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There can be systematic biases in time estimation when it is per-
formed in complex multitasking situations. In this paper we focus
on the mechanisms that cause participants to tend to respond too
quickly and underestimate a target interval (250–400 ms) in a
complex, real-time task. We hypothesized that two factors are
responsible for the too-early bias: (1) Memory contamination from
an even shorter time interval in the task, and (2) time pressure to
take appropriate actions in time. In a simpler experiment that was
focused on just these two factors, we found a strong too-early bias
when participants estimated the target interval in alternation with
a shorter interval and when they had little time to perform the
task. The too-early bias was absent when they estimated the target
interval in isolation without contamination and time pressure. A
strong too-late bias occurred when the target interval alternated
with a longer interval and there was no time pressure to respond.
The effects were captured by incorporating the timing model of
Taatgen and van Rijn (2011) into the ACT-R model for the Space
Fortress task (Bothell, 2010). The results show that to properly
understand time estimation in a dynamic task one needs to model
the multiple influences that are occurring from the surrounding
context.

� 2013 Elsevier Inc. All rights reserved.
1. Introduction

The ability to accurately estimate time intervals is important for organisms in making decisions
and executing various actions. Time interval estimation enables animals to maximize net energy
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intake while minimizing time spent foraging (Bateson, 2003). Learning of time intervals between
events and event rates has been one of the mechanisms proposed for conditioning of animals (Gallistel
& Gibbon, 2000). Time interval estimation underlies skills such as motor control (Ivry, Spencer, Zelaz-
nik, & Diedrichsen, 2002; Michon, 1967), musical performance (Jones, 1990), and speech processing
(Schirmer, 2004). Millisecond-to-second interval timing is critical in performing real-time dynamic
tasks that require rapid adaptive responses to a changing environment. For instance, when driving
it is necessary to estimate how long one can attend to a GPS navigator before switching back to attend-
ing to the road and driving control (Salvucci, Taatgen, & Kushleyeva, 2006).

Time estimation has been studied in various paradigms (Zakay, 1990). Two major time estimation
paradigms are a retrospective paradigm and a prospective paradigm. In the retrospective paradigm,
participants are not aware of the need to judge duration until after the time duration has ended. In
the prospective paradigm, participants are aware that a duration judgment has to be made while they
experience the duration (Zakay & Block, 2004). In addition to producing a verbal estimate of a time
interval or comparing two intervals, participants can also be asked to reproduce an interval. In a ver-
sion of the reproduction method called the peak-interval (PI) procedure, participants attend to a target
interval (e.g., a square that changes its color after the criterion duration), then later try to reproduce
the same duration of time (e.g., by pressing a key when they expect the square to change its color).
Studies with this procedure typically find that response distributions are (1) centered at the real time
criteria, (2) roughly symmetrical,1 and (3) standard deviations increase in proportion to the mean inter-
vals (e.g., Rakitin et al., 1998).

In most studies of time estimation, time estimation is an isolated task performed in a static envi-
ronment. It is the primary task on which the participants focus, even when a secondary task is given in
order to discourage counting during time estimation (Rakitin et al., 1998) or to test the effect of the
secondary task (e.g., Fortin, Rousseau, Bourque, & Kirouac, 1993). One standard procedure is to have
participants prospectively estimate a time interval while doing a secondary nontemporal task (e.g.,
card-sorting task), then reproduce the interval without the secondary task. A common result is that
the reproduction estimate decreases as a function of the demands of the secondary task (Block & Za-
kay, 1997; Brown, 1985; Zakay, Nitzan, & Glicksohn, 1983). The negative relationship between the
reproduction estimate and the secondary task demand has been accounted for by the attentional-gate
model (Zakay & Block, 1995, 1997). The model assumes that time estimation is a cognitive activity that
competes for the limited attentional resources with other tasks (Zakay, 1990). As the secondary task
demand increases, it will draw attentional resources away from time estimation resulting fewer time
signals accumulated (i.e., decreased estimate).

One may wonder to what extent time estimation performed in the standard procedures reflects
time estimation that people perform in everyday multitasking situations. In various multitasking sit-
uations, time estimation is often an implicit secondary task that one performs in order to flexibly coor-
dinate primary tasks. Someone who tries to attend to a navigator while driving a car (Salvucci et al.,
2006) may not even realize that they are estimating the time spent on those tasks. In addition, mul-
titasking situations often require estimating two or more time intervals in the same context. For in-
stance, a cook at a busy restaurant would need to keep an eye on everything on the grill so that
things that need different lengths of cooking time can be flipped at the appropriate times. Studies
showed that time estimation accuracy is lower when two overlapping time estimates are made com-
pared to when only a single interval is estimated (Brown & West, 1990; van Rijn & Taatgen, 2008).
Among the multiple factors that can influence time estimation in multitasking situations, the current
study focused on the effects of memory contamination and time pressure.

Memory plays a major role in time estimation performance (e.g., Baudouin, Vanneste, Pouthas,
& Isingrini, 2006; Brown, 1997; McCormack, Brown, Smith, & Brock, 2004). The need for a mech-
anism that stores temporal representations is obvious given that time estimation usually involves
comparing time intervals at different points of time. According to the scalar timing model
(Gibbon, Church, & Meck, 1984), time estimation is a function of pacemaker, memory, and
decision processes. The pacemaker generates pulses (temporal signals) with certain intervals while
1 See Church, Miller, Meck, and Gibbon (1991) for the discussion of small amount of asymmetry observed in the PI procedure.
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one is estimating time. Those pulses are accumulated in working memory, which represents the
experienced time duration. The count of the pulses in working memory is then stored in the
long-term reference memory for later comparison. When one needs to reproduce a time interval
experienced in the past as in the peak-interval (PI) procedure, the current count of the pulses
accumulated in working memory is compared with the value sampled from reference memory.
When the two values become close enough, a decision is made to terminate the reproduction
of the interval.

Vierordt’s law (Gu & Meck, 2011; Lejeune & Wearden, 2009) is one of the most robust phenomena
in time perception. When multiple durations are experienced in the same context, participants tend to
overestimate shorter intervals and underestimate longer intervals, moving their mean estimate to-
wards ‘‘central tendency’’. It is as if memories of the two durations mix when they are experienced
in the same context. This so-called ‘‘memory-mixing’’ effect has been shown in various time estima-
tion paradigms. When participants reproduced time intervals that were drawn from different prior
distributions, their estimates were systematically biased toward the mean of the prior distribution
(Jazayeri & Shadlen, 2010). In a prospective time estimation paradigm in which participants were ex-
posed to an induction stimulus context (sequence of brief tones) and subsequently presented with a
standard interval followed by a comparison interval, temporal judgments (whether the comparison
interval was shorter, equal to, or longer than the standard interval) were influenced by the distribu-
tional properties of local (the rate of the stimulus context) as well as global (the rates of the other se-
quences within a session) temporal contexts (Barnes & Jones, 2000; Jones & McAuley, 2005). Such
results challenge models of time estimation because they deviate from the linear relationship between
the subjective estimation and the real-time criterion (e.g., Rakitin et al., 1998). One candidate expla-
nation is that individual representations of time intervals in reference memory are not independent
from each other and create contamination when more than a single interval is estimated in the same
context (Taatgen & van Rijn, 2011).

Time pressure, another factor common in multitasking situations, has been a popular topic of re-
search in decision-making. Studies have focused on how time pressure affects cognitive strategies.
According to Maule and Hockey (1993), if it is impossible to implement the preferred strategy due
to a time constraint, people tend to adopt the best strategy given the time constraint. Zakay
(1993)’s model provides an attention-based account for decision-making under time pressure. Accord-
ing to this model, a person engaged in decision-making under time pressure is essentially in the dual-
task paradigm in which two concurrent cognitive tasks compete for the limited attentional resources.
An increased awareness to the passage of time under time pressure increases attentional resources
allocated to temporal information processing. Less attentional resources left for decision-making in-
duces adoption of simpler strategies resulting in suboptimal decision-making performance. While
the negative consequences of time pressure in decision-making seems clear, it is less clear how it will
influence time estimation performed under time pressure. One might predict that time pressure will
increase attention to temporal processing and thus will facilitate time estimation performance. On the
other hand, if one focuses on the decisional aspect of time estimation as assumed in scalar timing
model (Gibbon et al., 1984), one might predict that time pressure will negatively affect time estima-
tion performance.

