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Abstract 

A new method is demonstrated for identifying processing 
stages in a task. Since the 1860s cognitive scientists have used 
different methods to identify processing stages, usually based 
on reaction time (RT) differences between conditions. To 
overcome the limitations of RT-based methods we used 
Hidden Markov Models (HMMs) to analyze EEG data. The 
HMMs indicate for how many stages there is evidence in the 
data, and how the durations of these stages vary with 
experimental condition. This method was applied to an 
associative recognition task in which associative strength and 
target/foil type were manipulated. The HMM-EEG method 
identified six different processing stages for targets and re-
paired foils, whereas four similar stages were identified for 
new foils. The duration of the third, fifth and sixth stage 
varied with associative strength for targets and re-paired foils. 
We present an interpretation of the identified stages, and 
conclude that the method can provide valuable insight in 
human information processing. 
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Introduction 
One of the main goals of cognitive science is to understand 
how humans perform tasks. To this end, scientists have long 
tried to identify different processing stages in human 
information processing. The first to do this in a systematic 
manner was probably Franciscus Donders. Almost 150 
years ago, Donders proposed a method to measure the 
duration of cognitive stages (1868). By subtracting the RTs 
of two tasks that were hypothesized to share all but one 
processing stage, the duration of that stage could be 
calculated. A strong – and often problematic – assumption 
of Donders’ subtractive method is the idea that it is possible 
to add an entire stage without changing the duration of other 
stages. To test whether different stages exist in the first 
place, Sternberg proposed the additive-factor method 
(1969). Although Sternberg overcame a limitation of 
Donders’ method, the additive-factors method has its own 
drawbacks: it can only indicate the minimum number of 
stages in a task and it does not yield duration estimates of 
the stages. To improve on these inherent problems of RT-
based methods and get better insight in stage existence and 
duration we propose a new method that uses HMMs (e.g., 
Rabiner, 1989) to analyze EEG data. 

The basic idea of our method is to fit HMMs with 
different numbers of states to the EEG data (note that we 
use ‘processing stages’ and ‘HMM states’ interchangeably 
throughout the paper). The optimal number of states can 
then be determined by comparing the log-likelihoods of the 
fitted HMMs. Subsequently, the durations of the different 
states can be inspected, as well as how these durations vary 

with condition. Using this information, and by comparing 
EEG signatures between states and experimental conditions, 
one can interpret the functional characteristics of the 
identified processing stages. 

Our approach is based on a similar method that was used 
to analyze fMRI data (Anderson & Fincham, in press; 
Anderson et al., 2010). For instance, Anderson and Fincham 
(in press) applied the method to mathematical problem 
solving, and discovered four stages: encoding the problems, 
planning a solution strategy, solving the problems, and 
entering a response. Although these results were promising, 
the temporal resolution of fMRI is severely limited, both by 
having scans that typically last one to two seconds and by 
the sluggish nature of the hemodynamic response. EEG, on 
the other hand, has a millisecond resolution, allowing for 
the discovery of processing stages in fast-paced tasks. 

We applied the HMM-EEG analysis to an associative 
recognition task. During the study phase of this task, 
subjects were asked to learn word pairs. In a subsequent test 
phase – during which EEG data were collected – subjects 
were again presented with word pairs, which could be the 
same pairs as they learned previously (targets), rearranged 
pairs (re-paired foils), or pairs consisting of novel words 
(new foils). Subjects had to decide whether they had seen 
the pair during the study phase or not. Successful 
discrimination required remembering not only that the 
words were studied (item information), but also how the 
words were paired during study (associative information).  

A conventional EEG analysis and a classifier analysis of 
this study were reported elsewhere (Borst et al., submitted). 
Currently, we are interested in finding out how many stages 
the subjects went through while determining a correct 
response. 

Methods 
Subjects  
Twenty individuals from the Carnegie Mellon University 
community participated in a single 3-hr session for 
monetary compensation (9 males and 11 females, ages 
ranging from 18 to 40 years with a mean age of 26 years). 
All were right-handed and none reported a history of 
neurological impairment. 

