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Abstract

Multi-voxel pattern recognition techniques combined with Hidden Markov models can be

used to discover the mental states that people go through in performing a task. The combined

method identifies both the mental states and how their durations vary with experimental condi-

tions. We apply this method to a task where participants solve novel mathematical problems.

We identify four states in the solution of these problems: Encoding, Planning, Solving, and

Respond. The method allows us to interpret what participants are doing on individual prob-

lem-solving trials. The duration of the planning state varies on a trial-to-trial basis with nov-

elty of the problem. The duration of solution stage similarly varies with the amount of

computation needed to produce a solution once a plan is devised. The response stage similarly

varies with the complexity of the answer produced. In addition, we identified a number of

effects that ran counter to a prior model of the task. Thus, we were able to decompose the

overall problem-solving time into estimates of its components and in way that serves to guide

theory.

Keywords: Multi-voxel pattern recognition; Hidden markov models; Problem solving; Cognitive

models

1. Introduction: Using neural imaging to discover problem-solving states

One of the striking features of the human mind is its ability to engage in complex

intellectual operations. The challenge is to find ways to shed light on the underlying pro-

cesses rather than just to be dazzled by our intellectual ability. For many decades, studies

of problem solving did not go far beyond demonstrations of successful and failed efforts

at problem solving. Newell and Simon (1972), seeking a method to penetrate into the
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underlying thought processes, relied heavily on verbal protocols as evidence of what

happens during a long episode of problem solving and their methodology continues to be

used four decades later (e.g., Ericsson, 2006). Despite the use of methods such as proto-

col analysis, it has been difficult to identify the stages of complex problem solving and

how long these stages take. This article will describe how functional magnetic resonance

imaging (fMRI) can be used to discover the distinct mental states someone goes through

in solving a problem and how the durations of each of these states vary with the condi-

tions of an experiment.

Neural imaging rose to prominence largely after the passing of Newell and Simon.1 To

date, neural imaging techniques have not offered much for understanding the sequential

structure of complex thought. Perhaps, this is unsurprising given the long durations and

variability of problem-solving behavior. This, coupled with the slow nature of the hemo-

dynamic response, might make it seem unlikely that fMRI could shed any light on com-

plex problem solving. However, the methods we will describe actually take advantage of

trial-to-trial variability, making problem solving a natural domain of application for

fMRI. Moreover, the long durations of problem solving make the slow hemodynamic

response less problematic.

While neural imaging techniques have not had great success in penetrating the sequen-

tial structure of complex thought, multi-voxel pattern analysis (MVPA) techniques have

shown promising results with respect to penetrating the representational structure of com-

plex thoughts. These techniques attempt to map distributed patterns of brain activity onto

various significant categories (for review, Norman, Polyn, Detre, & Haxby, 2006; Pereira,

Mitchell, & Botvinick, 2009). As a recent instance of success, Just, Cherkassky, Aryal,

and Mitchell (2010) show how one can map the semantics of different concepts onto pat-

terns of brain activation to enable successful classification of novel words. As another

example, Eger et al. (2009) were able to use parietal activation to predict the number of

objects that a participant was considering.

We have been trying to extend MVPA to unravel the sequential structure of thought.

Our efforts have involved combining MVPA with Hidden Markov Model (HMM) algo-

rithms (Rabiner, 1989) that are used for temporal pattern recognition. We have shown

that this combined method is capable of tracking the course of thought over minutes. For

instance, Anderson, Betts, Ferris and Fincham (2010, 2012a) tracked students as they

interacted with an intelligent tutor, identifying what solution step they were on in a long

sequence of steps, and whether they were performing that step correctly. Anderson, Fin-

cham, Yang, and Schneider (2012b) successfully followed participants in the game Con-

centration, which involved tracking their path through a problem-space that had a high

branching factor.

Until this article, these have been “mind-reading” demonstrations that predicted the

steps participants were taking during complex problem solving by tracing the patterns

of their brain activation. These applications require computer logs of participant

behavior that provide a “ground truth,” both for training the algorithms and for judg-

ing their accuracy. The goal of the research reported in this article is to extend that

method to discover what is not in a computer record, which is the sequence of men-
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tal states that a participant goes through in solving a problem before they emit an

action.

The remainder of this article will consist of four more sections (this introduction being

Section 1): Section 2 describes a pair of experiments on a mathematical problem-solving

task that requires participants to devise modifications to a learned procedure to solve

novel problems. Section 3 describes how our MVPA-HMM method identifies the mental

states involved in solving a problem and estimates the duration of these states. Section 4

describes the application of the method in Section 3 to the task in Section 2, showing

that it can discover both the mental states and how the durations of these states vary with

experimental conditions. Section 5 discusses the general potential of these methods, both

limitations and promise.

2. Pyramid experiments

We will consider two experiments on “pyramid problems” with primary reports else-

where, referred to as Experiment 1 (Anderson, Betts, Ferris, & Fincham, 2011) and

Experiment 2 (Wintermute, Betts, Ferris, Fincham, & Anderson, 2012). Table 1 repro-

duces the instruction given to participants in Experiment 1. Pyramid problems (for

instance, 4$3 = X from Table 1) involve a base (“4” in this example) that is the first term

in an additive sequence and a height (“3” in this example) that determines the number of

terms to be added. Each term in the sequence is one less than the previous—so

4$3 = 4 + 3 + 2. As students work with pyramid problems, they quickly master an algo-

rithm for Regular problems like those in Table 1. However, they can be presented with

Exception problems that require they extend their knowledge (and most can do so with at

least some success). For instance,

�9$4 = X

X$4 = X.

Table 1

Instructions given to participants on pyramid problems

There is a notation for writing repeated addition where each term added is one less than the previous:

For instance, it is written as 4 + 3 + 2 = 4$3

Since 4 + 3 + 2 = 9, we would evaluate 4$3 as 9 and write 4$3 = 9. The parts of 4$3 are given names:

4 is the base and reflects the number you start with

3 is the height and reflects the total number of items you add, including the base

4$3 is called a pyramid

You will see a variety of problems in which you will need to solve for the variable. Here, three examples are

given in the following:

4$3 = X you are to type “9” the answer

X$3 = 9 you are to type “4” the base

4$X = 9 you are to type “3” the height
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To illustrate how students respond to such pyramid problems, below are two protocols

from different students as they solved the two problems. For �9$4 = X:

“So wait it is one less so it is minus ten…minus nine plus minus ten plus minus eleven

is three and then negative… minus 42”

After solving the problem, the student continues to think about it, even though he got

it right:

“You need to explain the rule”

The other student on X$4 = X:

different… Oh, that is interesting…X, 3X+6 (enters �2)

and after the feedback indicating that the correct answer was 2:

“no, oh 2, 2, 2! Shit!”

These exception problems have been a focus of our attention because they pose chal-

lenges to modeling in the ACT-R theory (Anderson et al., 2004), which has been success-

fully applied to neuroimaging data from more routine mathematical problem solving

(e.g., Anderson, 2005; Anderson, Carter, Fincham, Ravizza, & Rosenberg-Lee, 2008;

Rosenberg-Lee, Lovett, & Anderson, 2009). Anderson (2007) described an ACT-R model

that dealt with the behavioral data from these pyramid problems. However, that model

was later disconfirmed by our imaging data. Thus, we have here a class of problems in

search of a model.

