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a  b  s  t  r  a  c  t

Multivariate  pattern  analysis  can  be  combined  with  Hidden  Markov  Model  algorithms  to  track  the
second-by-second  thinking  as  people  solve  complex  problems.  Two  applications  of  this  methodology
are  illustrated  with  a data  set taken  from  children  as  they  interacted  with  an  intelligent  tutoring  system
for  algebra.  The  first “mind  reading”  application  involves  using  fMRI  activity  to  track  what  students  are
doing  as they  solve  a sequence  of  algebra  problems.  The  methodology  achieves  considerable  accuracy  at
eywords:
roblem solving
ulti-voxel pattern analysis
idden Markov Models

ntelligent tutoring systems

determining  both  what  problem-solving  step  the  students  are  taking  and  whether  they  are performing
that  step  correctly.  The  second  “model  discovery”  application  involves  using  statistical  model  evaluation
to  determine  how  many  substates  are  involved  in  performing  a  step  of algebraic  problem  solving.  This
research  indicates  that  different  steps  involve  different  numbers  of  substates  and  these  substates  are
associated  with  different  fluency  in  algebra  problem  solving.
odel discovery

. Introduction

Psychology has always been challenged by the task of scaling
ts methods to the complexity of cognition. The methodology of
hoice for much of its history has been reaction time, which has
hown considerable success in analyzing the structure of cognition
n the subsecond range. Neuroimaging techniques, particularly
RP with its high temporal resolution, have also had success in that
ime range. But what happens when a participant is challenged
y a difficult problem, thinks about it for a period measured in
inutes, and announces the answer? Newell and Simon (1972),
hen faced with the challenge of understanding such problem

olving, decided to tackle this in the most direct way  possible and
imply ask the participant to tell them what they were thinking.

hile verbal protocols have been subject to challenges (Nisbett
 Wilson, 1977), this methodology has borne considerable fruit

Ericsson & Simon, 1993). Eye movements offer a less intrusive
ay of tracking thought and also have had some success (Salvucci

 Anderson, 2001). However, when problems really get hard, par-
icipants will often want to shut up, close their eyes or look away,
nd think.

The goal here is not to criticize current methods for analyzing

rief cognition or extended cognition, but rather to describe

 new methodology for tracking the sequential structure of
hought. This methodology combines Hidden Markov Models

∗ Tel.: +1 412 417 7008; fax: +1 412 268 2844.
E-mail address: ja@cmu.edu
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(HMM – Rabiner, 1989) with multi-voxel pattern analysis (MVPA)
of fMRI data (e.g., Davatzikos et al., 2005; Haynes & Rees, 2005;
Haynes et al., 2007; Hutchinson, Niculescu, Keller, Rustandi,
& Mitchell, 2009; Mitchell et al., 2008; Norman, Polyn, Detre, &
Haxby, 2006). The paper will illustrate the potential of the method-
ology with two  applications involving an intelligent tutoring
system.

1.1. Cognitive Tutors

At Carnegie Mellon University we have developed a successful
approach to computerized instruction called Cognitive Tutors
(Anderson, Corbett, Koedinger, & Pelletier, 1995). These tutors
focus on the instruction of mathematics and are widely used. For
instance, the Algebra Tutor (Ritter, Anderson, Koedinger, & Corbett,
2007) is currently deployed in over 2600 schools throughout the
United States and interacts with approximately 500,000 students
each year. They are called Cognitive Tutors because they are built
on cognitive models that solve problems in the same way  that
students do. They individualize instruction by two processes called
model tracing and knowledge tracing.  Model tracing uses a model
of students’ problem solving to interpret their actions. It does this
by finding a path of cognitive decisions that produces a match to
the observed actions. Given such an interpretation, the tutoring
system is able to provide real-time instruction individualized to

where a student is in the problem. The second process, knowledge
tracing, involves inferring what skills the student has mastered
and then selecting new problems and instruction suited to that
student’s knowledge state.

dx.doi.org/10.1016/j.neuropsychologia.2011.07.025
http://www.sciencedirect.com/science/journal/00283932
http://www.elsevier.com/locate/neuropsychologia
mailto:ja@cmu.edu
dx.doi.org/10.1016/j.neuropsychologia.2011.07.025
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While positive results have been reported for the tutoring sys-
ems, they are limited by two factors:

. Diagnosing what a student is thinking. The only information avail-
able to a typical tutoring system comes from the actions that
students take in the computer interface. The inference from
such surface behavior to underlying thought is perilous. We
have made some progress using brain imaging to diagnose
the moment-by-moment changes in a student’s mental state
(Anderson, Betts, Ferris, & Fincham, 2010; Anderson, Betts, Ferris,
& Fincham, 2011, in press-a). The first application in this paper
will review one example of our work here. It will introduce the
principles underlying the approach.

. Accuracy of the cognitive models.  The cognitive models in the
tutors are quite crude relative to the complexity of the actual
cognitive processes. Recently, I have been exploring whether
this same approach can be used to refine these cognitive mod-
els. The second application in this paper will illustrate how
this neuroimaging approach can be used to discriminate among
alternative models and discover new models.