In summary, it seems plausible that time estimation in many real-world multitasking environ-
ments will exhibit properties not seen when time estimation is performed as an isolated task in a sta-
tic environment. We decided to investigate the push and pull of factors affecting time estimation in a
fast-paced task. We chose the Space Fortress task (Donchin, 1989), a computer-based video game that
simulates real-time complex tasks performed in dynamic environments (e.g., piloting an aircraft). It
has the advantage of a long history of study as well as some well-defined subtasks in which time esti-
mation is critical. We found that dynamic multitasking environment could introduce strong biases
into the time estimation process. After documenting the existence of such a bias in the Space Fortress
task, we will describe an experiment that investigates the multiple origins of this bias. Finally, we will
present a simulation model (based on ideas in Taatgen & van Rijn, 2011) that shows how the effects of
those multiple factors can be integrated into a cognitive architecture.
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2. Time interval estimation in the Space Fortress task

2.1. The IFF (Identify Friend or Foe) tapping task

The Space Fortress task (Fig. 1) was originally developed for the learning strategy program initiated
by DARPA (Defense Advanced Research Projects Agency) to investigate the effectiveness of various
learning strategies in complex tasks. The game requires coordination of cognitive, perceptual, and mo-
tor activities in real time. It involves navigating a ship in a frictionless space and firing missiles to de-
stroy a central fortress and peripheral mines, all while simultaneously protecting the ship from the
fortress and the mines. The goal of the game is to accumulate as many points as possible while per-
forming those activities. The participant navigates the ship by rotating left or right (using the A and D
keys, respectively) or thrusting (using the W key) to make the ship fly within an area enclosed by two
hexagons. A fortress stationed in the center rotates like a turret, tracking the ship’s trajectory and fir-
ing shells at it. The participant has to shoot the fortress with a missile (using the spacebar) at least ten
times and then make a rapid double-shot to destroy it. One also has to monitor symbols regularly
flashing underneath the fortress and collect bonuses when the ‘‘$’’ symbol appears twice in a row.
The bonus collection task is similar to a 1-back task that requires judging whether an item matches
the item one back in a sequentially presented list of items (McElree, 2001).

The mine task, which is the focus of the current study, consists of a series of activities in a specific
order. At the beginning of the game, the participant is presented with a screen with three alphabetic
letters (referred to as ‘‘foe letters’’) and asked to remember them. During the game, a mine appears at a
random location on the screen 5 s after the destruction of the previous mine and starts pursuing the
ship with the intent of crashing into the ship. When a mine appears, the participant has to check a
Fig. 1. A schematic representation of the screen for Space Fortress task. The participant has to navigate the ship (indicated in
red) within the area enclosed by two hexagons while destroying the fortress (in blue) stationed in the center of the screen. The
panel in the bottom of the screen displays critical information such as game scores. When a mine (in green) appears, a letter
(e.g., W) associated with the mine is displayed in the IFF box (the first thick-lined box in the panel). Immediately after the
participant produces an IFF interval, the produced interval (e.g., 378) is displayed in the INTRVL box (the second thick-lined
box). (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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letter that appears in the IFF box in the bottom panel of the screen (see Fig. 1). The mine is a foe if the
letter matches one of the foe letters; otherwise, it is a friend. Mine identification is a version of the
Sternberg memory-scanning task (Sternberg, 1966). If the mine is a foe, one has to perform an IFF tap-
ping task, which involves tapping the J key twice with a 250–400 ms interval between the two key
presses. Once an acceptable time interval has been generated, aiming the ship at the mine and firing
a missile can destroy the mine. A missile can be fired even after a wrong IFF interval, but the missile
will not destroy the mine. If the mine is a friend, then the IFF tapping task should not be performed
and the mine can be destroyed by a missile shot. If all steps are completed successfully before the
mine reaches the ship, then the mine is destroyed and points are earned. Otherwise, the mine even-
tually collides with the ship and points are lost.

2.2. Too-early bias in the IFF tapping task

As a time interval estimation task, the IFF tapping task has three notable characteristics. First, it is a
prospective time estimation task. Participants are told the target interval in written instructions (‘‘you
must identify it as a foe by pressing the IFF button twice at a moderate speed: 250 and 400 ms be-
tween each push’’). During a game, participants have to produce the target interval whenever a foe
mine appears. Immediately after each IFF tapping, the produced interval is displayed as feedback
(e.g., ‘‘378’’) in the INTRVL box in the bottom panel (see Fig. 1). Presumably, participants start with
a vague idea of the target interval, and then learn to produce the correct interval over the course of
practice by receiving feedback and observing the outcome of their responses. Second, both the initia-
tion and the termination of the interval are under the control of participants. Finally, and most impor-
tantly, the time estimation is performed not as an isolated task but rather as part of a real-time
complex task. The game requires time-sharing multiple tasks such as navigating the ship while deal-
ing with the fortress and the mines. Even within the mine task, a series of activities precede (checking
the letter and determining the mine’s identity) and follow (aiming at the mine and firing a missile) the
IFF tapping task, all of which need to be completed within a brief period of time, usually 2–3 s.

A study (unpublished work) previously conducted in our laboratory revealed an interesting pattern
of performance in the IFF tapping task. Fig. 2 displays the percentage of responses within each of three
categories: Correct responses (the produced interval was between 250 and 400 ms), too-early re-
sponses (the produced interval was shorter than 250 ms), and too-late responses (the produced inter-
val was longer than 400 ms). It shows the average of 100 participants over 300 attempts (partitioned
into 10 bins, with 30 attempts per bin). Trials with no response (neither the first nor the second key
press was made) or single response (the second key press was not made) were excluded from the anal-
ysis. Participants improved with practice, as indicated by the percentage of correct responses reaching
almost 70% accuracy by the end. More notable is the error pattern, with participants making too-early
responses more often than too-late responses. This too-early bias, which is especially strong at the
beginning (representing approximately 55% of all responses), is maintained until the end despite a fair
amount of improvement over practice.

This too-early bias deviates from the roughly symmetrical responses observed in time interval esti-
mation studies (e.g., Rakitin et al., 1998). We suspected that two factors were responsible for the too-
early bias. The first possibility is that estimating a shorter time interval contaminated estimation of
the target interval. The IFF tapping task associated with mines occurs in the context of other tasks
in the game, such as attempting to destroy the fortress. As mentioned earlier, after the fortress has
been hit at least ten times, it can be destroyed with a rapid double-shot, which involves pressing
the spacebar twice with an interval between key presses shorter than 250 ms. The results of several
studies (Grondin, 2005; Jones & Wearden, 2004; Taatgen & van Rijn, 2011) suggest that representa-
tions of different time intervals are not independent of each other. Participants in Taatgen and van
Rijn’s (2011) study learned two intervals (a short interval of 2 s and a long interval of 3.1 s) and repeat-
edly reproduced them in an alternating order. For each response, they received feedback (too-short,
correct, or too-long) based on the accuracy of the reproduced interval. When the feedback criterion
for the long interval was shifted unbeknownst to the participants (the feedback criterion for the short
interval remained constant), not only did the estimate of the long interval shift toward the shifted
feedback criterion, but the estimate of the short interval also changed in the same direction. Their



Fig. 2. Change in the percentages of IFF tapping response categories over 300 trials. X-axis: bins (each bin corresponds 30 trials
of the IFF tapping task). Y-axis: percentages of response categories (correct, too-early, and too-late) in the IFF tapping task. The
white area represents the correct (250–400 ms) responses, the black area represents too-early (<250 ms) responses, and the
grey area represents too-late (>400 ms) responses.
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results show that contamination among different time interval representations occur when they are
estimated in the same context, similar to the memory-mixing effect (e.g., Gu & Meck, 2011; Jazayeri
& Shadlen, 2010). Thus, estimating the shorter interval for the double-shot to destroy the fortress
might have influenced estimating the target interval for the IFF tapping task.

A second possibility is that participants might be more likely to commit too-early errors when
there is high time pressure (i.e., little time to avoid a collision as the mine gets closer to the ship). Note
that the mine task consists of multiple demanding activities that have to be completed within a short
time period. Thus, those activities are in competition with each other for the limited time available to
perform the mine task. One might hypothesize that participants cope with the time constraint by
adjusting the length of the IFF interval based on their estimation of how much time is left for the mine
task. The need for this adjustment seems clear given that after producing the IFF interval one still
needs to fire a missile to destroy the mine. The consequence of shortening the IFF interval length will
be positive as long as the produced interval meets the target range since it affords more time for firing
a missile. However, shortening the IFF interval length also increases the chances of being too early. If
this hypothesis were true, one would expect that participants tend to prematurely terminate the IFF
interval (i.e., too-early bias) as less time is allowed for the mine task. The decrease in the too-early bias
with practice (see Fig. 2) may reflect participants learning to perform other aspects of the task more
rapidly, thereby allowing more time for generating the IFF interval.