In both experiments, participants practiced solving regular problems before they were

scanned. They did not encounter exception problems until the fMRI sections of the exper-

iments. The most significant differences between the two experiments involved the prob-

lems that were used for initial practice and the problems that were used during scanning.

In Experiment 1, participants practiced all three forms of problems illustrated in Table 1

(solve for value, solve for base, and solve for height), but in Experiment 2 participants

practiced only solve-for-value problems.2 In the scanner trials of Experiment 1, only 1/5

of the problems were exception problems, whereas 3/4 were exceptions in Experiment 2.

Experiment 1 was focused on understanding what students would do when they encoun-

tered a problem that posed a surprise challenge. Experiment 2 was focused on under-

standing how different types of exception problems were handled. Looking at results

across the two experiments provides a test of the consistency of our model-discovery

method.

The detailed methods are described in the original publications but below we provide a

summary.
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2.1. Participants

There were 20 participants in Experiment 1 and 36 in Experiment 2. All were right

handed between the ages of 18 and 40 (8 females and 12 males in Experiment 1 with a

mean age of 23.8; 16 females and 20 males in Experiment 2 with a mean age of 23.1).

They were recruited from the general Carnegie Mellon subject population.

2.1.1. Procedure
Prior to the scanner trials, participants practiced regular problems, where the base was

in the range 1–9 and the height 1–9. For Experiment 1 the prior practice involved 18

problems, while for Experiment 2 it involved 81 problems. Tables 2 and 3 give the distri-

bution of problem types used in scanner trials of the two experiments. Each exception

problem that a participant saw in Experiment 1 was a unique exception, whereas in

Experiment 2 participants saw eight different examples of the nine exception types over

the course of the experiment.

During the scanner trials, each problem was presented on the screen as shown in Fig. 1

preceded by a 3 s fixation period. Participants had 30 s to input an answer. In Experiment 1,

participants entered their answers with a mouse and screen-displayed keypad. In Experi-

ment 2, they used a physical keypad that they had been trained on. After their response

or 30 s expired, feedback was presented for 5 s, showing the explanation for the correct

answer and indicating whether their response was correct. After feedback in Experiment

2 only, a fixation cross was again presented for 3 s. In both experiments, there was a rep-

etition-detection task for 12 s. During repetition detection, letters appeared on the screen

at a rate of 1 per 1.25 s, and participants were instructed to press enter on the keypad

when repeated letters occurred. This task served to distract the participants from the main

pyramid task and return brain activity to a relatively constant level.

2.2. Image analysis

Images were acquired using gradient echo-echo planar image acquisition on a Siemens

3T Allegra (Experiment 1) and on a 3T Verio (Experiment 2). Both experiments acquired

34 axial slices on each TR using a 3.2 mm thick, 64 9 64 matrix. This produces voxels

Table 2

The eight categories of problems in Experiment 1

1. 434 correct regular base problems (e.g., X$3 = 9). Mean: 10.4 s

2. 436 correct regular height problems (e.g., 4$X = 9). Mean: 9.2 s

3. 431 correct regular value problems (e.g., 4$3 = X). Mean: 9.2 s

4. 433 correctly font problems.17 Mean: 10.0 s

5. 206 correct exception problems. Mean: 15.8 s

6. 171 incorrect regular problems (from 1 to 4 above). Mean: 13.5 s

7. 181 incorrect solved exception problems. Mean: 18.6 s

8. 108 problems timed out (1–5 above). Mean: 30.8 s

Note. There were 480 possible instances of each of Categories 1–5
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that are 3.2 mm high and 3.125 9 3.125 mm2. The anterior commissure-posterior com-

missure line was on the 11th slice from the bottom scan slice. Acquired images were pre-

processed and analyzed using the NIS system and AFNI (Cox, 1996; Cox & Hyde,

1997). Functional images were motion-corrected using 6-parameter 3D registration (AIR;

Woods, Grafton, Holmes, Cherry, & Mazziotta, 1998). All images were then co-registered

to a common reference structural MRI by means of a 12-parameter 3D registration and

smoothed with a 6 mm full-width-half-maximum 3D Gaussian filter to accommodate

individual differences in anatomy.

In complex tasks like this, we have found it useful to perform MVPA on whole brain

activity. However, as a step of dimension reduction and to accommodate variations in anat-

omy over participants that may not be dealt with in co-registration, we work with relatively

Table 3

The 13 categories of problems in Experiment 2

Exception problems that use the same addition algorithm but use unusual numbers:

1. 244 correct negative height value problems (e.g., 4$�3 = X).18 Mean: 11.2 s

2. 207 correct negative base value problems (e.g., �2$4 = X). Mean: 14.0 s

3. 184 correct large-base value problems (e.g., 208$3 = X). Mean: 16.6 s

Exception problems that vary the solution algorithm but use simple numbers:

4. 245 correct unknown height problems (e.g., 5$X = 12). Mean: 11.3 s

5. 237 correct unknown base problems (e.g., X$4 = 30). Mean: 12.2 s

6. 189 correct double-X problems (e.g., X$X = 15). Mean: 13.5 s

Exception problems that vary algorithm and numbers:

7. 257 correct large-base height problems (e.g., 110$X = 534). Mean: 9.6 s

8. 214 correct fractional-height value problems (e.g., 5$2⅓ = X).19 Mean: 12.4 s

9. 179 correct mirror problems (e.g., 200$401 = X).20 Mean: 9.6 s

Other Categories

10. 512 correct regular value problems (e.g., 5$3 = X). Mean: 8.7 s

11. 56 incorrect regular value problems (10 above). Mean: 12.2 s

12. 497 incorrect exception problems (1–9 above). Mean: 16.4 s

13. 114 problems timed out (10 above). Mean: 12.2 s

Note. There were 285 possible instances of Categories 1–9 and 570 possible instances of Category 10

Fig. 1. An illustration of the sequence for Experiment 2: The problem began with a 4-s fixation cross and

then was followed by a problem that stayed on the screen until the participant answered or until 30 s were

up. Participants responded by entering the answer in a numerical keypad. This was followed by feedback on

the correct answer. After 5 s of feedback, there was another 3 s of fixation. Then, participants performed a

repetition-detection task for 12 s. In this task, letters appeared on the screen at the rate of 1 per 1.25 s. Par-

ticipants were instructed to click a key each time they detected a pair of letters that were the same. Experi-

ment 1 has the same structure except it lacked the second fixation period. The scans to be analyzed come

from the common procedure from the onset of the first fixation to the end of the feedback.
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large regions. A total of 408 regions were created by evenly distributing 4 9 4 9 4 voxel

cubes over the 34 slices of the 64 9 64 acquisition matrix. Between-region spacing was 1

voxel in the X- and Y-directions in the axial plane and one slice in the z-direction. We exam-

ined these 408 regions and found that some had many extreme values for some participants,

probably reflecting differences in anatomy. These were regions mainly on the top and bottom

slices as well as some regions around the edge of the brain. Difficulties in getting consistent

signals at edges reflect limitations in the co-registration of different brains to the reference

brain and limitations of motion correction. Eliminating these edge regions resulted in a final

set of 290 regions (e.g., see Fig. 4) that were used by our combined MVPA-HMM methods.

3. Model identification with combined MVPA-HMM

Our basic approach is to fit HMM models with different numbers of states to the imag-

ing data from an experiment. For each number of states, we estimate a set of parameters

that yields the best fit and then we select among the different numbers of states. First, we

will describe parameter estimation and then selection of the number of states. The param-

eter estimation process uses an expectation maximization algorithm (Dempster, Laird, &

Rubin, 1977), starting with “neutral” parameters and iteratively re-estimating parameters

until convergence. We start with a model with maximal connectivity under the constraint

that there are no loops. Fig. 2A illustrates the starting state graph for a three-state model.