Design 
The experiment consisted of a study phase in which subjects 
learned word pairs and a test phase in which they were 
tested on these word pairs. In addition to probe type (targets, 
re-paired foils, or new foils), we manipulated word length 
and associative strength. Words could either be short (4 or 5 

221



letters) or long (7 or 8 letters). Associative strength was 
manipulated by varying the number of word pairs a 
particular word occurred in. This is referred to as 
associative fan, and is known to have a strong effect on RT 
and accuracy (for a review, see Anderson & Reder, 1999). 
Words in our experiment could have a fan of 1 or 2, that is, 
they could occur in one or two word pairs. Both words in a 
word pair always had the same associative fan. New foils 
(foils consisting of words that were not presented in the 
study phase) always had an associative fan of 1, they only 
appeared in a single word pair. Thus, there were 10 
conditions: 2 (Probe: target or re-paired foil) × 2 (Word 
Length: short or long) × 2 (Fan: 1 or 2) + short and long 
new foils. 

Materials 
Word pairs were constructed from a pool of 464 words 
selected from the MRC Psycholinguistic Database 
(Coltheart, 1981). Half of the words were nouns of 4 or 5 
letters and composed the short word list. The other half of 
the words were nouns of 7 or 8 letters and composed the 
long word list. Word frequency and imageability ratings 
were matched between those lists. The 232 words of each 
length were divided randomly into two lists – a 24-word 
study list and a 208-word new foil list – such that the lists 
were matched on word frequency, imageability, and word 
length according to t-tests (all ps > .1). 

The lists were used to create three sets of probes: targets, 
re-paired foils, and new foils. A set of 32 target word pairs 
was constructed from the study lists such that there were 
eight word pairs for each combination of length (short or 
long) and fan (1 or 2). Both words in short pairs were 4 or 5 
letters and both words in long pairs were 7 or 8 letters. Each 
word in a fan 1 pair appeared only in that pair, whereas each 
word in a fan 2 pair appeared in two pairs. A corresponding 
set of 32 re-paired foil pairs was constructed in a similar 
manner by combining words from different target pairs of 
the appropriate length and fan. A set of 208 new foil word 
pairs was constructed from the new foil lists such that there 
were 104 word pairs for each length (all fan 1). The 
randomization of words and their assignment to conditions 
were unique for each subject. 

Procedure 
The study phase started with each target word pair presented 
onscreen for 5000 ms, followed by a 500-ms blank screen. 
Subjects were instructed to read each pair and make an 
initial effort to memorize it. Following target presentation, 
subjects completed a cued recall task designed to help them 
learn the word pairs. On each trial they were presented with 
a randomly selected target word and had to recall the 
word(s) paired with it (two-word responses were required 
for fan 2 words). The self-paced responses were typed and 
feedback (in the form of the correct response) was provided 
for 2500 ms following errors. If a target word elicited an 
error, it was presented again after all other target words had 
been presented. A block of trials concluded when all 48 

target words had elicited a correct response. Subjects 
completed a total of three blocks of cued recall. 

After the study phase, subjects entered the EEG recording 
chamber and completed the test phase. Each trial began with 
a centrally presented fixation cross for a duration sampled 
from a uniform distribution ranging from 400 to 600 ms. 
Following fixation, a probe word pair appeared onscreen 
(one word above the other) until the subject responded with 
a keypress to indicate whether the probe had been studied 
during the training phase. The probe was either a target, re-
paired foil, or new foil. Targets required “yes” responses 
(indicated by pressing the J key with the right index finger) 
and foils required “no” responses (indicated by pressing the 
K key with the right middle finger). Subjects were 
instructed to respond quickly and accurately. Following the 
response, accuracy feedback was displayed for 1000 ms, 
after which a blank screen appeared for 500 ms before the 
next trial began. Subjects completed a total of 13 blocks 
with 80 trials per block. All 10 conditions occurred equally 
often in random order in each block, resulting in 104 trials 
per condition during the test phase. Targets and re-paired 
foils were repeated during the test phase (they each 
appeared once per block), but each new foil appeared only 
once in the entire experiment. 