Both of these possibilities are not just true of Space Fortress but reflect factors that complicate tim-
ing in many real-world tasks. People may experience multiple timing patterns and one pattern might
contaminate another. People are also often under pressure to get everything done within a fixed
amount of time and this might bias timing. While the Space Fortress task is representative of the gen-
eral issues of timing in real-world multitasking situations, there are so many aspects to it that it is
hard to be sure whether both of these factors (memory contamination and time pressure) are respon-
sible for the bias in time estimation, or just one, or perhaps some other factor. Therefore, we stripped
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down the original task into a simpler experimental paradigm that offered greater control but still al-
lowed us to assess the degree to which one timing task was contaminating the other and the degree to
which timing was being distorted by time pressure.
3. The IFF tapping experiment

3.1. Method

3.1.1. Participants
Twenty participants (5 males, mean age: 19 yrs) from Carnegie Mellon University participated for

course credit and bonus money (Mean: $3.5, Standard Deviation: $1.05) based on their performance.
Informed consent approved by the Carnegie Mellon University Institutional Review Board (IRB) was
obtained from each participant.
3.1.2. Apparatus
Participants performed the task using a computer keyboard for input while attending stimuli dis-

played on a 17-in. monitor. The task was a simplified version of Pygame Space Fortress (Destefano,
2010) written in the Python programming language.
3.1.3. Design
We tested the two variables of interest (memory contamination and time pressure) in a within-

subjects design by manipulating (1) the speed of tapping (fast/slow) that alternated with the IFF
(intermediate) tapping, and (2) the distance (short/long) between ship and mine at mine onset. We
created three types of games: fast-tap, slow-tap, and intermediate-tap-only games. These games were
based on a simplified version of the original Space Fortress task but they still had the components
essential for testing our hypotheses in the context of a dynamic task. For example, navigation and aim-
ing tasks were eliminated in order to simplify the response requirements for the mine task. In the fast-
tap and slow-tap games, a static ship was fixed at the bottom left of the screen always correctly aimed
toward the mine that appeared from the other side. The bonus collection task and the fortress task
were also eliminated in these games.

Fig. 3a shows a sample sequence of trials in the fast-tap game. During the game, 8 red static mines
and 8 green moving mines appeared in a strictly alternating order. For a red static mine, participants
simply had to produce a fast (<250 ms) double-tap (using the spacebar). This red static mine trial re-
quires a time interval equal to the double-shot interval required to destroy the fortress in the original
Space Fortress game. In the following trial, a green mine containing a letter appeared and approached
the ship.2 For the green moving mine, participants had to (1) check the letter and determine its identity,
(2) produce the IFF interval (250–400 ms) using an appropriate key (F key for friend and J key for foe),
and (3) fire a missile (by pressing the spacebar). If all three steps were successfully completed, the mine
was destroyed (immediately disappeared from the screen) and the trial ended. If any of the three steps
were missed or performed incorrectly (e.g., a friend was identified as a foe, or a wrong interval was pro-
duced), the mine became invincible (a missile could not destroy the mine) and eventually destroyed the
ship. The slow-tap games (see Fig. 3b) were identical to the fast-tap games except that they had blue
static mines instead of red static mines. Participants produced a slow (400–650 ms) double-tap (using
the spacebar) for the blue static mines. The distance manipulation was applied to the green moving
mines in the fast-tap and slow-tap games. The distance between the ship and a mine at the moment
of mine onset was randomized to be either short (283 pixels, corresponding to 1.86 s until mine collision)
or long (566 pixels, 3.72 s). In each game, four of the green moving mines appeared from the short dis-
tance and four from the long distance.
2 In the original Space Fortress game, the letter associated with the mine appears in the bottom panel (see Fig. 1). Given that
navigation and aiming were eliminated in our simplified games, there was a possibility that participants would ignore the main
part of the screen and respond by attending to the bottom panel only. To prevent this from happening, the letter was placed inside
the mine so that participants had to process the main part of the screen.



Fig. 3. Sample sequence of trials in (a) fast-tap, (b) slow-tap, and (c) intermediate-tap-only games. In (a) and (b), a mine
(diamond) appears at the top right and a ship is located at the bottom left of the screen.
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The intermediate-tap-only games (Fig. 3c) were intended to test whether the too-early bias would
still be present when participants produced the target interval of 250–400 ms without the demands of
the mine task and without estimating different time intervals. These games were very simple. In each
trial, when a letter (either F or J) appeared in the center of the screen, participants produced the IFF
interval (250–400 ms) using the corresponding key. If the produced interval was correct, the letter dis-
appeared from the screen immediately. If not, the letter remained for another couple of seconds until
the next trial started. Each intermediate-tap-only game had eight trials.

The experiment consisted of 12 blocks. Each block had one intermediate-tap-only game, one fast-
tap game, and one slow-tap game. The order of games was randomized within each block. Participants
read instructions (Appendix A) at the beginning of the experiment and had access to the instructions
during the experiment. At the end of each game, participants were presented with a summary of their
performance in the game (e.g., number of correct responses) and the bonus money they earned based
on their performance in the tapping tasks. Each participant took approximately 50 min to finish the 36
games (3 games * 12 blocks).

3.2. Results

3.2.1. Performance on the IFF-taps
Fig. 4 (left) presents the IFF tapping performance in intermediate-tap-only games over 12 blocks.

Compared to performance in the original Space fortress task (see Fig. 2), participants performed fairly
well (mean accuracy: 86%). The percentage of correct responses does not show much fluctuation
except for the improvement in the initial blocks. Importantly, the too-early bias is not present,



Fig. 4. IFF tapping performance of participants in intermediate-tap-only games over 12 blocks: Percentages of response
categories (left) and mean produced IFF intervals (right). In the right figure, error bars represent the standard deviations, and
the grey area represents the target interval range (250–400 ms).
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confirming our prediction that the bias would be absent when time estimation was the only task par-
ticipants had to perform. Participants committed too-early and too-late errors with roughly equal
frequencies in the first block, but they quickly reduced their too-early errors. Thus, there was a small
too-late bias on later trials. Given that this was a quite brief interval pushing the lower bounds of tim-
ing, this bias may just reflect a floor effect of the shortest intervals participants could produce. Fig. 4
(right) shows that the mean produced IFF interval falls within the targeted 250–400 ms range and
does not fluctuate much over blocks.

The results from the fast-tap and slow-tap games confirmed both the contamination and the dis-
tance hypotheses. Fig. 5 displays the performance in the IFF tapping task in the four conditions defined
by crossing the fast/slow tap speed and the short/long distance manipulations: fast-short, fast-long,
slow-short, and slow-long. The response percentages were calculated by dividing the number of re-
sponses in each response category (correct, too-early, and too-late) by the total number of attempts
across all categories, discarding trials with no responses or incomplete responses (i.e., single taps).
The percentage of correct responses increased over practice in all conditions. In all conditions the
too-early responses dominated the first couple of blocks, but afterwards the bias stabilized at a lower
level. The largest too-early bias was present in the fast-short condition, whereas the slow-long condi-
tion showed a too-late bias. Note that the fast-short condition best reflects the original Space Fortress
game in which participants handle both mines (requiring IFF-taps) and the fortress (requiring fast-
taps), and have only a short time for the mine task (short-distance).

Fig. 6 (top) plots the mean produced IFF intervals averaged across participants in different condi-
tions. Except for the intermediate-tap-only condition, which is overall flat over blocks, all other con-
ditions share a similar trend: the mean intervals increase in the first three or four blocks, then remain
stable thereafter. The fast-short condition produces the fastest tapping, indicating the strong too-early
bias while the slow-long condition produces the slowest tapping. The fast-long and slow-short condi-
tions, each with only one source of the too-early bias (contamination or distance), are similar to each
other and between the fast-short and the slow-long conditions. The mean intervals in the last 8 blocks
were 344 ms for intermediate-tap-only (SD: 20 ms), 294 ms for fast-short (SD: 26 ms), 320 ms for
fast-long (SD: 23 ms), 324 ms for slow-short (SD: 21 ms), and 365 ms for slow-long (SD: 23 ms).
Fig 6 (bottom) shows the distributions of the produced IFF intervals from the last 8 blocks. The
fast-short curve is on the far left, the slow-long curve is on the far right, and the three curves with



Fig. 5. Change in the percentages of IFF tapping response categories in fast/slow-tap games as a function of distance (short/
long).
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fewer sources of bias are sitting in the middle. The curves are similar to one another, but shifted
according to the tap speed and distance effects.