Three sets of parameters need to be estimated:

(A)

(B)

Fig. 2. (A) Illustration of a fully connected three-state model that has no loops with initial probabilities for

estimation. (B) Linear model, which is a special case of a three-state model. The values on the links are the

probabilities of the transitions.
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1. The transition probabilities tij between states i and j. Fig. 2A shows that all transi-

tions out of a state start out as equiprobable, but the probabilities do not stay equi-

probable after the estimation procedure.

2. The distribution of durations in each state. We model state durations as gamma dis-

tributions with two parameters. If the mean duration of a trial in the data is t, both
the shape and scale parameters for the n states are initialized to be the square root

of t/n (and hence have means t/n) and then iteratively re-estimated. We discretize

the gamma distribution to the nearest scan. Given that each scan is 2 s in length,

this means that the probability of spending exactly m scans in state i is given as

follows:

Gðmjvi; aiÞ ¼
Z2mþ1

2m�1

gamma ðtjvi; aiÞdt;

where vi and ai are the shape and scale parameters for the gamma distribution

for the ith state.3 Note that this means that the probability of spending 0 scans in

the state is the probability of a duration less than 1 s. These are cases where the

state is skipped and the model moves on to a successor of that state. Allowing

such skipped states (really just very short duration states) is critical in explaining

brief trials (1% of trials last only a single scan and 8% last 2 scans). If each

state were required to last at least 1 scan, short trials would force a solution

structure with paths of few states. By allowing skipped states as a consequence

of the distribution of durations, we can account for such short trials without forc-

ing such a structure.

3. The probability of the fMRI activity in the state. Appendix A describes the steps in

the signal processing which convert the lagged hemodynamic response into an esti-

mate of the activity during a scan. We obtained estimates for 290 regions (see

methods above) and then performed further dimension reduction by a principal

component analysis (PCA). The first 20 factors in the PCA seem to result in the

best state identification. These 20 factors are normalized to have mean 0 and stan-

dard deviations of 1 over all of the scans in the experiment. Each state i will be
associated with a set of 20 means for these regions. A set Fj of observed factor val-

ues fjk for scan k will have probability:

PðFjjMiÞ ¼
Y20
k¼1

Normalðfjk;lik; 1Þ;

where Mi is the set of means lik estimated for state i. The probability is a product

on the probabilities of the 20 values assuming each is a normal with its own mean

lik and standard deviation 1. As described in Appendix A, the factors from the

PCA are basically distributed as independent normals. For parameter estimation,
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the means for each state are initialized to the overall mean of 0 and then iteratively

re-estimated.

Parameters are estimated to maximize the likelihood of the data given a particular state

topology. The probability of the data from a particular trial will be the sum of the proba-

bilities of all ways of interpreting that data within that topology. An interpretation of a

trial consisting of m scans is a way of breaking those scans into some r periods of resi-

dence in the various states of the model. Let m1 + m2 + … + mr = m be one such inter-

pretation, where mi is the number of scans in state i, 1 is the start state, and r is the end

state. The probability of this interpretation is

Prðm1 þ � � � þ mr ¼ mÞ ¼
Yr
i¼1

ti�1;iGðmijviaiÞ
Ymi

j¼1

PðFjjMiÞ
 !

The estimation process calculates the summed probability of all such interpretations.

This is the probability of the data in that trial. The number of ways of breaking m
scans into a sequence on r states grows rapidly with m and r. HMM algorithms can

efficiently calculate the summed probability using dynamic programming techniques

(see discussion of explicit duration HMMs in Yu, 2010). For both computational and

conceptual reasons, we largely use log likelihoods rather than probabilities. The

parameter estimation process seeks to minimize the summed log-likelihood of all

trials. We have adapted the software of Yu and Kobayashi (2003, 2006) to find maxi-

mum likelihood estimates of all the parameters of the model for all the trials in an

experiment.

Appendix B describes proof-of-concept demonstrations of this parameter estimation

procedure. There we fit the model to the activation patterns from initial fixation to end

of feedback (see Fig. 1) and estimate the best-fitting three-state models for the experi-

ments. The three states we recover correspond closely to actual fixation, problem solv-

ing, and feedback periods on a trial-by-trial basis. Given that the participants must be

in different mental states during fixation, solution, and feedback, this result indicates

that the states identified by this procedure correspond to real mental states. Moreover,

the fact that the procedure identifies the trial-by-trial length of these states indicates that

the duration estimates are reliable. These duration estimates prove to be the most infor-

mative result of the procedure when applied to identifying states within the problem-

solving period.

3.1. Model selection

While it is reassuring to know that this method can recover the experimental proce-

dure, the real interest is in what information it can provide about what is happening

within the problem-solving phase. What are the mental states that participants go through

in solving these problems and how do they vary with condition? As we do not know how

many states there are, we need a method for selecting the number of states.
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Fitting a model with more states will increase the likelihood of the data because of the

extra parameters. To an approximation,4 an (n + 1)-state model is nested within an n-state
model—meaning that it will fit the data at least as well. However, this can be just overfit-

ting the data—that is, taking credit for fitting noise that would not replicate. Although

there are metrics for penalizing models for their extra parameters like BIC (Kass & Raf-

tery, 1995), they do not extend in simple form to situations where there are so many

parameters (Berger, Ghosh, & Mukhopadhyay, 2003) or where observations are not inde-

pendent as is true of fMRI data (Jones, 2011). In contrast, we have found that cross-vali-

dation methods offer an effective way to assess models and identify when the extra

model complexity is justified. This article uses simple leave-one-out cross-validation

(LOOCV).

This application of LOOCV estimates the maximum likelihood parameters for all but

one of the participants and then uses these to calculate the likelihood of the data for the

remaining participant. In essence, this is estimating parameters from k � 1 participants

and predicting for the kth participant. LOOCV rotates this process through all k partici-

pants. One model is to be preferred over another if it increases the likelihood of the data

for most participants in this LOOCV procedure. We search through a set of models

nested by their number of states, increasing the number of states in this search until the

additional state does not lead to better performance according to LOOCV. Even if an

n-state model is the true model, a (n + 1)-state model will fit the k � 1 participants better

in the estimation phase, but it is at least as likely to fit data of the kth participant worse.

We use a sign test to approximate the probability that x out of k participants would be

better fit by a (n + 1)-state model than a n-state model if the data were actually generated

by a n-state model.5 According to a sign test, for Experiment 1 with 20 participants, 15

corresponds to 0.05 significance, 17 to 0.005, 19 to 0.0001, and 20 corresponds to

0.00001. For Experiment 2 with 36 participants, these thresholds are 24, 26, 29, and 32.

In applying this LOOCV to the problem-solving phase, the parameter estimation some-

times produced a branching structure (e.g., Fig. 2A or non-linear subsets of the graph) for

k � 1 participants. However, these branching structures never performed better on aver-

age for the kth participant than when we restricted the method to estimating a linear

structure (e.g., Fig. 2B gives a three-state linear structure). The poorer performance of the

branching structure reflects overfitting: The extra transition probabilities in the graph

allowed unconstrained estimation of probabilities of skipping states. In contrast, while the

linear models can skip states, the probabilities of doing so are constrained by gamma dis-

tributions of durations. The constraint in the linear models led to more stable estimates.