Both applications will use data from an experiment described
n detail in Anderson et al. (2011, in press-a). That study followed
6 children going through a sequence of algebra problems with
he assistance of the tutor. They worked with the tutor over 6
ays (numbered 0–5) and were scanned on Day 1 and Day 5. The
tudy used an experimental tutoring system described in Anderson
2007) and Brunstein, Betts, and Anderson (2009) that teaches

 complete curriculum for solving linear equations based on the
lassic algebra text of Foerster (1990).  The tutoring system has a
inimalist design to facilitate experimental control and detailed

ata collection. Nonetheless, it has the basic components of a Cogni-
ive Tutor: instruction when new material is introduced, help upon
equest, and error flagging during problem solving.

Students use a mouse for all tutor interactions – to select parts of
he problem to operate on, to select operations from a menu, and to
nter values from a numeric keypad. They go through cycles of four
teps in solving an algebra problem. As a simple example consider
he four steps in solving the equation “x − 10 = 17′′, illustrated in
ig. 1:

. Selecting a transformation.  In this case this involves selecting an
operation called “Unwind” and indicating that it applies to the
whole equation.

. Executing the transformation.  In this case this involves entering
“x = 10 + 17′′ by clicking in a keypad.

. Selecting evaluation.  In this case this involves selecting “10 + 17′′

as the term to be evaluated.
. Executing the evaluation.  In this case this involves entering “27”

as the result.

In the example in Fig. 1, solving the problem involves just one
ycle of these four steps. More complex problems could involve
any cycles of these four steps.
The 16 students did 9 blocks of problems on each day. In a

lock the children solved 2–7 problems and took anywhere from
nder 2 min  to over 9 min. We  collected whole-brain scans every

 s. Because of problems with the scanner, a block was lost for 5
tudents on Day 1 and for 4 students on Day 5, leaving 139 blocks
n Day 1 and 140 on Day 5. Altogether, they solved 727 problems
n Day 1, taking 19,376 2-s scans and 742 problems on Day 5 taking
5,614 scans. Because some problems involve more than one cycle,

here were 890 occurrences of the 4-Step cycles on Day 1 and 905
n Day 5. Table 1 gives statistics on durations and error rates for
hese steps, where an error is defined as selection of wrong part of
he equation, selection of a wrong operation, or entry of an incorrect
gia 50 (2012) 487– 498

result. The four steps had rather different behavioral characteris-
tics. The two execution steps took much longer than the selection
steps while the transformation steps were more error prone than
the evaluation steps. Students sped up more than 70% from Day 1
to Day 5 and their error rate almost dropped in half.

2. Application 1: Using brain imaging to track student
problem solving

I  will begin by describing our approach to the “mind-reading”
task of tracking students as they are solving algebra problems in
this experiment, focusing on interpreting the student on Day 5. To
interpret the behavior of a particular student on Day 5, we  com-
bined information from other students on that day and data from
the student on Day 1. This is similar to the development and appli-
cation of Cognitive Tutors, which are deployed with statistics based
on pilot students and, as a particular student progresses through
the curriculum, they build up a model of that particular student.
Our brain imaging data come from blocks,  which are sequences of
about 6 problems that last about 3 min. We  used the brain imaging
data to determine what problem a student is working on within a
block and what step the student is performing within a problem.
Determining where the student is will be referred to as the segmen-
tation goal. We  also used the imaging data to determine whether
that step is being performed correctly. This goal will be referred
to as the diagnosis goal. We  chose these goals because there is a
hard definition of ground truth here, namely the computer logs of
students’ progress through these problems. We  have developed a
novel synthesis of three well-developed methodologies for follow-
ing the mental states of students, described below:

2.1. Component 1: Hidden Markov Models (HMMs)

We used HMMs  to represent the students’ non-deterministic
progress through the problems. Fig. 2 illustrates part of the HMM
state structure used in this application. The figure shows the state
structure for a fragment of a block that involves finishing a prior
problem, transitioning to a rest state, stepping through one cycle
of four steps to solve a problem, and returning to a rest state before
the next problem. Each of the steps in solving the problem can be
performed correctly or incorrectly. A block of problems was rep-
resented with a sequence of separate states for each problem in a
block. A typical block of problems might consist of about 50 such
states.

HMMs  offer a powerful way  to represent a student model
because of the efficient algorithms for assigning probabilities to
different possible state sequences. The critical feature of HMMs  is
their Markov property that the future course of problem solving
only depends on the current state and not past history. Models in
Cognitive Science are not typically cast in a way that obviously sat-
isfies this Markov property, but nonetheless we have found ways
to convert typical cognitive models into Markov state structures
(see also Weaver, 2008). In the current example we  set the prob-
abilities of state transitions for a particular student on the basis of
the behavioral data of other students (see Component 3). In addi-
tion to these transition probabilities, the HMM algorithms use the
conditional probabilities of the observed data given different states
to help determine the sequence of states. In our case these are the
conditional probabilities of different brain imaging patterns (see
Component 2). Different HMM  algorithms (see Rabiner, 1989) can
find the probability that a student is in a particular state during any