EEG recording 
Subjects sat in an electromagnetically shielded chamber. 
Stimuli appeared on a CRT monitor placed behind radio-
frequency shielded glass and set 60 cm from the subjects. 
The electroencephalogram was recorded from 32 Ag-AgCl 
sintered electrodes (10-20 system). Electrodes were also 
placed on the right and left mastoids. The right mastoid 
served as the reference electrode, and scalp recordings were 
algebraically re-referenced offline to the average of the right 
and left mastoids. The vertical electrooculogram (EOG) was 
recorded as the potential between electrodes placed above 
and below the left eye, and the horizontal EOG was 
recorded as the potential between electrodes placed at the 
external canthi. The EEG and EOG signals were amplified 
by a Neuroscan bioamplification system with a bandpass of 
0.1 to 70.0 Hz and were digitized at 250 Hz. Electrode 
impedances were kept below 5kΩ. 

EEG preprocessing 
Recording artifacts in the EEG data were removed based on 
visual inspection. Following artifact rejection, the data were 
decomposed into independent components. Components 
associated with eye blinks were visually identified and 
projected out of the EEG recordings. A 0.5-30 Hz band-pass 
filter was applied to attenuate high-frequency noise. Trials 
were extracted from the continuous recording and baseline-
corrected using a linear baseline, such that the 200 ms 
before stimulus onset and 80-160 ms after the response were 
on average 0 (visual inspection showed no condition 
difference at this interval after the trial). Incomplete trials 
due to artifact rejection were excluded, as well as trials 
containing voltages above +75 µV or below -75 µV. In 
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addition, all incorrect trials and correct 
trials with RTs exceeding three 
standard deviations (SDs) from the 
mean per condition per subject were 
removed. For the HMM-EEG analysis 
we also removed trials with RTs 
longer than 3000 ms. In total, 16.1% 
of the trials was excluded. 

For efficiency, the EEG data were 
down-sampled to 50 Hz. Every four 
samples were then combined into a 
single ‘super-sample’, by quadrupling 
the number of channels. That is, from 
four 20-ms samples with 32 channels 
we created one 80-ms super-sample 
with 128 channels. A super-sample 
contained information about the mean 
voltage in each channel, as well as 
about whether this voltage increased or 
decreased over the 80 ms interval. 
Next, we normalized each channel to a 
mean of 0 and a SD of 1, and applied a 
principle component analysis (PCA) to 
the 128 channels. The results of the 
PCA were again normalized; the first 
20 PCA components were used for the 
HMM-EEG analysis. 

The HMM-EEG Analysis 
The HMM-EEG analysis consists of 
two main parts: (1) determining the 
optimal number of states and (2) 
computing the properties of the 
identified states. Both parts of the 
analysis depend on fitting HMMs to the preprocessed EEG 
data. We will therefore first discuss the structure and 
parameter estimation procedure that was used for the 
HMMs. We then explain how these HMMs were used to 
find the optimal number of states and how we computed the 
properties of these states. 

HMM structure and parameter estimation 
An HMM simulates a system that is at any given time in one 
of a set of distinct states, between which it transitions at 
certain times (e.g., Rabiner, 1989). In our analysis, each 
state represents a processing stage in the task (e.g., encoding 
the stimulus, executing a response). A state is associated 
with a brain signature Mi that represents the average EEG-
activation pattern during this processing stage, and with a 
gamma distribution Gi that represents the state’s durations 
over the trials in the experiment. For current purposes, we 
only consider HMMs with a linear structure, that is, state 1 
always transitions to state 2, state 2 to state 3, etc. 

An example of a four-state HMM is shown in Figure 1. At 
the top of the figure EEG data is shown for three channels 
over three trials of the experiment, at the bottom the HMM 
with associated brain signatures and gamma distributions. 