In the discussion, we will return to the issue of branching structures, but the next section

just considers linear structures with differing numbers of states.

4. Application to the pyramid experiments

Figure 3 shows how the average likelihood of the data for the kth participant varied

with number of states in the two experiments and how many participants are better fit by
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the more complex model. The figure separately plots the results for fitting just correct tri-

als, just error trials, or all trials. Later sections will discuss in detail different types of

correct and incorrect trials. The correct trials appear to have the more stable and inter-

pretable conclusions. The best number of states is not the same between the two experi-

ments: Experiment 1 shows evidence for a three-state model while Experiment 2 shows

evidence for a four-state model.

Why did this method find three states in Experiment 1 but four states in Experiment

2? To explore this issue we used the Experiment 2 factor weightings to extract a new set

of dimensions for Experiment 1. In contrast to the results obtained with the original

Experiment 1 factors, there now is evidence for the four-state solution (17 of 20

(A)

(B)

Fig. 3. Likelihood gain as a function of number of states in HMM for Experiment 1 (part A) and Experiment

2 (part B). Also given are the number of participants for whom the two states gave better matches than one

state, three states better than two, and four states better than three. While sometimes models with more that

four states show greater mean log likelihoods, in no case do they show greater likelihood for a significant

majority of the participants than the best-performing model with fewer states.
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participants better fit by a four-state solution with a mean improvement in log likelihood

of 29.6). Equally, if the factor solution from Experiment 1 is applied to the Experiment 2

data, we fail to find evidence for four states (the four-state model only does better for 14

of the 36 participants). It seems that the first 20 factors in Experiment 2 contained varia-

tion that better discriminated the state structure, perhaps because of its much greater use

of exception problems. The factor solution for Experiment 2 is more robust given the lar-

ger data set and the greater number of observations.

One might think that the problem with Experiment 1 is that we missed a critical

dimension of variation in the top 20 factors in its PCA. While there is some truth to this,

the evidence indicates that the situation is more a matter of including unsystematic varia-

tion. One of the 20 factors found in the PCA for Experiment 1 jumps around from partic-

ipant to participant in the four-state solution, leading to poor performance in the

LOOCV.6 If we simply delete that one factor, a four-state solution emerges as the best

with the remaining 19 dimensions.

This makes the point that the success of this method depends on identifying the critical

dimensions of variation. One might wonder about just including all the factors from the

PCA. However, the irrelevant dimensions of variation (noise) mask the relevant effects

and we fail to identify even three states. The decision to use the first 20 factors of the

PCA is only a heuristic solution to the problem of feature selection that haunts all appli-

cations of MVPA. We believe the four-state model is the correct one and in further anal-

yses we will use the 19 factors from Experiment 1, deleting its distracting factor.

Figure 4 illustrates the four-state solution for Experiment 2. The activation patterns in

parts (B)–(E) may look similar across states, reflecting the overall brain intercorrelations,

but there are differences. Our factor solution projects this 290-dimensional intercorrelated

structure down to 20 dimensions of orthogonal variation. The correlations between the

factor solutions for the two experiments are given in Fig. 4F. The mean correlation

between corresponding states is 0.71, while it is only 0.04 between non-corresponding

states.7

The states in Fig. 4 are labeled with plausible characterizations of what they involve.

These states are given in the following:

1. Encoding the Problem. Areas of high activity for this task are found in the visual

areas and the parietal areas.

2. Planning the Solution. The lateral inferior prefrontal cortex (LIPFC) and the angu-

lar gyrus (although not high in absolute terms) show greater activation in this state

than in the other states. The angular gyrus was a region found to be related to the

processing of exceptions in both Anderson et al. (2011) and S. Wintermute et al.

(unpublished data) . Given the retrieval functions associated with the LIPFC (e.g.,

Anderson, 2007) and language comprehension functions associated with the angular

gyrus (e.g., Binder, Desai, Graves, & Conant, 2009), one might speculate that this

reflects retrieval and processing of instruction and past feedback.

3. Solving the Problem. There is high activation in the parietal and prefrontal regions

found active in other studies of routine problem solving (e.g., Anderson, 2005).
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Also, the motor regions have high activation—many participants report finger

counting to keep track of the height for these problems.

4. Responding with the Answer. There is very high activation in the left motor region

(right hand). The parietal region also has high activation, reflecting processing the

location of the keys on the number pad.

The average correlation between the activation patterns over the 290 regions in

Fig. 4B–E is 0.86, reflecting the fact that similar regions tend to be active throughout per-

formance of the task. When we project this activation down to the 20 principal compo-

nents; however, the four states have a mean intercorrelation of 0.04. It is particularly

impressive that we can pull apart the planning and solving states. While these two states

have a 0.91 correlation when one considers the 290 regions in Fig. 4, the PCA factors for

these two states have only a 0.22 correlation.8 This clearly indicates that the states are

(A) (B)

(C) (D)

(E) (F)

Fig. 4. The parameters of the linear HMM identified for the problem-solving phase of Experiment 2: (A)

The estimated distribution of durations in the three states. (B)–(E) The mean reconstructed activation patterns

for the four states. Values displayed here are percent activation above the baseline established by the last

scan of the repetition detection. Left is plotted on right. (F) The correlation between the factor solutions for

the two experiments.
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distinct but also indicates the importance of finding the dimensions in this correlated acti-

vation pattern that bring out these differences.

The existence of these four states and their associated activation patterns is sensible

and again increases our confidence in the methods, but this very sensibility limits the

information we get from this part of the discovery. The new information comes from

being able to identify the duration of these states on a trial-by-trial basis. Fig. 5A shows

the distributions of durations of these states over trials measured in number of 2-s scans.

The Encoding State 1 is the least variable, lasting 1 scan on 89.3% of the trials and 2

scans on 10.4% of the trials. However, the other states vary much more substantially in

duration. More than 20% of the trials have a 0 scan duration (i.e., a skipped state, which

is the discrete realization of the state lasting less than a second). A measure of the range

of durations for these states is how many scans are needed to cover 95% of the trials. For

Planning State 2 that range is 0–6 scans, for Solving State 3 it is 0–4 scans, and for

Response State 2 it is 0–2 scans.

These trial-to-trials variations in state durations are related to the various types of trials

(see Tables 2 and 3), which define different conditions in the experiments. We think this

is where we have discovered the most interesting information about the problem solving

in these experiments. In these breakdowns, we assume that each state is defined by a

(A)

(B)

Fig. 5. (A) Variation in duration of states for the four states of Experiment 1 as a function of type of prob-

lem. See Table 2 for explanation of types. (B) Variation in duration of states for the four states of Experi-

ment 1 as a function of height for correct regulars.
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single activation pattern represented by its mean values for the 19 factors (Experiment 1)

or the 20 factors (Experiment 2). This can be regarded as the Signature of the state. That

signature does not change as a function of condition, but the time participants stay in the

state can vary. The next two subsections will discuss how the state durations vary as a

function of condition in the two experiments.

4.1. State durations in Experiment 1

We broke Experiment 1 up into the eight categories of trials defined in Table 2. We fit

a four-state model to the 19 factors, allowing the duration of a given state to vary as a

function of condition, keeping the activation pattern (the signature of the state) to be the

same. There are four states and each state requires estimating two parameters to charac-

terize the gamma distribution for that state. Thus, estimaing different distributions for

each condition results in 8 9 4 9 2 = 64 timing parameters being estimated rather than

8 that we used in the initial state discovery. Despite all of the extra parameters and the

danger of overfitting, this expanded model results in better LOOCV fits for 18 of the 20

participants (p < .0005) with a mean log-likelihood improvement of 42.2.