A repeated measures analysis of variance was performed with tap speed (fast/slow) and distance
(short/long) as within-subjects factors and the mean produced IFF interval in the last 8 blocks as
the dependent measure. Intervals longer than 1000 ms and the blocks with mean intervals 3 inter-
quartile-ranges below the first quartile or above the third quartile were excluded from analysis. These
criteria resulted in the exclusion of 0.78% of data. The effects of tap speed (F(1,19) = 72.22, p < .001,
g2

q = .792) and distance (F(1,19) = 42.53, p < .001, g2
q = .691) were both significant. The interaction be-

tween tap speed and distance was significant (F(1,19) = 18.45, p < 0.01, g2
q = .493). The interaction re-

flects the fact that the slow-long condition is even slower than that would be predicted by the main
effects of tap speed and distance, as shown in Fig. 6 (top). In summary, the results support our hypoth-
eses regarding the too-early bias. Estimating a shorter time interval contaminated the estimates of the
intermediate IFF interval, making them shorter. A shorter distance between the mine and the ship
(high time pressure) was another source of the too-early bias.
3.2.2. Performance on the fast-taps and slow-taps
Participants showed fairly good performance in producing fast-taps (<250 ms) and slow-taps

(400–650 ms). The mean percentage of correct responses on fast-taps and slow-taps in the last 8
blocks was 87.7%. The high performance level indicates that participants followed the instructions,



Fig. 6. Mean produced IFF intervals over 12 blocks (top) and distributions of the produced IFF intervals in the last 8 blocks
(bottom).
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and that these time interval ranges had moderate levels of difficulty. Participants performed signifi-
cantly better on fast-taps (93.5%) than on slow-taps (81.9%): t(19) = 5.52, p < .001. This difference pre-
sumably reflects the different requirements for fast-taps and slow-taps. That is, whereas participants
only had to meet an upper limit for fast-taps (250 ms), they had to meet both lower and upper limits
for slow-taps (400–650 ms). One can simply execute two taps as quickly as possible for fast-taps, but
one cannot use any such a simple strategy for slow-taps. For slow-taps, too-early errors (<400 ms)
were significantly more frequent than too-late errors (>650 ms), Meantoo-early = 11.9%, Meantoo-

late = 5.6%, t(19) = 3.43, p < .01. This result reinforces the contamination hypothesis. In the context in
which participants alternated between the intermediate-tap and the slow-tap, the former contami-
nated the latter producing more frequent too-early errors.

3.2.3. Intervals associated with the IFF task
To investigate how the distance manipulation influenced the way participants executed the IFF tap-

ping we analyzed the relationship between three successive intervals: (1) pre-IFF interval: the time
between mine onset and the first IFF key press, (2) IFF interval: the time between the first IFF key press



Fig. 7. Durations of time allocated to the pre-IFF, IFF and post-IFF activities under each response category (too-early, correct,
and too-late) in the short-distance condition (top) and the long-distance condition (bottom) in the last 8 blocks.
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and the second IFF key press, and (3) post-IFF interval: the time between the second IFF key press and
the firing of a missile (spacebar key press). Fig. 7 displays the mean time allocated to the pre-IFF, IFF and
post-IFF activities under each response category (too-early, correct, and too-late) in the short-distance
condition (averaged across fast-short and slow-short conditions) and the long-distance condition
(averaged across fast-long and slow-long conditions) in the last 8 blocks.3 Perhaps not surprising, par-
ticipants took 300 ms longer in the long-distance conditions reflecting the greater time they had to re-
spond. There were no significant differences within the long-distance condition in terms of the time in
the pre-IFF or post-IFF intervals. However, an interesting pattern did appear in the short-distance condi-
tion where participants were under much more time pressure. When participants were too early with
their IFF, they averaged over 180 ms longer in their pre-IFF interval. All 18 of the participants who pro-
duced too-early responses in the short-distance condition had average pre-IFF interval times that were
longer on these too-early trials than on correct trials, t(17) = 7.58, p < .001. In contrast, when participants
were too long with their IFF, their pre-IFF interval was 40 ms shorter. There were only 9 participants who
had too-long IFFs in the short-distance condition and this effect was not significant, t(8) = 1.63, p = .142.
There were no significant differences involving the post-IFF interval. In summary, there was a strong ten-
dency for participants to make too-early responses when their pre-IFF interval was long and they were in
the short-distance condition.

The results suggest that when participants were under a tight time constraint, they adjusted the IFF
interval based on how much time had been spent on pre-IFF activities and how much time was left for
firing a missile. The pre-IFF interval is subject to factors such as how well one remembers the foe
3 The total time allowed for the mine task was 1860 ms for the short-distance condition and 3720 ms for the long-distance
condition.
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letters and how quickly one determines the appropriate key for the IFF tapping. Spending too much
time on the pre-IFF activities leaves little time for the IFF and post-IFF activities. This can result in a
shortening of the IFF interval to avoid having too little time to execute a key press (to fire a missile
at the mine) after completing the IFF tapping. On the other hand, when participants had a plenty of
time for the mine task, the duration of the pre-IFF activities was not a critical determinant of the
IFF interval.

Based on these analyses, one might further expect that even within the same distance condition,
one’s level of practice can influence the degree of time pressure. In the earlier phase of learning, per-
forming the pre-IFF activities will take longer, which will induce higher time pressure and a stronger
tendency to shorten the IFF interval. With more practice, speedup of the pre-IFF activities will induce
lower time pressure, which will weaken the too-early bias. We found a shortening of the pre-IFF inter-
val with practice. The mean pre-IFF interval was 1089 ms in earlier blocks (block 1–6) and 973 ms in
later blocks (block 7–12). The shortening of the pre-IFF interval explains why the too-early bias weak-
ened over practice (Fig. 5) and why the mean intervals increased in the first three or four blocks (Fig. 6,
top). Changes in the pre-IFF and IFF intervals in the fast-short condition, a condition with high time
pressure, demonstrate this point. Compared with the earlier blocks, the mean pre-IFF interval became
shorter by 54 ms in the later blocks (Meanearly = 894 ms, Meanlate = 840 ms, t(19) = 2.73, p < .05). In
conjunction with this change, the IFF interval became longer by 30 ms (Meanearly = 265 ms,
Meanlate = 296 ms, t(19) = �6.02, p < .001). In contrast, such dynamics between the pre-IFF and IFF
intervals over practice were absent in the intermediate-tap-only games. Neither the pre-IFF interval
(Meanearly = 625 ms, Meanlate = 640 ms, t(19) = �.51, p = .616) nor the IFF interval (Meanearly = 337 ms,
Meanlate = 344 ms, t(19) = �1.34, p = .195) changed significantly with practice.

3.2.4. Individual differences in timing accuracy
We wondered whether there were individual differences in the degree to which participants al-

lowed one interval to contaminate another and what effect this would have on their overall accuracy.
We computed the difference between the mean IFF interval produced in the slow-tap condition and
the mean in the fast-tap condition. This measure reflects the degree of contamination in the interme-
diate interval representation under different tapping conditions, with a smaller value indicating a
more robust representation of the intermediate interval. We also computed the performance accuracy
averaged across intermediate as well as fast/slow tapping trials in the last 8 blocks. A significantly neg-
ative correlation was found between the average accuracy on these trials and the degree to which the
intermediate tap was contaminated (r = �.593, p < .01). The interpretation is that the ability to mini-
mize the contamination from different timing intervals partly explains better performance in the time
estimation task.
4. An ACT-R model of the time estimation task

4.1. Time estimation in ACT-R

As a way of articulating and testing our understanding of the results, we investigated whether we
could model our data by incorporating ideas from the Taatgen and van Rijn (2011) timing model into a
task model based on the ACT-R (Adaptive Control of Thought – Rational) model for Space Fortress
(Bothell, 2010). The model4 was implemented in the ACT-R architecture (Anderson et al., 2004), an inte-
grated theory in which activities of multiple modules are coordinated by a production system to produce
coherent cognition. Modeling in ACT-R allowed us to simulate all aspects of the task, not just the timing
component. In ACT-R, time estimation is achieved through the processing in the temporal module
(Taatgen, van Rijn, & Anderson, 2007) and its interaction with the rest of the system. In the temporal
module, which is based on the internal clock model (Matell & Meck, 2000), a pacemaker keeps
incrementing pulses once a start signal is given. Those pulses are accumulated in temporal buffer. A
request made to the temporal buffer can reset the pulse count to 0, put a chunk (element of declarative
4 The model is available at the models page of the ACT-R website (act-r.psy.cmu.edu/models/) under the title of this paper.



Fig. 8. The ACT-R model of the IFF tapping task.
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knowledge in ACT-R) into the temporal buffer holding the count of 0, and start incrementing that pulse
count. The pulse value stored in the temporal buffer corresponds to the estimated time interval. More
details of the temporal module can be found in Appendix B. In addition to this temporal module, other
relevant components of the ACT-R architecture include a visual module for reading the characters and
tracking the mine, a motor module for issuing the taps, a retrieval model for keeping track of foe letters
and different time lengths, and goal and procedural modules for coordinating these activities.