scan (suitable for model tracing), the most probable interpretation
of a block of scans (suitable for knowledge tracing), or the proba-
bility of a set of data given a particular model (suitable for model
evaluation).
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Fig. 1. Each panel illustrates one of the four steps in a problem-solving cycle with the tutor. The subpanels show the states of the tutor within a step. Each step starts with the
last  state of the previous step. The first panel starts with the initial equation x − 10 = 17. Step 1: The student selects a transformation to perform on this equation by clicking on
the  two sides of the equation (resulting in the red highlighting) and choosing “Unwind” from the menu below. Step 2: The student expresses the result of the transformation
by  selecting the green box and entering 17 + 10. This results in the transformed equation x = 17 + 10. Step 3: The student specifies that 17 + 10 is to be evaluated by clicking
on  this expression (resulting in the red highlighting) and selecting “Evaluate” from the menu below. Step 4: The student specifies the result of the evaluation by entering 27.
This  creates the final answer x = 27, which is displayed here.

Table 1
Behavioral statistics for the four steps.

Day 1 Day 5

Mean scans Stdev scans Percent errors Mean scans Stdev scans Percent errors

1. Select transformation 2.31 2.31 20.80% 1.47 0.94 10.50%
20.6

3.3
6.6
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2.  Execute transformation 7.10 5.05 

3.  Select evaluation 1.24 0.85 

4.  Execute evaluation 3.68 2.58 

In many applications such as the current one, we  challenge the
MM  algorithms to infer the boundaries between states as well as

he states themselves. This requires using a special variant of HMM
alled semi-Markov models because the duration in a state is vari-
ble. The same HMM algorithms can be extended to semi-Markov
odels (Yu, 2010). We  also use the behavioral data of other stu-

ents (Component 3) to infer a probability distribution of durations
n the different states.

.2. Component 2. Multi-voxel pattern analysis
In applications like this tutoring study, there are tens of thou-
ands of whole-brain images from different students going through
ifferent problems. We  train multi-voxel classifiers to associate

ig. 2. The behavioral model as a semi-Markov process. States correspond to steps (gree
umbered identically to indicate the step, each state is distinct within the HMM.
0% 4.62 2.85 10.40%
0% 0.76 0.64 0.80%
0% 2.99 2.37 6.60%

different brain patterns with different mental states. These classi-
fiers deliver the conditional probabilities that a given brain pattern
comes from particular states, which is what is needed for the logic of
a HMM.  There are a number of distinctive features of our approach
to pattern classification:

a. State abstraction.  The number of states in the model can be large.
The current example involves about 50 states for each block of
problems, and each block of problems is given its own set of
states. Even though there are tens of thousands of images, there

is not enough data to recognize each state. Therefore, a neces-
sary step is to find some abstraction of the specific states into a
smaller number of states. This application used 9 abstract states
– one corresponded to the rest period between problems and the

n correct, red incorrect) and rest period (R). While correct and incorrect states are
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ig. 3. Differences between weights associated with error steps and correct steps. 

f  the 64 × 64 acquisition matrix. Between region spacing was  1 voxel in the x- an
as  acquired by applying a mask of the structural reference brain and excluding re

other 8 were the 4 basic steps (see Fig. 1) performed correctly or
incorrectly.

. Coarse, whole brain activation patterns. While we  have some suc-
cess using specific predefined regions in some of our other work,
we throw away information in such a complex task if we do
not use the activation over the full brain. We  take the brain
activity over about 400 relatively large regions, each a little
more than a centimeter cubed. Using smaller regions does not
yield much more information and the sheer number of such
regions leads to serious problems of overfitting. Fig. 3 illus-
trates the regions and their weights of association with being
in an error state (averaged over the four steps). Warmer col-
ors indicate regions that are more strongly associated with error
states.

c. Linear Discriminant Analysis (LDA). We  have examined a number
of methods sometimes associated with improved performance
in the literature such as support vector machines (SVMs) with
radial basis functions and other kernels. However we  get the
best results with LDA. Hsu, Chang, and Lin (2009) note linear
classifiers are much more efficient and do not have accuracy dis-
advantages relative to SVMs when the number of features and
instances are large. This is our situation and LDA produces the
conditional probabilities that are required by the HMM

. Scan lag.  We  train the classifier to associate states with the
brain activity that follows 4–5 s after the student is in that
state. This delay gives us optimal performance, which this is
not surprising given the lag of the hemodynamic response. The
current example uses the activity 2 scans (4 s) later to classify
the state the student was in during a the time of particular
scan. We  have tried using multiple scans rather than a single
scan for classification, but this typically results in overfitting the
data.

. Merging group and individual data. The best results come from
combining imaging patterns both from other students and from
the particular student (in this case from Day 1) to train the
classifier. The data from the specific student are useful because
each student’s activation patterns have their own idiosyn-
crasies. However, there is not enough data from individual
students to reliably train student-specific classifiers. In the cur-

rent example we used 1/3 weightings of the Day 1 imaging
data from a particular student, the Day 1 imaging data from the
other 15 students, and the Day 5 imaging data from the other
students.
8 ROIs were created by evenly distributing 4 × 4 × 4 voxel cubes over the 34 slices
rections in the axial plane, and one slice in the z-direction. The final set of regions
where less than 70% of the region’s original 64 voxels survived.