We can extract an estimate of how long each participant spent in each state for each

type of problem. Fig. 5A shows these average estimated durations and the standard errors

of these means (calculated by a bootstrap procedure9). In effect, this analysis has taken

the total latency in a condition and decomposed it into four separate dependent measures.

The average correlation among the four measures is �0.11—so the information they pro-

vide is definitely not redundant with total time.

To consider the variation in each measure separately:

1. Encoding State 1 varies least among conditions. There is a slight tendency for the

error conditions to be longer than the correct conditions (2.43 s vs. 2.28 s), but this

is well within the uncertainty of the estimates.

2. Planning State 2 also shows little variability in duration as a function of condition.

There is an interesting tendency for the solve-for-base problems to be longer than

solve-for-height or solve-for-value (2.76 s vs. 2.22 – t(19) = 2.01, p < .1, two-

tailed).10 One might expect this effect because participants have to guess a base

before confirming if it is correct.

3. Solving State 3 shows the greatest variability. It is longest in the time-out condition

(which is 24.8 s, off the graph). Among the other conditions, State 3 lasts 2.69 s

for correct regulars (average of the first four conditions), 7.71 s for correct

exceptions, 5.82 s for incorrect regulars, and 10.25 for incorrect exceptions. The

average difference between correct and incorrect is significant (t(19) = 2.88,

p < .01) as is the difference between exceptions and regulars (t(19) = 4.64,

p < .0005). Among the correct regulars, solve-for-base problems take longer than

solve-for-height problems (3.83 vs. 2.95 s, t(19) = 3.48, p < .005) and solve-for-

height problems take longer than solve-for-value problems (2.95 vs. 1.56 s,

t(19) = 3.18, p < .005).
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4. Response State 4 also shows some significant variation in its duration. This state is

briefer in the base and height conditions where participants have to enter a single

digit (mean 2.03 s.) than all other conditions (mean 3.03 s.) except the time-out

condition where it is the least (1.07 s.). The difference between the single-digit cases

and the other conditions (excluding time-outs) is quite significant (t(35) = 3.04

p < .01), but the high variability in the estimate of the time-out duration prevents

any contrast involving the time-out Response State from becoming significant.

This study illustrates the power of the method. In Anderson et al. (2011), where we

only looked at total time and average activity throughout the problem-solving interval,

we failed to find any difference among the solve-for-base, solve-for-height, and solve-for-

value conditions. However, the current analysis shows that each of these three types of

problems has a rather different way of dividing up the time among the four states. The

solve-for-base and solve-for height problems require changes to the standard computation

and take longer in the solving state, but they require a simpler motor response.

The regular problems (categories 1–4) in Fig. 5A involve an equal number of problems

with heights 2, 3, 4, and 5. The height determines how many additions have to be per-

formed. Fig. 5B shows how the duration for the states varied for these problems as a

function of height. There is very little variation in the duration of the encoding or

response states, some increase for the planning State 2, but a much larger increase for

Solving State 3. State 3 takes 1.4 s more for each additional term that has to be added.

Again, this demonstrates how this method can isolate the location of an effect to a partic-

ular stage of the information processing.

While the results for the regular problems are quite informative, the results for the

exception problems in Fig. 5A are not particularly satisfying. One would have expected

more planning time for exceptions than regulars, but there is no significant evidence of

this. We think this is related to the relatively few observations of exceptions in this

experiment and the resulting poor identification of the dimensions that distinguish them.

4.2. State durations in Experiment 2

Experiment 2 had 13 categories of trials (see Table 3) with many observations of

exceptions. We compared a four-state model whose durations did not vary with condition

with a four-state model where the duration of each state could vary with condition.

Despite the estimation of 96 additional timing parameters and dangers of overfitting, this

expanded model results in better LOOCV fits for 30 of the 36 (p < .0001) with a mean

log-likelihood improvement of 22.5.

Figure 6A shows the mean estimated durations and the standard errors of these means.

The average correlation between the duration for different pairs of states is 0.14; thus,

these patterns provide information not contained in the overall mean latencies. Time-outs

are almost by definition different than the rest, but they still show an interesting pattern:

They are significantly slower in the first three states (t(35) = 3.21, p < .005, t(35) = 2.90,

p < .01, t(35) = 3.90, p < .005) but faster for the fourth state (t(35) = 3.05, p < .005).
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The faster time in State 4 makes sense because the participants have not responded or at

least have not completed their responses.

To present the data from Fig. 6A into a more interpretable pattern, Fig. 6B collapses

that data into a 2 9 2 classification of problems according to correctness and type (regu-

lar vs. exception). Time-outs are excluded in this aggregation. Looking at the effects in

Fig. 6B:

Correctness: Encoding State 1 and Solution State 3 are significantly longer for errors

(t(35) = 3.84, p < .0005; t(35) = 4.49, p < .0001) while Planning State 2 and

Response State 4 are not (t(35) = 0.26 and 0.50). This replicates the effects in Experi-

ment 1. Combining the two experiments, it seems reasonable to conclude that partici-

pants tend to be a little slower in Encoding State 1 when they are going to make an

error, while they are much slower in Solving State 3, where they make the error. The

effect in Solving State 3 may reflect their stumbling over calculating the answer (e.g.,

forgetting a partial result and trying to recover).

Exceptions: Planning State 2 shows much greater time for Exceptions (t(35) = 5.89,

p < .0001). The Response State 4 shows a small but significant effect (t(35) = 2.10,

p < .05), reflecting the fact that exceptions tend to involve longer answers (see

below). Encoding State 1 is definitely not slower for exceptions (t(35) = �1.37) and

the effect for Solving State 3 does not reach significance (t(35) = 1.53). Experiment

1 showed a significant effect for Solution State 3. While the experiments differ on

which states reach statistical significance, they both agree on the direction on the

effects. The only state not slower for Exceptions in both experiments is the initial

encoding state.

The above analysis treats all correct exceptions problems as equivalent, but Fig. 6A

indicates that these effects do vary among different types of correct exceptions.

(A) (B)

Fig. 6. (A) Variation in duration of states for the four states of Experiment 2 as a function of type of prob-

lem. See Table 3 for explanation of types. (B) Variation in duration of states for the four states of Experi-

ment 2 organized by type and correctness.
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Encoding: There is little variation in the duration of Encoding State 1 but negative

heights (e.g., 4$�3 = X) are slower than the rest (t(35) = 2.15, p < .01). Correctly

solved negative height problems average 3.26 s in this state versus an average of

2.30 s for the other exceptions. This might reflect the facts that participant are uncer-

tain about what is meant by a negative height (the software was programed to permit

multiple possible interpretations—see footnote to Table 3).

Planning: There is considerable variation in the duration of the Planning State 2. Of

particular interest are the long times for unknown base (e.g., X$4 = 30) and double-X

(e.g., X$X = 15) problems, which tend to be solved by a guess-and-check strategy.

Their planning states average 1.84 s longer than the other exception types

(t(35) = 4.97, p < .001), perhaps reflecting the guessing process.