The procedural module is implemented as a production system that can access the current pulse
value through the temporal module’s buffer and compare it with a criterion (e.g., a value retrieved
from memory) to determine if the target interval has elapsed. Even if the temporal module has accu-
rate timing, performance may not be perfect because the production system may be preoccupied with
its interactions with other modules. For instance, the production system may fail to read the estimated
pulse count while it is engaged in other tasks.

The model uses an instance-based approach to learn the required tapping times. When the model
produces a time interval (e.g., 15 pulses) and observes its outcome (e.g., too-early), the specific in-
stance of that experience is stored in declarative memory as a chunk. This chunk can be retrieved later
to serve as a basis for deciding how long to wait the next time the model has to produce the interval.
As such chunks are added to memory, the speed of retrieval increases and the accuracy of the retrieved
result improves (similar to Logan’s (1988) instance theory).
4.2. Model description

4.2.1. IFF interval estimation
The flowchart in Fig. 8 displays the series of steps in which the model performs the IFF tapping task.

When a mine appears, the model attends to the letter and starts tracking the mine as it moves. The
model determines the mine’s identity by retrieving the letter from memory, and decides which key
is appropriate for producing the IFF interval (F key for a friend mine, J key for a foe mine). The model
then starts retrieving a criterion pulse value for the IFF interval. The retrieval of the criterion value is
based on the blending mechanism discussed later and in Appendix B. If blending is successful, the
model uses the blended result as the criterion. If blending fails, the model uses a default value (set
to 16 pulses). Once the criterion is determined, the model issues the first IFF tap and starts increment-
ing the pulse value in the temporal buffer. When the pulse value (a positive integer) in the temporal
buffer is greater than or equal to the criterion value (a positive real number), the model issues the sec-
ond IFF tap that terminates the interval. As soon as the manual module is free, the model issues an-
other tap (spacebar) to fire a missile. After firing a missile, the model attends to the feedback and
evaluates the outcome as too-early, correct, or too-late. Finally, the model uses the feedback to adjust
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the criterion by storing a feedbackshift value (positive for too-early responses, zero for correct re-
sponses, and negative for too-late responses) that is added to the pulse value so that the criterion
can be appropriately adjusted in the next trial.

Although a missile can destroy the mine only after the correct IFF interval has been produced, par-
ticipants had a tendency to fire a missile even after producing a wrong IFF interval. According to our
data from 12 blocks, approximately 90% of the wrong IFF intervals were followed by a missile firing.
We interpret this result as indicating that participants tended to execute the entire sequence of key
presses (two IFF key presses followed by the spacebar key press) as a unit rather than interrupting
the sequence after the IFF tapping to attend to feedback. After each IFF tapping sequence, the feedback
remained in the bottom panel of the screen until the end of the trial, which makes this strategy pos-
sible. Thus, the model only attends to the feedback after firing a missile.

4.2.2. Fast/slow interval estimation
Besides the intermediate (IFF) tapping for moving mines, the model also performs the fast-taps and

slow-taps for static mines. We built the model to adopt different strategies for the fast-taps and slow-
taps. We assumed that memory retrieval was not strongly involved in performing the fast-taps. Con-
sidering there is only an upper criterion for the fast-taps (250 ms), one can adopt a strategy of execut-
ing two key presses as fast as possible instead of retrieving a time interval from memory. Thus, the
model executes the first tap without retrieving an interval from memory, and then executes the sec-
ond tap as soon as the motor module is ready. We found that some of the participants were consis-
tently faster than others in the fast-tap trials. To accommodate such individual differences, the
model had a conservative and a liberal strategy for executing the second tap. The conservative strategy
involved initiating preparation of the second tap only when the manual module is entirely free (i.e.,
the first tap has been initiated). The liberal strategy was to initiate preparation of the second tap when
the first tap has been prepared and it just has to be initiated. The conservative strategy produces a
200-ms interval while the liberal strategy produces a 150-ms interval for the fast-taps. We mixed
those two strategies so that each strategy was used in half of the total model runs.

For the slow-taps (400–650 ms), we assumed that memory retrieval is involved because one can-
not use the straightforward execution strategy afforded by the fast-taps. Slow tapping is executed
similar to intermediate tapping. The model starts retrieving a blended time interval before it executes
the first tap, using the retrieved interval as the criterion value. If blending fails, a randomly selected
integer between 18 and 20 is used as the criterion pulse value. When the current pulse value of the
temporal buffer exceeds the criterion value, the model executes the second tap. As with the IFF tap-
ping, feedback is displayed after each instance of slow tapping. The model evaluates the feedback
and assigns an appropriate feedbackshift value.

4.2.3. The blending mechanism
The ACT-R blending mechanism (Lebiere, Gonzalez, & Martin, 2007) was adopted to model the con-

tamination from representations of different time intervals. Rather than retrieving a specific chunk as
in standard ACT-R retrieval, blending produces a weighted aggregation of all candidate chunks avail-
able in memory. Each candidate chunk is given a different weight based on how recently the chunk
has been created and how closely it matches the retrieval request.

Fig. 9 illustrates blending for a trial in a fast-tap game in which the model alternates between inter-
mediate-taps and fast-taps. For the example shown in the figure, the model is in an intermediate-tap
trial in which it has to deal with a green moving mine (as in the second trial in Fig. 3a). The upper left
box shows the request made to the blending module, which to find a pulse value that would be appro-
priate for executing the second IFF tap. The blending request has four slots (pulse, feedbackshift, type,
and outcome). Pulse refers to the total count of pulses accumulated in the temporal buffer during a
previous instance of interval estimation. Feedbackshift refers to the adjustment (positive/zero/nega-
tive value) made to the pulse value at the end of the trial based on the outcome of using that pulse
value. Type refers to the tap speed, which can be fast, slow, or intermediate. Outcome refers to the
evaluation the model made based on the timing feedback; it can be too-early, too-late, or correct.
The blending request in Fig. 9 specifies type (intermediate-tap) and outcome (correct) but does not
specify pulse or feedbackshift. Blending is performed to fill in those unspecified slots. The request



Fig. 9. An example of blending for IFF interval in a fast-tap game.
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blends candidate chunks that perfectly match the request (e.g., chunks with correct intermediate-tap)
and imperfectly matching chunks (e.g., chunks with fast/slow-tap type or too-early/too-late outcome),
with the latter penalized according to their degree of mismatch with the blending request.

The bottom box in Fig. 9 shows an example of the computation of the blended values for the pulse
and feedbackshift slots. The weight associated with each chunk represents the degree to which the
chunk contributes to blending and is determined by its recency, the match with the request, and acti-
vation noise. For instance, consider the first four chunks represented in Fig. 9, which are from a block
where fast-tap and intermediate-tap trials alternated:

� Interval45 mismatches both type and outcome but is most recent: Weight 0.103.
� Interval44 is a perfect match and second-most recent: Weight 0.305.
� Interval43 mismatches type and is third-most recent: Weight 0.053.
� Interval42 mismatches outcome and is fourth-most recent: Weight 0.098.5

Chunks of the intermediate-tap type and correct outcome (e.g., interval44) tend to have a higher
contribution than those of the fast-tap type (e.g., interval43). However, due to the contribution of
fast-tap chunks, the final blended value is smaller than it would have been if only intermediate-tap
chunks had contributed to blending, which explains the too-early bias in the fast-tap conditions.
The same mechanism applies to the slow-tap games, only in the opposite direction. In slow-tap games,
due to the contribution of slow-tap chunks, the blended value for the intermediate interval becomes
larger than it is supposed to be.

The model performs blending separately to produce the pulse value and the feedbackshift value. The
top-right box in Fig. 9 shows the outcome of the blending computations, which is a chunk with blended
pulse and feedbackshift values (15.661 and 0.321). If a match score (computed based on the activation
of chunks in the set) exceeds the retrieval threshold, then the model uses the sum of the two blended
5 Note that even though Interval43 and Interval42 both mismatch on one feature and Interval43 is more recent, Interval42
receives greater weighting due to activation noise.