HMM algorithms can be used to find parameters Mi and 
Gi that yield the optimal interpretation of the data given an 
HMM with r states (see Anderson & Fincham, in press, for 
a more detailed explanation for the kind of HMMs that are 
used in this paper; Rabiner, 1989; Yu & Kobayashi, 2006). 
To calculate the solutions we adapted software that 
minimizes the summed log-likelihood of the HMM over all 
trials (Yu & Kobayashi, 2006). 

Figure 1 shows the result of such an optimization 
procedure for a 4-state HMM. Given the optimal state 
signatures and gamma distributions, the probability that 
each sample j belongs to a state is depicted in the center of 
the figure. As expected, the first samples in each of the three 
trials probably belong to state 1 (blue), the next samples to 
state 2 (green), etc. In addition, state 1 is always two 
samples long in the three trials in the figure, matching the 
gamma distribution of this stage. State 3, on the other hand, 
is much more variable in duration. 

For clarity the explanation above assumes a gamma 
distribution for each state. In the actual analysis we used 
separate gamma distributions for each condition and state, 
allowing for different duration estimates per condition. 
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Number of states and state properties 
Above we explained how an r-state HMM can be 
determined that gives an optimal interpretation of the data. 
However, what we are really interested in is finding the 
optimal number of states to describe the data. A simplistic 
approach would be to compare the log-likelihoods of 
HMMs with different numbers of states. However, because 
HMMs with more states have more parameters to fit the 
data, they will typically yield a better fit. What we want to 
know is if the extra parameters explain enough extra 
variance to be warranted. To this end we applied leave-one-
out cross validation (LOOCV). 

Our LOOCV method estimated state signatures for n-1 
subjects, and calculated the log-likelihood of the nth subject 
given these signatures while allowing for different state 
durations for the nth subject (to accommodate speed 
differences between subjects, unlike Anderson & Fincham, 
in press). This process was repeated for all subjects. 

The LOOCV procedure was repeated for HMMs with 
different numbers of states. To select the best model we 
used a sign-test: if a k-state model fitted the data of x out of 
n participants better than all (l<k)-state models we choose it 
as the winner. The underlying idea is that while a (k+1)-
state model will fit the data of n-1 subjects better in the 
estimation phase than a k-state model, it is at least as likely 
to fit the nth subject worse (Anderson & Fincham, in press). 
According to a sign-test, a significant increase is reached 
when 15 out of 20 subjects improve (p = .04). 

After determining the optimal number of states, we 
computed the properties of the identified states. First, we 
estimated an optimal HMM on the data of all subjects. We 
used the state signatures of this model to estimate optimal 
gamma distributions for each subject. These gamma 
distributions were used to calculate the average state 
duration for each subject and condition, which were used in 
subsequent ANOVAs to determine which states change in 
duration with condition. In addition, the subject-specific 

models give us the probability for each sample in the data to 
be in a certain state (center of Figure 1). This was used to 
calculate differences in EEG activation between conditions. 

Results 
For reasons of brevity we do not report behavioral results 
separately. RTs can be inferred from Figure 3. For targets 
and re-paired foils, Fan (F(1,19) = 65.42, p < .001), Probe 
(F(1,19) = 45.10, p < .001), and the interaction between Fan 
and Probe (F(1,19) = 31.40, p < .001) had a significant 
effect on RT, as indicated by a repeated measure ANOVA. 
In addition, new foils were responded to much faster than 
the other probe types, which was expected given that no 
associative information has to be retrieved for new foils. 

Number of stages 
Because new foils are very different from the other probe 
types – no associative information has to be retrieved for 
new foils – we decided to run separate analyses for new 
foils and targets/re-paired foils. For targets and re-paired 
foils a 6-state HMM turned out to be the winner. It was 
better for at least 16 subjects than HMMs with fewer states, 
and no HMM with more states had a higher log-likelihood 
for more than 9 subjects. The new foils also showed 
evidence for 6 states: 17 subjects fitted better with a 6-state 
HMM than with 4 states. However, the 4-state solution 
compares better to the 6-state solution of targets and re-
paired foils.1 Although there might be more stages in the 
data, we can be secure in the assumptions that there are at 
least 6 states for targets and re-paired foils and 4 states for 
new foils and in whatever conclusions these assumptions 
lead to. Thus, we will focus on the 4-state solution for new 
foils in this paper. 