Solving: The solving time is 1.83 s longer for the large-base unknown-value problems

than the other exception problems (t(35) = 3.54; p < .005). These problems (e.g., 208

$3 = X) require three-digit mental addition.11

Responding: Times for the Response State 4 are shorter for single-digit answer prob-

lems (unknown height, unknown base, double-X, large-base unknown height: 1.67 s.)

than for problems that require two-digit answers (negative height, fractional height:

2.46 s.), and these are longer than conditions that require entering three characters

(negative base and large base and unknown value: 4.87 s.).12 Both pairwise compari-

sons are quite significant (t(35) = 3.88, p < .0005; t(35) = 13.69, p < .0001).

While the effects noted above do not capture all the variability among exception

types, they capture the biggest effects. All of these effects are sensible, supporting the

ability of this methodology to segment out interesting components of an overall trial

latency.

In Experiment 2, each of the exception types was shown with eight different instantia-

tions over eight blocks of the experiment. To understand how the state durations varied

over the course of the experiment, we performed a regression analysis on the state times

for correct exception problems. For each state, we regressed the estimated mean state

duration for each block against the position of block:

Encoding Time = 2.42 – 0.00 * Blocks

Planning Time = 5.83 – 0.32 * Blocks

Solving Time = 3.83 – 0.12 * Blocks

Responding Time = 2.32 – 0.01 * Blocks

The decrease in planning time is the largest and only significant decrease (t(6) = 3.59,

p < .05). This indicates that participants were learning how to solve these problems and

most of the speed-up was in these planning times.

Encoding State 1 is 1.75 s longer for errors. This unexpected effect was also found in

Experiment 1, but it is stronger and significant in Experiment 2. This suggests that, by
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looking at activity in early scans, it should be possible to predict whether a participant

will make an error well before the participant issues a response. To determine whether

this was true, we performed an analysis restricted to problems on which participants took

at least five scans (64.2% of the trials) before responding. We trained a linear classifier to

predict whether a trial is correct based on the 20 factor scores on a particular scan. A

LOOCV method estimated parameters from 35 of the participants to predict the trials of

the 36th participant. Looking at hits (correct trials classified as correct) and false alarms

(error trials classified as correct), one can calculate d-prime measures for each participant.

Fig. 7A shows the results of the classification for each of the first five scans. There is no

ability to detect an upcoming error given the activity of the first scan but there is for later

scans. The first scan offers no evidence of an error because participants spend one scan

encoding the problem in all cases. On the other hand, the activation pattern on the second

scan indicates whether the participant is still encoding (symptomatic of an error) or has

moved on to the planning state (not symptomatic of an error). Fig. 7B shows the differ-

ence in activation patterns for corrects versus errors on scans 2 and 3. It shows greater

activation for parietal and prefrontal regions for corrects, suggesting that the participant

has advanced to the planning state.

The interpretations that we have placed on these four states have a high degree of

internal consistency; but, unlike the three states estimated for the overall experimental

procedure (Appendix B), there is no ground truth to validate the results. There is one

exception to this: If the last state does reflect the generation of the answer, it should have

a high correlation with the actual time taken to key the answer. Experiment 2 collected

measures of the amount of time the participant spent keying in the answer for each trial.

The trial-by-trial correlation between keying time and estimated State 4 duration for a

given trial is quite high (r = .527), very significant, and substantially greater than the next

highest correlation (with State 3 duration, r = .221). Fig. 8 shows the relationship

between the two measures—the actual time is 1.19 times the estimated time. This pro-

vides more evidence for the validity of the state identifications.

(A) (B)

Fig. 7. (A) Ability to detect an upcoming error (on the fifth scan or later) given activity on an early scan.

The two measures given are the average d-prime and the number of participants with positive d-primes. (B)

Difference between correct and incorrect problems reconstructed from factors for scans 2 and 3. Left is plot-

ted on right.
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5. Discussion

This MVPA-HMM methodology for discovering states can yield interesting conclu-

sions about how people solve problems. The method was successful in discovering both

the experimenter-defined structure (Appendix B) and the participant-determined solution

structure (Fig. 4). With respect to the participant-determined structure, there were four

states that reflected encoding, planning, problem solving, and response execution. A par-

ticular promise of this method is its ability to identify how the duration of these states

vary with condition (e.g., Figs. 5 and 6). These state-duration measures are not strongly

intercorrelated and provide a much more articulate analysis of the internal structure of

the task than just overall latency.

The discovery of encoding, planning, problem solving, and responding states is not

surprising and was anticipated in a previous cognitive model for the task (Anderson,

2007). However, there were a number of surprising aspects of these states not antici-

pated:

1. The original model had a longer encoding state for exception problems because the

model responded as soon as an unusual symbol (such as a negative number) was

encountered. In contrast to that model, this was the one state that was not longer

for exception problems in either experiment.

2. The encoding state was longer when an error would be made—which was also not

expected. Perhaps, long encoding times are associated with confusion about the

interpretation of the problem, which in turn can lead to an error.

3. We had not anticipated that highly practiced regular value problems would still

have a planning stage. Although the Planning state is not as long as for exception

problems, but it is still present for regular problems.13 This suggests that students

usually consider an approach before acting on it.

Fig. 8. Actual keying time as a function of the estimated duration of State 4. The dotted line shows the lin-

ear trend line y = 1.19X.
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4. We had not anticipated the different profiles of state durations for solve-for-base,

solve-for-height, and solve-for-value problems in Experiment 1 (where they had all

been practiced in advance of the scanner trials). In fact, we had concluded earlier

(Anderson, Betts, Ferris, & Fincham, 2011) that these three types of problems had
similar activation and latency patterns.

5. We also had not anticipated that the problem-solving phase (and not the planning

phase) would be associated with errors (Fig. 6B) for non-time-out trials. The only

error condition associated with elevated planning times are time-outs. Thus, it

seems that either participants fail to come up with a plan and time out or they

come up with a plan and have trouble in executing it.

While we have shown that we can reliably recover a state structure that replicates

across experiments and which reflects meaningful steps of processing, one might still

wonder just what is reflected in the brain signatures (e.g., Fig. 4) associated with these

states. In a cognitive architecture like ACT-R, information processing is happening at a

much finer grain size than these multi-second states. We think these states reflect periods

when the current goal demands a rather constant pattern of resource deployment (e.g.,

module activity in ACT-R). As such, they can serve as outlines for developing more

detailed information-processing models. It is only when we have specified the informa-

tion-processing steps that we will have given precise meaning to our labels for these

states (Encoding, Planning, Solving, and Responding). Such a model could also inform us

about how consistent we should expect the activation patterns to be within states.

If we were to develop an ACT-R model from this sketch, the current data would

encourage us to base the encoding, solving, and responding states on the processes in the

current model of algebra equation solving (e.g., Anderson, 2005). The activation patterns

in these states are approximately what the activation patterns would be during these

stages in that model—the encoding state involving perceptual and representational regions

(visual and parietal); the solving state involving representational and retrieval regions

(parietal and prefrontal); and the responding stage involving motor activity with visual

monitoring. The one addition would be to add finger counting as part of the solving state.

These models did not involve a planning state. To provide insight into what is happening

in the planning state, we can look at its associated activation pattern. The increased angu-

lar gyrus and LIPFC activation in this stage suggests that participants are retrieving

instructions and past feedback and reflecting on such information. There are a number of

ACT-R models of instruction following (e.g., Anderson, 2007; Taatgen, Huss, Dickison,

& Anderson, 2008) that could serve as a basis for modeling the processes in this state.