2.3. Component 3. Student modeling

The probabilities of various state transitions and durations of
residence within a state can be estimated for a student from other
students and past behavior of this student. In contrast to multi-
voxel pattern analysis, where abstract states are needed to avoid
overfitting, we use no state abstraction with this behavioral data.
Indeed, the best results come from using estimates of durations
in specific states and transition probabilities between these states.
So, each step for each problem is its own state. This allows us to
capture the large differences in difficulty among individual prob-
lems. In the current example we obtained, from other students,
statistics on state durations and error probabilities for each step of
each problem. We  also estimated for that student their mean laten-
cies and errors for a step averaged over problems. We used a 2/3
weighting of the problem-specific measures from other students
and a 1/3 weighting of the student-specific measures, to gener-
ate an estimate of the latency and accuracy of this student for
this step of a particular problem. Fig. 4 shows the distribution of
times aggregated into three categories of problem difficulty. Note
the continuous latency distributions fit to these data, which allow
us to calculate the probability of any duration for any step of any
Fig. 4. Distribution of correct and error step times for a student on Day 5 as a function
of  the difficulty other students experienced with that step. The points connected by
dotted lines are the proportions of observations with different number of scans. The
smooth lines are fitted gamma functions.
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.4. Application and evaluation

With this framework we can calculate the probability of any
nterpretation of a sequence of scans. For example, consider a situa-
ion where a student is solving a sequence of problems that involves

 scans, going through r steps, which are a subset of s states. In the
urrent experiment, for a specific block of problems and a partic-
lar student, m would be on the order of 150 scans, r would be on
he order of 30 steps, and s on the order of 50 states.1 An interpre-
ation, I, of the m scans is an assignment of the scans to a subset of
he s states. Using a naïve Bayes rule, the probability of any such
nterpretation I can be calculated as the product of prior probability
etermined by the behavioral model and the conditional probabil-

ties of the fMRI signals given the assignment of scans to states:

(I|fMRI) ∝
[

Sr(ar)
r−1∏
k=1

pk(ak) ∗ tk,k+1

]
∗

⎡
⎣m+2∏

j=3

p(fMRIj|I)

⎤
⎦

The first term in the product is the prior probability (based on
he behavioral model) and the second term involves the condi-
ional probabilities (based on the LDA of the imaging data). The
erm pk(ak) in the prior probability is the probability that the kth
nterval is of length ak and Sr(ar) is the probability of the rth interval
urviving at least as long as ar. The term tk,k+1 is the probabil-
ty of transitioning from state k to k+1. The second term contains
(fMRIj|I), which are the probability density values for the fMRI sig-
al on scan j+2 given I’s assignment of scan j to a state. This is what
he fMRI conditional probabilities provide. While the number of
uch interpretations is astronomical, HMM  algorithms enable effi-
ient calculation using dynamic programming techniques. This can
e done either for real-time interpretation (finding the most proba-
le state for the current scan), post-block reconstruction (the most
robable sequence of all the scans in a block), and model selection
the probability of the imaging data given a model). This application
ill use the Viterbi algorithm (Rabiner, 1989).

Interpreting a student can be operationalized as identifying the
tate in the HMM  diagram. The computer logs of student behavior
rovide a definition of ground truth. We  performed separate eval-
ations of the segmentation goal (identifying what step a student

s performing) and the diagnosis goal (determining whether that
tep is being performed correctly). Fig. 5 illustrates the algorithm’s
erformance on these two dimensions2:

. Segmentation goal. Fig. 5a illustrates the success of the algorithm
at identifying where the student is in a block of problems. The
algorithm assigns each scan to a step of some problem and the
figure plots the mean difference between the assigned step and
the true step. The model correctly classifies most of the scans
and is off by just a single step on most of the remaining cases.

Most of these errors are right at the boundaries between steps.
The figure also shows how well the algorithm can do using just
statistics based on fMRI data or just behavioral model, and both.3

Performance is much better using behavioral data and fMRI data

1 As noted earlier these approximately 50 states are abstracted to 9 for use of
he  imaging data, but are represented distinctly in the HMM  so that state-specific
ehavioral data can be combined with the more abstract imaging data.
2 Visit http://act-r.psy.cmu.edu/actrnews/index.php?id=34 to see a demonstra-

ion of the performance of our system on one block of algebra problems, predicting
he actual mouse clicks in the problem.

3 Performance with just fMRI is achieved by making all transitions and durations
n  the HMM equiprobable. Performance with just behavioral model is achieved by

aking the conditional probabilities of the fMRI data the same for all states.
gia 50 (2012) 487– 498 491

together than using either alone. This illustrates the boosting
effect one gets by combining behavioral and fMRI data.

2. Diagnosis goal. Fig. 5b illustrates the success of the approach on
the diagnosis goal. One can vary the criterion for classifying a
step as an error and so generate a curve giving the probability
of a hit (classifying an error step as an error) as a function of
the probability of false alarming (classifying a correct step as an
error). A measure of classification accuracy is the area under the
curve, which is 0.5 for chance classification and 1.0 for perfect
classification. The level of performance in the figure is a high
0.946.