Fig. 10. IFF tapping performance of the model. Change in the percentages of IFF tapping response categories in intermediate-
tap-only games and fast/slow-tap games as a function of distance (short/long).
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values to set the criterion for the IFF interval (in this example, 15.661 + 0.321 = 15.982). The model
executes the second IFF tap when the pulse value in the temporal buffer is greater than or equal to
the criterion (in this example, when it reaches 16). More details regarding the blending mechanism
can be found in Appendix B.
4.2.4. Modeling the distance effect
The model has a production rule that issues the second IFF tap when the current pulse value is

greater than or equal to the criterion. We modeled the distance effect by adding an additional
‘emergency’ production for the second IFF tap. During the trial, the model tracks the mine’s trajectory
by updating the visual-location buffer with the mine’s current location. The emergency production
specifies a threshold value in pixels that forces the model to issue the second tap such that it will have
enough time remaining to shoot at the mine before it hits the ship. The model ignores the pulse value



Fig. 11. Comparison of the model and participants in correct/too-early/too-late responses in the last 8 blocks. Error bars
represent standard errors of the means.
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in the temporal buffer when this production fires. Similar to participants’ tendency to adjust the IFF
interval based on how much time was left, the model adaptively decides when to terminate the inter-
val based on the changing state of the environment. This emergency production never needs to fire in
the long-distance trials.
4.3. Model results

Fig. 10 shows the model’s performance in the IFF tapping task over 12 blocks. In contrast to humans
(see Figs. 4 and 5), it starts with a relatively high accuracy level. This is not surprising because the
model starts out with a perfect representation of the task instructions, whereas participants have to
work out any misunderstandings. Thus, participants show many more start up errors such as failures
to make any response at all. Since our goal is not to model this skill learning, we decided to focus on
modeling the stable effects in the last 8 blocks, where participants and the model have both mastered
the basic task requirements.

The performance of the model depends on many parameters associated with the various modules.
Most of these parameters have pre-established values in ACT-R and were not changed for this



Fig. 12. Comparison of the model and participants in the produced IFF intervals (top) and in the produced fast/slow-tap
intervals (bottom) in the last 8 blocks. Error bars represent standard deviations.
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experiment. For instance, the motor parameters were taken from the EPIC (Executive-Process/Interac-
tive Control) model of Meyer and Kieras (1997). Table C1 in Appendix C gives the critical parameters
for the retrieval and temporal modules, which do not have established default values in ACT-R.

Fig. 11 (see Table C2 in Appendix C for exact values) offers comparisons of human and model per-
formance in the last 8 blocks based on 100 model runs. The model successfully captures not only the
lack of a too-early bias in the intermediate-tap-only condition, but also the distance and contamina-
tion effects in the other conditions. The overall correlation between model and participants equals
.992.

The model’s mean produced IFF intervals (Fig. 12, top) are reasonably close to those of participants.
The average IFF interval is shortest in the fast-short condition (297 ms), longest in the slow-long con-
dition (364 ms), and intermediate in the fast-long (328 ms) and the slow-short (327 ms) conditions.
The model also produces fast-tap and slow-tap intervals (Fig. 12, bottom) that are close to those of
participants. The distribution of the IFF intervals of the model in the last 8 blocks can be found in
Fig. 13 (see the bottom of Fig. 6 for comparison with participants). The model and human distributions
show similar shift in their peaks. The correlations between the 5 corresponding distributions in Figs. 6
and 13 range from .974 to .989, with an overall correlation of .98.
5. Discussion

Research in time estimation has mostly focused on timing behaviors performed as a primary task in
relatively simple, static environments. Although this approach, studying timing behaviors in isolation,



Fig. 13. Distributions of the IFF intervals produced by the model in the last 8 blocks.
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has made significant contributions to advancing theories of time estimation, one may need a different
approach to expand understanding of temporal cognition to a wider range of behaviors performed
outside the standard time estimation paradigms. Time estimation embedded in complex multitasking
situations has received little attention in timing research despite its significance in everyday activities.
The current study aimed to understand multiple factors responsible for timing behaviors in multitask-
ing by modeling them in an integrated framework of cognition.

5.1. Contamination and time pressure explain too-early bias

Two factors appear to be responsible for the too-early bias in time estimation that occurs in the
context of multitasking. First, producing different time intervals contaminated estimation of the target
interval. The representation of the shorter or longer interval shifted the representation of the interme-
diate interval, supporting the claim (Taatgen & van Rijn, 2011) that more than a single experience
determines the representation of the target interval. The blending mechanism of ACT-R offers quan-
titative descriptions of interference among time interval representations in declarative memory and
our model was able to produce the contamination effects seen in the data. The contamination effect
suggests that different time intervals can interfere with each other when those intervals are estimated
in the same context, consistent with the memory-mixing effect in time estimation (e.g., Gu & Meck,
2011).

Second, the time allowed for the task influenced time estimation. Our behavioral results indicated
that executing a set of multiple responses under high time pressure impaired performance in the tar-
get interval estimation. Participants under time pressure showed a tendency to adjust the IFF interval
depending on how much time was left for completing the task. This shows that time estimation can be
sensitive to one’s knowledge of what is about to happen, consistent with Church et al. (1991) in which
the asymmetric responses of rats in the peak procedure reflected anticipation of the end of a trial and
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the conditions of the next trial. Our model captures this by having a procedural rule (the ‘emergency’
production) that overrides the outcome of the internal temporal estimate based on its perceptual pro-
cessing of the external environment. Zakay’s (1993) attention-based account for decision-making as-
sumes division of attentional resources between temporal task and nontemporal task, and predicts an
adoption of a simpler strategy in the nontemporal task under time pressure. In the current study, the
assumption is that attentional resources were divided between two tasks that both involve time esti-
mation: (1) Estimating the time progressed since the mine onset, and (2) the mine task that involves
estimating the IFF interval. Time pressure presumably increased attention to the former task. Less
attentional resources allocated to the latter mine task resulted in the adoption of a simpler strategy
in the decision when to terminate the IFF interval.

The interaction between the two factors (Fig. 6) suggests that the contamination effect was larger
in the long-distance condition than in the short-distance condition. The model also produced an inter-
action between tap speed and distance (F(1,99) = 11.06, p = .001, g2

q = .10). This interaction is produced
in the model by the emergency production in the short-distance condition. The emergency production
fires most of the trials (about 80%) in the short-distance condition. Because the outcome of blending is
used only in about 20% of the trials in which the emergency production does not fire, the contamina-
tion effect is only partially observed in the short-distance condition. On the other hand, because the
emergency production never fires in the long-distance condition, one can see the full rather than par-
tial effect of the contamination effect. In other words, the contamination effect is weighed higher in
the long-distance condition than in the short-distance condition.

Regardless of the conditions, participants showed a strong too-early bias in the early blocks (see
Fig. 5). There are a number of possible explanations for this result. First, participants were likely
learning how to speed up other aspects of the task besides the IFF tapping across blocks. In early
blocks, these other processes might have been so slow as to increase the use of the emergency rule.
For example, possibly there was a speedup of how fast participants selected an appropriate key
depending on the mine’s identity. We showed earlier that there was a speedup of the pre-IFF activ-
ities over practice. Second, participants might not even have been trying to time the target interval
in the early blocks; instead they may have just practiced the sequence of responses in the task and
focused on time estimation only when they had become proficient at responding. The third possible
explanation is arousal, which has been associated with the demands of cognitive processing (Kahn-
eman, 1973). Studies suggest that arousal can affect the subjective duration of intervals by speeding
up the rate at which a pacemaker produces pulses (e.g., Burle & Casini, 2001; Penton-Voak, Edwards,
Percival, & Wearden, 1996). For example, participants in Burle and Casini’s (2001) study, who pro-
duced a target interval while hearing click trains that differed in intensity, produced shorter esti-
mates under strong intensity than under weak intensity. Those studies predict that accumulation
of pulses would complete in a shorter time in the aroused status, which shortens the produced
interval. A brain imaging study by Anderson et al. (2011) in Space Fortress task showed phasic activ-
ity during the first two seconds after mine onset that indicated resource competition, which could
possibly be related to a higher arousal level. Such arousal would be particularly high in the early
blocks.

The contamination effect was present in both fast-tap trials and slow-tap trials. One might argue
that the contamination hypothesis does not apply to fast-tap trials if participants were adopting a
simplistic motor strategy (i.e., tap twice as fast as one can) without explicitly timing the interval.
While this is the strategy adopted by our ACT-R model for executing fast-taps, the model remembers
the intervals retrospectively. The question of how temporal information is remembered retrospec-
tively has not been completely understood. Retrospective time estimation tends to be less accurate
than prospective time estimation (Block & Zakay, 1997). Based on evidence that some variables dif-
ferently influence experienced and remembered duration, different mechanisms have been claimed
to underlie prospective and retrospective time estimation (Zakay & Block, 2004). On the other hand,
the structural remembering approach (Boltz, 1998; Boltz, Kupperman, & Dunne, 1998) claims that
people are able to incidentally learn and remember event durations in retrospective situations with
high accuracy when event structures are highly predictable (i.e., temporal and nontemporal



J. Moon, J.R. Anderson / Cognitive Psychology 67 (2013) 26–54 47
information bear a lawful relationship to one another).6 This account predicts that time duration can
be incidentally learned without additional attentional effort when people learn to temporally coordi-
nate sequence of actions (e.g., learn a new motor skill) or attend to melodies with a hierarchical
arrangement of melodic structure. We suspect that the repeated execution of motor sequences for
the fast-tap created a highly predictable event structure in which participants were able to represent
the durations retrospectively.

