive engineering is sustained research
investments designed to advance our understand-
ing of the fundamental effects of stressors on cog-
nitive process. We need a larger basic research
foundation—validated models, reliable effects,
generalizable laws—that can be used to inform
the engineering of new cognitive technologies. Of
particular value in a coordinated program of basic
research studies would be parametric experimental
designs that systematically cross stressors with each
other, in order to evaluate the validity of model
predictions regarding their interactions. In the real
world, stressors don’t stress the cognitive system in
isolation from one another. They interact in ways
we do not sufficiently understand. Improving on
that understanding will produce exciting scientific
and technological advancements. These advance-
ments can be demonstrated through a cumulatively
improving capacity to account for existing empiri-
cal results, accurately predict new ones, and inform
changes to mission environments that lower uncer-
tainty, allowing a reduction in risk. That is the pur-
pose of cognitive engineering.
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