To summarize this application, the combination of MVPA and
a behavioral model of the student can yield a fairly accurate diag-
nosis of where a student is in problem-solving episodes that last
many minutes. Moreover, prediction accuracy using both infor-
mation sources was substantially greater than using either source
alone. The performance in Fig. 5 should not be taken as the limit of
what can be achieved. Performance could be improved by enhanc-
ing the imaging data, by adding other data sources, or by improving
the behavioral model. These are topics of our current efforts.

3. Application 2: Using brain imaging to build and evaluate
cognitive models

The model whose state space is illustrated in Fig. 2 is typical
of the models built into Cognitive Tutors. Their temporal grain
size corresponds to the student actions on which feedback can be
meaningfully generated. These models attempt to represent all the
correct and incorrect transitions that the student might be making.
As illustrated in Fig. 4, these states correspond to highly variable
periods of time that take many seconds. Perhaps the student is
actually going through multiple mental substates in the period of
time occupied by a step. This second application will illustrate how
model evaluation techniques based on HMMs and can determine if
a step does consist of substates. While this example continues with
the tutoring domain, it illustrates methods that potentially could
generalize to many model evaluation and discovery problems.

The specific goal will be to decide whether a step is best
described as a specific sequence of 1, 2, 3, or 4 substates. Unlike
the previous example, there are not computer logs to assess the
ground truth – we don’t know how many substates there are or
where they begin and end. Rather, goodness of fit to the data will
be used to infer the number of substates and their segmentation.
We will assume that the duration ti of residence in any substate i
is variable, described by a 2 parameter gamma  function g(t, vi, ai),
where vi and ai are the parameters of the gamma  function for sub-
state i. The durations were discretized such that each 2-s scan gets
associated with a single substate. Gamma  functions were similarly
used in the previous example to describe the duration in a step
(see Fig. 4). Each substate i will have its own  distribution of times
and its own  pattern of activation over the 408 voxels. This means
each substate will have 410 parameters associated with it (2 for the
latency distribution and 408 for the activation values).

The Appendix A describes how predictions are derived from the
different substate models for a step and how parameters are esti-

mated. This results in a calculation of the likelihood of the data
under the various models. Because the models are nearly nested,4

it is to be expected that the model with more substates will have a

4 Pure nesting would mean that the more complex model is guaranteed to produce
at  least a good a fit (larger log likelihood) as the simpler model. The nesting is not
perfect because the discrete approximation to the gamma  removes the guarantee
that the more complex model will provide a better fit to the distribution of scan
lengths.

http://act-r.psy.cmu.edu/actrnews/index.php%3Fid=34
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Fig. 5. (a) Performance on segmentatio

Table 2
Comparison of models for the different steps.

Step 1 Step 2 Step 3 Step 4

(a) Chi square differences
2  over 1 1093.5 3491.5 424.9 2186
3  over 2 883.7 2313 198.8 1086.8
4  over 3 518.6 2007.6 −51.8 918.5

(b)  Chi square differences with permuted data
2  over 1 599 ± 243 690 ± 76 531 ± 204 633 ± 23
3  over 2 552 ± 112 608 ± 341 193 ± 155 600 ± 242
4  over 3 225 ± 227 1129 ± 610 −10 ± 260 508 ± 314

(c)  Maximum chi square differences with permuted data
2  over 1 1763.0 773.1 1403.0 687.9
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3  over 2 997.3 1580.8 464.3 1170.0
4  over 3 739.6 2871.1 731.7 1230.1

igher likelihood. Under the null hypothesis, 2 times the difference
n likelihood difference between a n+1 substate model and a n sub-
tate model should be distributed as a chi-square with 410 degrees
f freedom to reflect the extra parameters. Table 2a gives the actual
hi-square gains associated with the more complex models.5 The
impler model can be rejected in favor of the more complex model
f the chi-square is greater than chance, indicating that the likeli-
ood gain is not just a matter of fitting noise. As points of reference,
he critical values for a chi-square with 410 degrees of freedom is
58 for p = .05 and 525 for p = .0001. Given these thresholds, the
onclusions are pretty clear: Steps 2 and 4 are best fit with four
ubstates, Step 3 with one substate, and Step 1 is between the .05
nd .0001 threshold for deciding between 3 and 4 substates.

While the 4-substate model provides better fits to the data for
ll but Step 3, the interpretation of this result is not clear. The inter-
sting interpretation of this result would be that students are going
hrough a sequence of four distinct mental substates. However,
ther uninteresting factors might be producing these statistically
etter fits. For instance, it may  reflect the fact that the durations in

 substate do not perfectly fit a gamma  distribution or the fact that

he distribution of feature values is not perfectly normal. Estimating

ore substates might simply reflect using multiple distributions to
etter fit the true distributions.6

5 The negative chi-square gain for the 4-substate model for Step 3 reflects the fact
hat the models are not perfectly nested and it is difficult to combine many discrete
istributions given the brief duration of this step.
6 For sake of brevity, we are skipping over an assessment of these models in terms

f  their BIC (Kass & Raftery, 1995) scores, which penalizes the more complex models
or  their added complexity. A straightforward BIC complexity penalty does not guard
n. (b) Performance on diagnosis.