5.2. Modeling time estimation in ACT-R cognitive architecture

Block (1989) argued, ‘‘A complete understanding of any kind of temporal experience is possible
only if we consider complex interactions among all of these factors’’. Inspired by Newell (1990), cog-
nitive architecture aims to explain all aspects of cognition within a coherent framework. In line with
previous efforts (e.g., Taatgen & van Rijn, 2011), we suggest that modeling complete processes of time
estimation from perception to action in the context of the entire cognitive system can lead towards a
better understanding of timing behaviors. Our model’s interaction with the environment through its
perceptual/motor module and the memory retrieval mechanism provided quantitative accounts of the
too-early bias in the data. The model’s time estimation was based on the pacemaker–accumulator
internal clock model (Matell & Meck, 2000). However, more critical aspects of our modeling work
are: (1) The contributions of the declarative (memory contamination) and procedural (time pressure)
components to time estimation, (2) the ability of the model to disambiguate between the two contri-
butions, and (3) modeling behaviors outside the standard time estimation paradigms.

The blending mechanism is a part of ACT-R’s declarative memory mechanism and explains how
time intervals are represented in memory and interact with each other. It was originally developed
as an account for general memory process yet it has been shown to explain the memory-mixing effect
in interval timing (Taatgen & van Rijn, 2011). One of the limitations of the scalar timing model (Gibbon
et al., 1984) is the ability to account for how time estimation is influenced by representations of other
durations in the same context. We suggest that modeling time estimation based on general memory
mechanisms developed outside the domain of timing is one way toward a better understanding of
time estimation. This approach can further contribute to addressing theoretical questions about mem-
ory mechanisms of time estimation, for example, whether memory mechanisms underlying process-
ing temporal information are fundamentally different from those underlying processing nontemporal
information (Brown, McCormack, Smith, & Stewart, 2005).

The contribution of the procedural component lies in the ability to model the effect of nontemporal
aspects of cognition on time estimation. The role of the procedural system in ACT-R is to coordinate
behaviors of multiple modules to achieve coherent behavior (Anderson et al., 2004). In our model,
the procedural system prioritized the outcome of the visual module over the outcome of the temporal
module when there was high time pressure. This illustrates that when internal temporal estimation is
accurate, timing errors can still occur due to other cognitive processes. Models in ACT-R produce pre-
cise quantitative predictions on how long each process will take, which allows one to assess relative
contributions of the declarative component (e.g., latency for blending) and the procedural component
(e.g., latency for encoding visual input) to timing performance. Although a similar degree of too-early
bias was present in the fast-long condition and the slow-short condition, the model was able to dis-
ambiguate between different sources of error in the two conditions: The declarative contribution in
the former and the procedural contribution in the latter. We suggest that modeling in cognitive archi-
tecture allows one to understand complex interactions among multiple factors in timing behaviors be-
cause one can separately examine different contributions of those factors.
6 In Boltz et al. (1998), when participants learned a novel motor activity consisting of several independent steps (e.g., building a
model car) with varying number of trials, their retrospective verbal estimation of task duration became more accurate in the later
stage of learning (i.e., when event structure became highly predictable) than in the earlier stage. In (Boltz, 1998) in which
participants attended to tunes with coherent melodic structure, the reproduction of the total duration of the tunes was highly
accurate regardless of whether participants attended to temporal information, nontemporal information, or both during the tune
presentation suggesting that both kinds of information can be jointly encoded without additional attentional effort. The
predictions of the structural remembering approach were supported in retrospective estimation of minute-range (Boltz et al.,
1998) as well as second-range (approximately 10 s in Boltz, 1998) durations.



Table C1
The critical parameters for the retrieval and temporal modules.

Name Description Value

:rt The retrieval threshold. The minimum activation a
chunk must have to be retrieved

1.0

:lf The latency factor, which determines the time it takes
the declarative module to respond to a request for a
chunk

1.1 s

:ans The activation noise parameter used to generate the
instantaneous noise added to the activation of a chunk.
This value is typical of ACT-R models where the noise
parameter is less than 1 and usually less that .5

.385

:mp The mismatch penalty 2.25
similarity The similarity between the value in the retrieval

specification and the value currently in the
corresponding slot of the chunk in the buffer. The default
range is from 0 (highest similarity) to -1 (lowest
similarity)

fast:interm (�0.5)
slow:interm (�0.2)
too-early:correct (�0.7)
too-late:correct (�0.7)

:time-mult The multiplier for increasing the pulse length 1.1
:time-noise The noise added to the pulse lengths .0015
:time-master-start-increment The length of the initial pulse (the time between the

pulse count of 0 and the count of 1) in seconds
11 ms

Table C2
Model and human performance in correct, too-early, and too-late responses.

Model Human

Correct (%) Too-early (%) Too-late (%) Correct (%) Too-early (%) Too-late (%)

Interm-Tap-Only 86.7 2.4 10.9 89.3 2.0 8.8
Fast-Short 83.1 15.6 1.4 79.5 19.2 1.3
Fast-Long 90.6 6.4 3.0 90.2 6.9 2.9
Slow-Short 83.0 7.3 9.7 87.3 7.2 5.5
Slow-Long 78.5 0.8 20.7 79.1 2.2 18.7
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Finally, the current work illustrates that modeling in cognitive architecture allows one to study a
wider range of timing behaviors without being bounded by standard time estimation paradigms. Per-
formance in the intermediate-tap-only condition was remarkably different from performance in the
other conditions. Participants did not show the too-early bias when they estimated the same interval
without interference from a different temporal task or the mine task. This clear contrast demonstrates
that time estimation performed in a dynamic task can exhibit properties different from those observed
from standard paradigms in which time estimation is performed as an isolated task in static environ-
ments. Furthermore, time estimations in multitasking tend to involve more complex procedures than
assumed in the standard paradigms. In the IFF task, the target interval is never presented, and time
estimation is interleaved in a number of other attention-demanding tasks. The large procedural differ-
ences between timing in multitasking and timing in standard paradigms suggest that a better way to
understand timing in multitasking is to model the complete processes of timing in cognitive architec-
ture rather than oversimplifying the task in an attempt to fit it into the standard paradigms.

5.3. Implications for other fields of research

Besides the contributions of the current approach to the theoretical understanding of timing mech-
anisms, our results also provide implications to research in complex skill performance in which timing
plays an important role. The performance difference between the intermediate-only condition and
other conditions is relevant to the question of what is the optimal training to improve time estimation
performance. In the skill acquisition literature, one of the well-known instructional strategies involves
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part-task training, which decomposes a complex task into multiple part-tasks and gives training on
each part-task individually before practicing the whole task. In Frederiksen and White’s (1989) appli-
cation of part-task training to Space Fortress, training on the IFF interval estimation was similar to our
intermediate-tap-only condition in that their participants simply practiced producing the target inter-
val in a game isolated from the whole context of the Space Fortress task. An alternative training ap-
proach is the integrated emphasis-change strategy (Gopher, Weil, & Bareket, 1994; Gopher, Weil, &
Siegel, 1989) which has participants perform the full task but manipulates the relative emphasis given
to different components of the task. Comparison of the two approaches (Fabiani, Buckley, Gratton,
Coles, & Donchin, 1989) showed that although the part-task approach led to better final performance,
the integrated approach was more resistant to interference when concurrent tasks were introduced.
Our results showed that good performance in the intermediate-tap-only condition did not transfer
to good intermediate timing in the more complex games. While this does not necessarily mean that
part-task training is less effective, it suggests that in order for the part-task approach to be successful,
the part-task should be large enough to include the critical sequence of activities (e.g., pre-IFF, IFF, and
post-IFF activities) so that they can be learned as a unit. If this condition is met, one might find that
more learning opportunities offered in the easier condition facilitate successful transfer to the harder
condition as in Taatgen et al. (2007).