5.1. The structure of individual trials

These analyses rely on the ability of the method to diagnose individual trials and we

have given evidence that it does so accurately (e.g., Fig. 8). The success of our earlier

mind-reading efforts (e.g., Anderson et al., 2010, 2012a,b) also depended on diagnosing

the unique way each trial unfolded. This individual trial analysis can be brought to bear
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in the current task and we can see what is happening on each trial. While we cannot pres-

ent here the thousands of individual state trajectories identified by the MVPA-HMM

method, Fig. 9 provides an illustration of the variability that does exist. It shows four dis-

tinct patterns of engagement that appeared on those trials where participants timed out

and so took 15 scans.14 The four panels of the figure show the estimated probability that

a participant was in a particular state on a trial (ignoring the fourth response state which

was seldom diagnosed as occurring at all). These four patterns summarize all of the time-

out trials and the panels give the frequency of each pattern.

• On 27 of the trials (panel A), participants spend substantial time in all of the

Encoding, Planning, and Solving states (estimated means of 3.5, 4.2, and 7.4 scans,

respectively).

• On 12 of the trials (panel B), participants seem stuck in the encoding state and

show low probability of getting on to later states (estimated means of 9.5, 2.6, and

2.8 scans).

• On 39 of the trials (panel C), participants seem stuck in the planning state (esti-

mated means of 1.4, 12.5, and 1.2 scans).

• On 34 of the trials (panel D), participants seem stuck in the solving state (estimated

means of 1.3, 1.2, and 12.5 scans).

(A) (B)

(C) (D)

Fig. 9. Different patterns of state engagement displayed on different time-out trials. Each panels gives the

number of trials observed to display that pattern.
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The first pattern seems to reflect a participant making progress on the problem but not

having enough time to complete it, the second pattern a participant stuck in interpreting

the problem, the third a participant unable to come up with a plan of action, and the

fourth a participant trying to apply an algorithm that will not work. This ability to do

such individual-trial diagnosis opens up the potential for instructional applications.

5.2. Branching structures?

Why were linear structures always better than branching structures in this experiment?

It is worth discussing a couple of reasons to have expected a branching structure but why

such a structure was not found:

1. Participants might have planned only for some problems (principally exceptions)

and not others, and this should produce a branch where the planning state can be

skipped. However, the current method already allows a zero scan residence in a

state. This is constrained by the overall gamma distribution and is not an additional

free parameter. As noted earlier, sometimes the estimation process converged on

branching structures that involved such skipping, but these structures failed to out-

perform linear structures in the LOOCV. Apparently, the constrained procedure for

estimating state skipping that comes with fitting a linear model is more robust.

2. Some participants might have been taking non-conventional solution methods and

one might expect to find different paths reflecting the different methods. For

instance, in verbal protocols, we have observed a minority of participants to dis-

cover a variant of Gauss’s apocryphal solution15 where, rather than adding a

sequence of terms, they multiply the height of the problem by the average term.

For instance, 5$3 is calculated as 4 9 3 = 12 rather than as 5 + 4 + 3 = 12. Also,

different exception problems require different algorithms and one might have

expected to find branching to different problem-solving states. However, these dif-

ferent states may have similar brain signatures. The method will find branching

structures only if the signatures of the branching states are distinct. If just the state

durations are different, the method will tend to treat this as a single state with a

distribution of durations that merges the distributions for the different algorithms.

However, our results do not prove a linear structure is best. With enough training data,

the method might have been able to estimate the parameters for a branching structure

with enough reliability to outperform a linear structure in LOOCV. Also, parameter esti-

mation uses a hill-climbing algorithm and there is no guarantee that it will find an opti-

mum.

5.3. Generalization to other types of problem solving

To provide focus to this article, we have applied this method exclusively to pyramid

problems. However, it is widely applicable. In our own laboratory, we have applied it to

a task that involved addition of fractions and a transfer task in a tutoring system. While
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these are tasks of interest to our laboratory, there is no reason why the methods need be

limited to mathematical problem solving. However, for these methods to be useful, it is

necessary that they take place over a long enough period that they can be profitably

decomposed into multi-second states. For instance, the mean problem time was 14 s in

the fraction task and 31 s in the transfer task. These two tasks contained information not

in the pyramid task, but which would be part of many problem-solving tasks—partici-

pants entered intermediate calculations as they thought about the problem. Interpretation

of these keying actions is ambiguous; nevertheless, adding in these intermediate actions

improves state identification.

More generally, there is no reason why these methods need be limited to imaging data.

Indeed, this work can be seen as an extension of earlier work using HMMs to parse eye

movements (Salvucci & Anderson, 2001). The essence of the approach is to take a num-

ber of time-varying dimensions, all of which are somewhat correlated with the underlying

problem solving, and using the convergence of information to identify states. The special

advantage of imaging data is the number of dimensions of variation that it offers.
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Notes

1. However, Simon did express optimism about what these data would reveal.

2. Solve-for-height and solve-for-base were treated as exception problems in Experi-

ment 2 because the scanner trials were the first time participants saw these forms.

3. To optimize the estimation process, we approximate these integrals using their mid-

points.

4. The discretization of the gamma distribution can cause exceptions.

5. We ran simulations in which data were generated from a n-state model and exam-

ined how likely LOOCV was to favor the (n + 1)-state model for differing numbers

of participants (e.g., if one runs 20 simulated n-state participants, how often will

LOOCV fit 15 participants better assuming a (n + 1)-state model). The probability

of X or more out of k participants favored by the (n + 1)-state model is actually

less than the probability of getting X or more out of k from a binomial distribution

with p = .5. This is because of non-independence in the estimations from the vari-

ous samples. Note also that the sign test provides an upper bound on the probabil-

ity of data generated by an n-state model being better fit in LOOCV by an (n + 1)-
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state model. It does not provide a bound on the probability that data generated by a

(n + 1)-state model will be better fit by a n-state model in LOOCV.

6. We discovered this factor in a comparison of which factors contributed significantly

to the variance among states in the three-factor and the four-factor solutions. The

offending factor jumped from accounting for 1% of the variance in the three-state

solution to 29% in the four-state solution. We then noticed that different partici-

pants had very different values for this factor.

7. The 19 Experiment 1 state means for each were converted back to 290 voxel acti-

vations using the factor coefficients for Experiment 1. These activations were con-

verted into 20 Experiment 2 factor values for each state using the Experiment 2

factor coefficients. These converted means for Experiment 1 were correlated with

the Experiment 2 means. Likewise, the Experiment 2 state means were converted

into Experiment 1 factor values and correlated with the Experiment 1 values. The

results are close and Fig. 4F reports the average of the two correlations.

8. This is a correlation within Experiment 2 factors, rather than between Experiment

1 and 2 factors, as in Fig. 4F.

9. Data sets are generated by randomly selecting 20 subjects with replacement from

the experiment’s 20 subjects (thus a subject can be represented 0, 1, or more times

in a generated data set). Constraining all data sets to the same state signatures,

maximum likelihood parameters are calculated for the 8 9 3 state durations. The

standard deviation of the resulting time estimates provides an estimate of the stan-

dard error of the estimates from the actual data set.

10. These t contrasts are calculated using a standard deviation estimated from the var-

iability of the contrast over iterations in the bootstrap procedure. Note that these

standard errors will often be smaller than the standard errors of the means plotted

in Figs. 5 and 6 (just as within-subject contrasts often have smaller standard devi-

ations than the means). All significance levels reported are for two-tailed t’s.
11. Answers to the large-base unknown-height problems can be estimated without

dealing with all three digits.