The critical feature of the interesting interpretation is that the
sequence of scans within a step reflects a sequence of statistically
distinguishable substates. To test whether this was  true the scans
for all the instances of a step were permuted. This assigns a ran-
dom set of scans to any step instance. The scans assigned to a step
are likely to come from various other instances of the same step
and are likely occur in a different order than their true order. The
same model fitting effort was applied to the permuted data as had
been done on the real data, resulting in simulated chi-square differ-
ences. If the advantage of the more complex model actually reflects
going through an additional substate in a specific order, then the
chi-square gain for this random assignment should be less that the
gain for the true assignment. However, this should not be the case
if the more complex model is simply better at fitting the distribu-
tion of step times or creating a mixture that better matches the
distribution of feature values.

Any single random permutation might not produce chi-square
gains as large as the true gains because of chance. Therefore, each
step was  permuted 100 times and the model was  fit to each simu-
lated data set. Table 2b shows the means and standard deviations
of the chi-square gains for the fits to the simulated data. To con-
fidently accept a more complex model over a simpler model, the
chi-square gain for the true data should be greater than what is
observed with these random permutations. Table 2c shows the
largest values obtained from the 100 random permutations. Com-
paring these simulated gains to the true gains leads to the following
conclusions:

Step 1 involves selecting a part of the expression to operate on and
identifying the operation. The evidence is not totally clear for dis-
criminating among 1, 2 or 3 substates. We  observed four simulated
gains for the 2 versus 1 substate contrast that were greater than the
true gain and two  simulated values greater for the 3 versus 2 con-
trast. In contrast to these two comparisons, the gain for 4 substates
over 3 is just 1.30 standard deviations larger than the mean simu-
lated gain and 11 simulated gains were greater than the true gain.
As something of a compromise, we  chose the 2-substate model,
which is illustrated in Fig. 6.
Step 2 is the most critical step where the student specifies the

change that the transformation produces in the algebraic expres-
sion. There is strong evidence for a 3-substate model but not for
a 4-substate model. We observed no simulated gains greater than

against the uninteresting interpretations of a better fit just described. The analysis
described below that does guard against these uninteresting interpretations.
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n pat
Fig. 6. Step 1: Distribution of lengths of the two substates and their activatio

the true gains for 2 substates over 1 or for 3 substates over 2.
The gain for 4 substates over 3 is just 1.44 standard deviations

larger than the mean. Fig. 7 illustrates the parameter values for
the 3-substate model.

Fig. 7. Step 2: Distribution of lengths of the three substates and their activation pat
terns. The activation values are z-scores for percent deviation from baseline.

Step 3 is the simplest step of identifying an arithmetic expression
to be evaluated. The evidence clearly points to a 1-substate model

since the mean simulated gains are all greater than the true gains.
Fig. 8 illustrates the value for the 1-substate model.

terns. The activation values are z-scores for percent deviation from baseline.
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Fig. 8. Step 3: Distribution of lengths of the one substates and its activatio

Step 4 involves the mental evaluation of the arithmetic expression.
The evidence is very strong for a 2-substate model but marginal
for a 3-substate model. The true gain for 3 versus 2 substates is
only 2.01 standard deviations larger than the simulated mean and
we observed two simulated gains greater than the true gain. Fig. 9
illustrates the fit for the 2-substate model.
Figs. 6–9 illustrate the substate models that seemed best. Each
tep has a first substate with a distribution of number of scans that
ncludes very few 0 scans (i.e., this substate was seldom skipped)
nd peaks at 1 or 2 scans. The other substates all have peaks at 0

Fig. 9. Step 4: Distribution of lengths of two substates and their activation patte
ern. The activation values are z-scores for percent deviation from baseline.

scans (i.e., they are often skipped) and long tails. Thus, the substates
appear to divide into nearly obligatory substates (substates 1.1, 2.1,
3.1, and 4.1) and optional substates (substates 1.2, 2.2, 2.3, and 4.2).

The HMM  algorithm allows us to estimate the time spent in
each substate during each step. Fig. 10 shows the mean times as
a function of day and whether an error was made. Generally and
not surprisingly, students tend to spend more time in the sub-

states when there is an error and less time on Day  5 when they
have learned more. However, the different substates appear to dis-
play different patterns of latencies. To explore this we  performed
a hierarchical clustering of the 8 substates using the Euclidean dis-

rns. The activation values are z-scores for percent deviation from baseline.
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ig. 10. Mean time in a substate as a function of day and whether an error was
ade on that step. Means are calculated separately for each student and averaged.

he standard errors displayed are estimated from the student means.

ances between the mean times of the 4 conditions in each substate.
ig. 11a shows the resulting tree. The four obligatory substates
luster together and separate from the optional substates. Sepa-
ate analyses of variance show that none of the obligatory substates
how a significant effect of practice (Day 1 versus Day 5 – see Fig. 10)
hereas all of the optional substates do.7 Optional substates 1.2

nd 2.3 cluster separately from 2.2 and 4.2 because they are the
nly substates to show a significant interaction (F(1,15)’s of 13.73
nd 8.41, p’s < .01 and .005, respectively) between day and correct-
ess. The interaction occurs because more than twice as much time

s spent in these substates on Day 1 when there is an error than any
ther circumstance.