Human factors researchers have studied timing performance and patterns of timing errors in dy-
namic multitasking situations (Levinthal & Rantanen, 2004; Rantanen & Xu, 2001; Xu & Rantanen,
2003). Participants in Rantanen and Xu’s (2001) study were presented with a simulated busy traffic
environment and let a pedestrian cross the street between successive vehicles in order to avoid colli-
sion by estimating a sufficient interval and timing the initiation of the action. They found that the pro-
portion of too-early errors in release of the pedestrian increased when the temporal gap between
successive vehicles was reduced. They also found that increasing the perceived accuracy demand (fas-
ter speed of the traffic) shifted participants toward earlier release times, suggesting that the visual ele-
ment of the task dominated time perception. Such a situation is common in multitasking situations
(e.g., driving a car or piloting an aircraft) in which one has to predict the future trajectories of moving
objects in order to avoid collisions (Xu & Rantanen, 2003). Similar to those studies, our results can be
potentially applied to addressing human factors issues such as improving safety and reducing errors in
various time-critical multitasking situations. Identifying patterns of timing errors and investigating
the underlying causes may suggest changes in work procedures, work environments, or training.
For instance, work procedures can be organized such that a timing-critical task is separated from other
tasks that involve less critical timing, avoiding memory contamination.
6. Conclusions

The time estimation mechanism in ACT-R has successfully captured human time estimation perfor-
mance in attention-demanding dual-task conditions (Taatgen et al., 2007), estimation of multiple
overlapping time intervals (van Rijn & Taatgen, 2008), as well as in dynamic multitasking situations
such as driving (Salvucci et al., 2006), piano playing (Nguyen & Salvucci, 2006), and conversation (Traf-
ton, Bugajska, Fransen, & Ratwani, 2008). The current study explored millisecond-level time estima-
tion embedded in a complex real-time task that imposes especially high perceptual-motor
demands. The model built in the ACT-R architecture provided an integrated account of why time
estimation performed in this context exhibited different properties than when it was performed in
an isolated context. This study further supports the need to model time estimation in the broader
context of cognition as we attempt to expand our understanding of human temporal cognition to
the domain of complex skills.
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Appendix A. Instructions

In this experiment, you will play games in which you need to respond to different stimuli by pro-
ducing finger taps with fast/intermediate/slow intervals. There are 3 types of games (intermediate-
tap-only, fast-tap, and slow-tap).
A.1. Intermediate-tap-only game

In this game, a series of letter stimuli (F or J) will appear in the screen. When the letter F appears,
tap the F key twice with an intermediate (between 250 and 400 ms) interval. When the letter J
appears, tap the J key twice with an intermediate interval. If you make a successful interval, the letter
will disappear immediately (you will gain points). If you fail, you will need to wait a few seconds until
it disappears (you will lose points).
A.2. FAST-TAP game

In the beginning of this game, you will see three alphabet letters in the screen. Make sure you
remember those letters during the game. You are encouraged to use mnemonic strategy to remember
the letters (e.g., ‘‘I am the king’’ for the ‘‘I, M, K’’).

During the game, you will see a ship stationed at the bottom left of the screen and a mine that
appears every couple of seconds after the previous mine disappears.

There are two types of mines: red stationary mine and green moving mine.
When a red stationary mine appears, tap the spacebar twice with a fast (< 250ms) interval. If you

make a successful interval, the mine will disappear immediately (you will gain points). If you fail, you
will need to wait a few seconds until it disappears (you will lose points).
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When a green moving mine appears, check the letter on the mine. If the mine contains any of the
three letters shown in the beginning (as in the figure above), the mine is a foe. Otherwise the mine is a
friend.

In order to destroy foe mine, (1) tap the J key twice with an intermediate interval and (2) shoot a
missile (tap spacebar). In order to destroy friend mine, (1) tap F key twice with an intermediate inter-
val and (2) shoot a missile (tap spacebar). If you successfully make the correct interval and shoot a
missile, the mine will disappear immediately (you will gain points). If you fail to make the correct
interval OR fail to shoot a missile, the mine will destroy your ship (you will lose points).

A.3. SLOW-TAP game

This game is identical to the Fast-tap game except that you will see blue stationary mines instead of
red stationary mines.

For the blue stationary mine, tap the spacebar twice with a slow (between 401 and 650 ms)
interval.

The response to green moving mines should be the same as the Fast-tap game.
After each double-tap, the interval you produced will appear in the INTRVL box (on the bottom pa-

nel of the screen) for a few seconds. In all games, you have only one chance for producing the interval.
If you fail to produce the right interval, you cannot try again. For any stimulus (letter or mine), make
the appropriate response as fast as you can. Your bonus money will depend on how successfully you
handle the mines AND produce the correct intervals.
Appendix B. Blending and time estimation mechanism in ACT-R

B.1. Blending

In the subsymbolic structure of ACT-R, each chunk in declarative memory is associated with an
activation value that reflects the degree to which past experiences indicate that the chunk will be use-
ful at any particular moment. The activation value of the chunk is the sum of base-level activation
(reflecting the recency and frequency of use of the chunk), a partial matching value (reflecting the de-
gree to which the chunk matches the specification requested), and noise, as described in the following
equation:
7 The
chunks
the size
base-le
Ai ¼ ln
Xn

k

t�d
k

 !
þ
X

m

PMmi þ noise ðB:1Þ
n, the number of past presentations of chunk i; tk, the time since the kth presentation; d, the decay
parameter. We used the default value of 0.5; P, the match scale parameter (set with :mp in
Table C1) that determines the weight given to similarity; Mmi, the similarity between the value m
in the retrieval specification and the value in the corresponding slot of chunk i (set with similarity
in Table C1).

The activation value determines how likely the chunk is to be retrieved and how long the retrieval
takes. With the standard retrieval mechanism, the chunk that has the highest activation has the high-
est likelihood of retrieval if the activation value is above a threshold. With the blending mechanism,
however, the chunk returned will reflect the weighted average of the chunks in memory. When the
blending request is made, the matching set (i.e., the set of chunks that match the request) is found
regardless of the activation of those chunks (e.g., interval45 through interval20 in Fig. 9).7 The weight
(Pi) given to each chunk in the matching set (chunk A1 through chunk Aj) is determined based on the
following Boltzmann equation:
size of the matching set grows as the model repeatedly generates chunks over the trials. By default blending can use all
that match the blending request. However, because older chunks have very little impact on blending outcome, we limited
of the matching set such that only relatively recent chunks participate in the blending. The :min-bl parameter (a minimum

vel activation a chunk has to have to be considered in the matching-set) was set to �2.5.
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Ai, the activation of chunk i; Aj, the activation of chunk j in the matching set; t, temperature.
Chunks with better matches to the request and those experienced more recently are assigned a

higher weight (Pi).8 A blended chunk is created that has values that are weighted averages of the indi-
vidual chunk values:
V ¼
X

j

PjVj ðB:3Þ
Pj, the weight for chunk j in the matching set; Vj, the value for chunk j in the matching set.
In Fig. 9, the blended pulse value 15.661 is the weighted average of individual pulse values:

0.103 * 14 + 0.305 * 18 + 0.053 * 13 + 0.098 * 17 + � � � + 0.009 * 17. The blended feedbackshift value
0.321 is the weighted average of individual feedbackshift values: 0.103 * (�6) + 0.305 * 0 +
0.053 * 0 + 0.098 * 3 + � � � + 0.009 * 3.

The blended chunk is given a match score M, the log of the sum over the chunks in the matching set
of e to the power of Aj:
M ¼ ln
X

j

eAj

 !
ðB:4Þ
Aj, the activation of chunk j in the matching set.
Similar to the retrieval process, if the match score is equal to or greater than the retrieval threshold

(:rt in Table C1), then the blending succeeds and the retrieval latency is computed using the match
score. If the match score is lower than the retrieval threshold, then the blending results in failure
and latency is determined by the retrieval threshold.
B.2. Time estimation

Time estimation in ACT-R occurs via the temporal module (Taatgen, van Rijn, & Anderson, 2007)
and its interaction with the rest of the system. The temporal module is based on the internal clock
model (Matell & Meck, 2000) that assumes a pacemaker generates pulses at certain intervals. Once
the accumulator is reset to zero (by a request made to the temporal buffer), it starts counting pulses
and automatically keeps accumulating the pulse counts as time progresses. The total pulse count accu-
mulated during the interval indicates the estimate of the time interval. The production system can ac-
cess the current pulse value via a chunk in the temporal buffer. When time estimation finishes, the
temporal buffer can be cleared (stop the pulse accumulation).

The temporal module produces a logarithmic representation of time. The initial pulse length (t0) is
.011 s. The pulse length keeps increasing as time progresses. The following equation describes how the
nth pulse length (tn) is computed. Due to this logarithmic property, the time estimates are more accu-
rate for shorter intervals than for longer intervals.
t0 ¼ start þ e1tn ¼ a � tn�1 þ e2
Start, value of the :time-master-start-increment parameter; a, value of the :time-mult parameter; b,
value of the :time-noise parameter; e1, noise generated with the act-r-noise command with an s of
b * 5 * start; e2, noise generated with the act-r-noise command with an s of b * a * tn�1.
ur model, the same temperature value (t = 0.544) was set for all chunks throughout all blending computations, thus
ces in weights are mostly explained by differences in chunk activation. The temperature parameter was set to its default
hich is the square root of 2 times :ans (instantaneous noise in Table C1).



J. Moon, J.R. Anderson / Cognitive Psychology 67 (2013) 26–54 53
Appendix C. Tables

See Tables C1 and C2..
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