Stage properties 
Figure 2 shows the gamma distributions and state signatures 
of the 6-state HMM for the targets/re-paired foils and the 4-
state HMM for the new foils. Interestingly, the first two 
states of both solutions seem very similar. Correlations 
between the state signatures confirm that stage 1 and stage 2 
in both HMMs resemble each other closely: 0.98 and 0.97.  

The estimated gamma distributions in Figure 2b are 
averaged over conditions and subjects. They show that stage 
1 has a very fixed duration, of two samples or 160 ms. The 
other stages are more variable. A duration of 0 means that 
the state is skipped, which happens most often (in 50% of 
the trials) for stage 4 of the targets/re-paired foils. For the 
other stages these percentages are under 30%. 

Figure 3 shows the state durations in more detail, split out 
for conditions. We will only list major effects with p-values 
< .01 (repeated measure ANOVAs), as these are used below 
to interpret the results. 

                                                             
1 The 6-state solution for new foils effectively splits up two of 

the stages into shorter stages. Although this might explain the new 
foils in themselves better, our interest is explaining associative 
recognition. 
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State 1 and 2 seem stable over the different conditions, 
even between the two different HMMs. This matches the 
observation that their state signatures are very similar. Stage 
3 is longer for fan 2 items than for fan 1 (F(1,19) = 15.14, p 
< .001). Stage 4 seems to be an intermediate stage that is 
often skipped for the targets/re-paired foils, and it does not 
change with condition. For the new foils, stage 4 is the final 
stage. It does not change in duration with word length. Stage 
5 varied strongly in duration with both Fan (F(1,19) = 
16.12, p < .001) and Probe (F(1,19) = 20.32, p < .001). 
Stage 6, the final stage for targets/re-paired foils, is longer 
for fan 2 items than for fan 1 items (F(1,19) = 21.55, p < 
.001). In addition, there is an interaction between Fan and 
Probe (F(1,19) = 16.75, p < .001), with the fan effect being 
stronger for re-paired foils than for targets. 

The HMM-EEG analysis aims to find states with similar 
brain signatures in the different conditions of the 
experiment. Although that is the case, there might still be 
differences between conditions within a stage. Figure 4A 
shows the differences between conditions for the 6-state 
HMM for targets/re-paired foils; Figure 4B for the 4-state 
HMM for new foils. These differences were calculated by 
estimating brain activity for each state, condition, and 
subject. The resulting values were subjected to t-tests for 
each electrode. 

Figure 4A shows that long words resulted in less activity 
than short words in state 1 over left prefrontal electrodes, 
and in state 6 over central electrodes. Fan 2 items resulted in 
more activity than fan 1 items in states 3 and 4 over midline 
electrodes, whereas they showed less activity in state 6 over 
parietal regions. Finally, targets elicited a little less activity 
than re-paired foils in state 3, and more activity in states 5 
and 6 over parietal and occipital sites. The largest effect for 
new foils was in state 2, where long words resulted in less 
activity than short words for frontal electrodes. 

Interpretation of the Processing Stages 
The underlying reason for wanting to identify processing 
stages is explaining how tasks are performed. In this section 
we will give our interpretation of the processing stages 
discovered by the HMM-EEG method. 

The first two stages seem to reflect visually perceiving the 
two words on the screen. Both stages hardly varied with 
condition, and are very similar between targets/re-paired 
foils and new foils – implying that the words are not 
processed yet in relation to the experimental task. In 
addition, there are effects of word length on brain activity in 
stage 1 for targets/re-paired foils and in stage 2 for new 
foils. Although word length effects are typically strongest in 
occipital regions, Hauk et al. (2009) showed a left prefrontal 
effect that appears to match our observation. 