Fig. 11b shows the results of a clustering analysis using distance
etween the activation patterns of these substates (i.e. distances
etween the 408 values – see Figs. 6–9). It reveals a similar
attern–optional substates 2.2 and 4.2 cluster together because
hey show least activation, the obligatory substates cluster together
ith moderate activation, and optional substates 1.2 and 2.3 clus-

er together with the most activation. In summary, three different
easures suggest the same organization of the substates – distri-

ution of number of scans, effect of condition on mean time, and
he voxel activation patterns.

While variation in overall activation seemed to be the basis for
he organization in Fig. 11b, it would be interesting to know what
egions contribute most to this variation. Fig. 12 shows the stan-
ard deviation in activation values for the 408 regions. Areas that
end to vary substantially across substates include the right dorso-
ateral prefrontal cortex, left motor area, bilateral parietal cortex,
nd visual areas. The visual and motor areas reflect the fact that
lgebraic symbol manipulation has fundamental perceptual-motor
omponents (Goldstone, Landy, & Son, 2010) even in this interface.
he parietal areas overlap with the regions that activate in other
tudies of basic arithmetic (Dehaene, Piazza, Pinel, & Cohen, 2003)
nd algebra (Anderson, 2005). Right dorsolateral prefrontal regions
ave been reported to be more active in children during the perfor-
ance of arithmetic tasks (e.g., Ansari & Dhital, 2006; Rivera, Reiss,

ckert, & Menon, 2005).

To summarize this example, the combination of MVPA and HMM

odel evaluation can serve to select among models for a task. In this
ase the model selection indicates how many substates to associate

7 All but substates 2.1 and 4.1 show significantly longer times when an error is
ade.
gia 50 (2012) 487– 498 495

with particular steps. Further, these different substates appear to
have different relationships to performance of the task. The overall
mean duration in the obligatory substates is 4.2 s and this varies rel-
atively little with step or condition. These would appear to reflect
the constant aspects of performing the algebraic operations. The
optional substates are much more engaged when an error is made.
Time in these optional substates shows a significant decrease with
practice unlike the obligatory substates. The four optional substates
split into two subgroups – two  (1.2 and 2.3) that involve heighted
engagement of algebraic regions and two  (2.2 and 4.2) that show
decreased engagement of these regions. It remains to be deter-
mined what relationship these substates might have to the actual
mastery of algebra.

4. Applications to tutor development

This methodology is appropriate to a wide range of mental
tracking tasks and model evaluation. Nonetheless, this paper will
continue its focus on applications to tutoring. Perhaps the first
question in the mind of the reader is how could this methodology
actually be applied to a Cognitive Tutor, given that regular instruc-
tion in an fMRI scanner is impractical. The potential application is
not to delivery of instruction (which will still take place in class-
rooms and at home on a computer), but rather to the development
of the instruction. One could evaluate different tutoring designs by
seeing their consequences for the mental states of students, as illus-
trated in the first application. Additionally, one could improve upon
the cognitive models in these tutors as illustrated in the second
application.

With respect to the first goal of tracking student thought, the
first application, while perhaps impressive, was rather useless. We
already had computer logs that indicated the segmentation of per-
formance into steps and whether these steps were being performed
correctly. This provided a solid definition of ground truth. On the
other hand, the methodology might be quite useful in discrimi-
nating among states within a period of time when there are not
behavioral markers. For instance, one might consider diagnosing
when an optional substate occurs. It may  turn out that the highly
engaged optional substates (1.2 and 2.3) reflect an effort to under-
stand problematic material whereas the low engaged substates
(2.2 and 4.2) may  reflect a zoning out. Progress is being made on
developing behavioral assessments of such mental states within the
context of intelligent tutoring systems (e.g., Graesser et al., 2008).
One could investigate whether these behavioral assessments cor-
related with the substates. If one could confidently assign such an
interpretation to these substates, one could then use them to assess
different tutoring systems by whether they produce engagement
versus zoning out.

With respect to model evaluation, the sluggish nature of the
hemodynamic response probably places a limit on how refined of
a model one can identify. In this regard, note that Step 2, which
produced the most substates (three), was  the longest while Step
3, which produced just one substate, was the shortest. This rein-
forces the point made in the introduction that these HMM  methods
applied to fMRI are probably most appropriate for the long episodes
that are typical of complex problem solving.

There have been some successful efforts to evaluate more
detailed models of complex sequential behavior (Borst, Taatgen,
Stocco, & Van Rijn, 2010) including student performance with this
tutor (Anderson, Betts, Ferris, & Fincham, in press-b). These efforts
have been based in the ACT-R architecture (Anderson, 2007) which

makes predictions about mental events as brief as 50 ms.  These cog-
nitive modeling approaches have been more traditional in their use
of fMRI data by identifying specific regions of interest and com-
paring model predictions against these regions, or, alternatively,
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ig. 11. Hierarchical clustering of substates: (a) Based on Euclidean distance betw
istance between the 408 voxel values m associated with a substate (see Figs. 5–9)

reating traditional SPM design matrices (Friston, 2006) in order
o detect brain regions associated with aspects of the model. These

odels make predictions about the timing of specific mental steps
uch as retrieval of a relevant arithmetic facts and much of the
odel fitting is concerned with how such times vary as a func-

ion of condition. For instance, Anderson et al. (in press-b) modeled
he improvement from Day 1 to Day 5 in terms of less time spent
etrieving algebraic knowledge.

There are two reasons why we have chosen instead this MVPA
pproach for an application like tutor development. First, the
etailed factors that affect these model fits, such as retrieval time,
re not particularly critical to instructional decisions. Rather the
ritical information for tutoring concerns mental states that last for
onger periods. The methods described in this paper are suited for
his temporal grain size. Second, one loses discriminative power by
ooking at only a subset of brain activity in specific regions of inter-
st (although perhaps not theoretical power). For instance, in the
rst mind-reading application we tried only using specific regions
ith known relevance to algebraic problem solving, but the level
f success was substantially reduced. While there are theoretical
easons for wanting to understand specific regions and focusing
ust on their activity, this can be at cross-purposes with the goal of
chieving the most accurate diagnosis of mental state.

Fig. 12. Standard deviations of voxel valu
he 4 mean times associated with a substate (see Fig. 10); (b) Based on Euclidean

However, these two approaches should be complementary and
could feed the development of each other. The patterns of brain
activity displayed in this paper are sensible – for instance, Fig. 3
shows that algebraic errors are associated with strong weights
in the region of the anterior cingulate, which would be expected
in many theories of the function of this region (e.g. Botvinick,
Braver, Carter, Barch, & Cohen, 2001; Falkenstein, Hohnbein, &
Hoorman, 1995; Sohn et al., 2007; Yeung, Botvinick, & Cohen,
2004). Similarly, Fig. 12 revealed that a considerable portion of
the variance between substates is associated with the poste-
rior parietal cortex, which we  have found critically engaged in
algebra problem solving. Having strong theoretical constraints
might guide appropriate feature selection and help deal with
the problem of overfitting that is ever present in such MVPA
applications.

Understanding the full pattern of activity engaged by differ-
ent mental substates might guide the development of cognitive
architectures like ACT-R. For instance, while ACT-R has had consid-
erable success in modeling routine tasks including routine algebraic

manipulation, it cannot really explain the much of the higher-order
reasoning and metacognition that is critical to mastery of algebra
(e.g. Anderson et al., 2011, in press-a). By identifying the sequen-
tial structure of the brain activation that is engaged by complex

es associated with the 8 substates.
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roblems we hope to be able to get clues to additional components
hat need to be added to the architecture.
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ppendix A. Modeling details in Application 2

The probability Gi(k) that substate i takes k scans is:

(k, vi, ai) =
∫ 2k+1

2k−1

g(t, vi, ai)dt

here vi and ai are the parameters of the gamma  function (2k  in
ntegral because each scan is 2 s). An interpretation I of a step is a
equence of n substates i whose lengths ki sum to the number of
cans in that step. The probability of such an interpretation I is:

(I) =
n∏

i=1

⎛
⎝G(ki, vi, ai)

ki∏
j=1

pi(fMRIj)

⎞
⎠

here the probability of ki scans in substate i is multiplied by the
robability of the images associated with those scans (which, as in
he previous application, are at lag 2 scans). As in our use of LDA
n example 1, assume that the distribution of the 408 voxels val-
es in a substate is multivariate normal. To avoid dealing with the
orrelation structure these values, a principal component analysis
as performed of the values in a substate to get 408 orthogonal

alues fjm for each scan j. The probability of these values for sub-
tate i is given by a product of normal densities for these principal
omponents8:

i(fMRIj) =
408∏
m=1

N(fjm, �m, �m)

This requires estimating 408 means �im for each substate i. The
tandard deviations �m are calculated as the square roots of the
igenvalues of the principal component analysis and do not have
o be estimated for the substates.

The parameters were estimated using expectation maximiza-
ion as described in Rabiner (1989).  There are many possible ways
o break up k scans in a step into substates of ki scans. HMMs
an combine these to determine the probability that any scan is
n any substate, which is critical to the re-estimation step in expec-
ation maximization. This allows iterative calculation of a set of
arameters that maximizes the overall probability of the data. This
robability is what is critical in discriminating among models of dif-
erent complexity. This overall probability can be calculated from
he total probability of each step, which is summed over all possible
nterpretations IStep of the steps:

r(Step) =
∑

I ∈ Istep

P(I)

where Istep = {(k1, ..., kn)|k1 + ... + kn = scans(step)}
This specifies the probability of a single step. Over all the stu-
ents there are almost 2000 observations for each of the four steps.

8 While the principal component analysis guarantees zero correlation, the
ssumption of independent normal distributions is only approximately correct.
e  do observe more extreme values than would be expected under a normal and

xtreme values on different dimensions tend to co-occur.
gia 50 (2012) 487– 498 497

The probabilities of all N tokens of Step j are combined to determine
the log likelihood of the data for Step j given a model with its set of
estimated parameters:

L(N tokens)  =
N∑

x=1

ln(Pr(tokenx)).
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