We hypothesize that stage 3 reflects item retrieval, to 
determine whether the presented words were learned during 
the study phase of the experiment. First, the duration of 
stage 3 varies strongly with fan and there is also a strong 
effect of fan on brain activity in stage 3. Existing models of 
the fan effect assume that the effect originates in declarative 
memory, implying that this stage is memory related (e.g., 
Anderson & Reder, 1999). Second, for new foils this is the 
stage where information has to be retrieved about whether 
the words were studied or not. After the third stage there is 
only a short response stage, which is similar to stage 6 of 
the targets/re-paired foils. Given the matching time course, 
we assumed that stage 3 reflects an item retrieval stage for 
targets/re-paired foils as well. 

Figure 4. Differences between conditions in states for (A) 
targets/repaired foils and (B) new foils. The maps show t-
values for FDR-corrected p-values < .05. 
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The idea of an early item retrieval stage and a later 
associative retrieval stage (stage 5) resembles dual-process 
theories of recognition (e.g., Rugg & Curran, 2007). To 
judge whether a stimulus was experienced before, dual-
process theories assume an early ‘familiarity’ process, 
followed by a functionally distinct recollection process. 
With respect to our experiment, the familiarity phase could 
correspond to stage 3 – in which it is determined whether 
the items are familiar – whereas stage 5 could correspond to 
the recollection stage in which associative information is 
retrieved. 

Familiarity and recollection processes have been related 
to different ERP components (Rugg & Curran, 2007). 
Familiarity elicits a negative response between 300-500 ms 
over mid-frontal electrodes, with new items being more 
negative than studied items. This matches the observation 
that new foils in our experiment have a more negative brain 
signature over mid-frontal electrodes than targets/re-paired 
foils in stage 3. Recollection has been linked to the parietal 
old/new effect, which is more positive for old than for new 
items. If our stage 5 reflects recollection of associative 
information, it should show a parietal positivity for targets 
versus re-paired foils, which it does. 

Stage 4 is skipped in 50% of the trials. We tentatively 
hypothesize that it reflects working memory consolidation 
of the items that are retrieved from memory in stage 3. This 
is not a necessary process, which might explain why it is 
skipped in 50% of the trials. 

As explained above, we assume that stage 5 reflects 
associative retrievals. Not only does it show the parietal 
old/new effect, but it also varied in duration both with fan 
and probe type, which are known to influence the length of 
associative retrievals.  

Stage 6 of the targets/re-paired foils and stage 4 of the 
new foils are the final stages in the task. We assume that 
they reflect response stages. The duration of stage 6 changes 
with fan, and shows an interaction between fan and probe 
type. For new foils this last stage is shorter than for the 
other conditions. We interpreted these duration differences 
as an effect of response confidence. Subjects responded 
faster and more accurate to new foils than to targets/re-
paired foils, and faster and more accurate to fan 1 items than 
to fan 2 items – indicating they might have been more 
confident in those responses. 

The effects on brain activity support this interpretation. 
There were differences over parietal electrodes between 
targets and re-paired foils (targets being more positive), 
between fan 1 and 2 items (fan 1 items being more positive), 
and between new foils and targets/re-paired foils (the 
signature of new foils is slightly more positive). We 
hypothesize that these effects resemble a P300, which is 
known to increase with response confidence (Wilkinson & 
Seales, 1978). 

Discussion 
In this paper we have presented a new method for 
identifying processing stages in a task, which uses HMMs to 

analyze EEG data. For the associative recognition task, the 
method yielded a 6-state solution for targets and re-paired 
foils and a 4-state solution for new foils. These solutions 
seem to be reasonable, and could be interpreted by using 
information about how the stages varied in length, and how 
the brain activity within stages differed between conditions. 
The results matched dual-process theories of recognition, 
both in expected stage duration and brain activity. 

Naturally, other interpretations of these results are also 
conceivable. For instance, the duration of the last two stages 
could be explained with an accumulator model, which 
samples faster for the easier conditions. 

That being said, especially in combination with earlier 
promising effects on fMRI data (e.g., Anderson & Fincham, 
in press; Anderson et al., 2010), we think that the HMM-
EEG method shows great promise for investigating human 
information processing.  
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