12. Depending on the specific problem, mirror problems could require one, three, or

four characters and so are excluded in this contrast.

13. The model does allow a state to be skipped (a 0-scan duration). In Experiment 2,

the estimated probability of skipping the planning state is .40 for correct regulars

and .20 for correct exceptions.

14. These four patterns were obtained by doing k-means clustering of the state occu-

pancy for the time-out trials—see explanation of the code at http://act-r.psy.cmu.

edu/publications/pubinfo.php?id=1053.

15. It is claimed that Gauss faced with a teacher’s request to sum the digits 1–100
found the formula for triangular numbers.

16. We can find a branching structure if one exists. For instance, if we generate an

artificial data set by splicing the fixation and feedback scans into their own “tri-

als” and using the problem-solving scans as separate trials by themselves, the best

three-state solutions involve branching structures where one branch has a single
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state corresponding to the solution and the other branch has two states correspond-

ing to the fixation and feedback periods.

17. To investigate simple surprise effects of exceptions, an equal mixture of the above

three categories were presented in odd colors and fonts.

18. The answer to negative height problems is not obvious. The software accepted a

variety of solutions. Almost all solutions to this problem were either 4

$�3 = 4 + 5 + 6 = 15 or 4$�3 = 5 + 6 + 7 = 18, both of which were accepted.

19. This is solved as 5$2⅓ = 5 + 4 + ⅓(3) = 10.

20. This is solved as 200$401 = 200 + 199 + … �199 + �200 = 0.
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Appendix A: Signal processing

We use regions of analysis that are 12.5 9 12.5 9 12.8 mm. The hemodynamic activ-

ity is correlated across regions and appears to be distributed as a multivariate normal,

except that there are more extreme values than would be expected. Starting with 408

regions, we eliminated regions with too many extreme values (more than 10 scans with

values five standard deviations beyond the mean, resulting in 290 for these experiments)
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and bound the percent signal changes in the remaining regions to be within �5% of base-

line (truncating about 0.001 of the observations).

Figure 10 illustrates the processing of the BOLD (blood-oxygen-level-dependent) sig-

nal for a region on a single trial. We calculate the BOLD response as the percent change

from a linear baseline defined from first scan (beginning of fixation before problem onset)

to last scan (beginning of fixation before next problem). The example in Fig. 10 comes

from a real trial and is representative of the noise in a trial. For instance, the last smaller

ups and down at the end are well into the baseline task and probably not related to pro-

cessing.

We assume BOLD response is produced by the convolution of an underlying activity

signal with a hemodynamic response. The hemodynamic function is the SPM difference

of gammas (Friston et al., 1998; —g = gamma(6,1)-gamma(16, 1)/6). A Wiener filter

(Glover, 1999) with a noise parameter of 0.1 was used to deconvolve the BOLD response

into an inferred activity signal (Matlab: deconvwnr(bold,g,.1)). To an approximation, this

results in shifting the BOLD signal to the left by 2 scans (4 s). We have used this simple

scan shift in our mind-reading studies (e.g., Anderson et al., 2010, 2012a; Anderson et al.

in press a, b) where there is not a constant baseline activity interspersed at regular inter-

vals.

The analysis in the Appendix B is focused on the scans from fixation to feedback and

the analysis in the main body is focused on the subset of those scans that come from the

problem-solving phase. While the scans in the n-back that follow the feedback contribute

critically to the estimation of engagement in the earlier period, they are not used in any

analysis. We also exclude the scans from the first problem in a block (always a warm up

problem). Experiment 1 involved 20 participants solving 120 problems each, yielding

41,635 scans of which 24,170 were in the analyzed segments of trials (see Fig. 1).

Experiment 2 involved 36 participants solving 88 problems each, yielding 65,959 scans

of which 32,503 were analyzed.

Fig. 10. Elements of the signal processing: The BOLD signal is percent change from baseline. Using a Wei-

ner filter to deconvolve the hemodynamic response function results in the inferred activity at a time point.
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We perform a PCA of this activity to find the 20 dimensions of greatest variation and

divide the resulting eignenvectors by their eigenvalues to get dimensions that have zero

correlation, mean zero, and standard deviation 1. These are a close approximation to

independent normals except, like the BOLD signals from which they arise, they have too

many extreme values. These are truncated to be within �5 standard deviations (truncating

about 0.0005 of the observations).

All the software used in the analysis and instructions for reproducing critical figures in

this article are available at http://act-r.psy.cmu.edu/publications/pubinfo.php?id=1053

Appendix B: Segmenting the experimental structure

As Fig. 1 illustrates, the actual problem solving is just one phase of a larger experi-

mental sequence. The analyzed scans consist of an initial 4 s of fixation and waiting, the

participant-controlled problem solving, and then 5 s of feedback. Plausibly, the best-fit-

ting three-state structure for these analyzed scans should be a linear structure like Fig. 2B

and the durations of the three states should match up with the durations of the initial fixa-

tion period, the problem-solving period, and the feedback. To see if this was the case, we

fit a three-state model to the trials.

Even though it starts with a fully connected three-state model like the one in Fig. 2A,

the method identified the linear model in Fig. 2B as the best-fitting structure for both

experiments.16 Fig. 11A illustrates the durations of the three states in Experiment 1.

(A) (B)

(C) (D)

Fig. 11. The parameters of the linear HMM identified for Experiment 1: (A) The estimated distribution of

durations in the three states. (B)–(D) The mean reconstructed activation patterns for the three states. Values

displayed here are percent activation above the baseline established by the last scan of the repetition detec-

tion. Left is plotted on right.
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There are relatively tight distributions of estimated durations for the first and third state

and a wide distribution for the second state. The mean duration for the first state is a little

longer than the 4-s fixation period, and mean estimated duration for the third state is a lit-

tle shorter than the 5-s feedback period. However, the algorithm has basically discovered

the three phases of the experiment.

Figures 11B–D illustrate activation patterns for the three states, reconstructed from the

20 factor means for each state. State 1 shows little variation in activation but more acti-

vation in default mode network areas (e.g., Fair et al., 2008; Raichle & Snyder, 2007)

than the other states. State 2 shows the highest variation with strong activation in parietal,

prefrontal, and motor areas that are engaged by algebra problem solving (e.g., Anderson,

2005). State 3 shows relatively high activation in visual and parietal areas that might be

associated with attending to feedback.

Figure 12 shows the results of applying the algorithm to the scans of Experiment 2

(compare with Fig. 11). Fig. 12E gives the mean intercorrelations between state

activation patterns in the two experiments. The activation patterns for corresponding

(A) (B)

(C) (D)

(E) (F)

Fig. 12. The parameters of the linear HMM identified for Experiment 2. See Fig. 10 for explanation of (A)–
(D). With respect to (A), the estimated distributed for States 1 and 3 are very similar and overlap. Part (E)

gives the correlation between the mean percent BOLD change for Experiment 1 and 2 states. Part (F) gives

the mean correlation between factor means for the two experiments.
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states are quite similar, having an average intercorrelation of 0.93. However, non-corre-

sponding states have somewhat high correlations (mean of 0.68), reflecting the intercorre-

lation that exists in the raw BOLD values. In contrast, the factor scores from which these

are constructed are not correlated across the total data set. Fig. 12F shows the intercorre-

lations of the factor means. The correlation between corresponding states is still high

(mean 0.88) but the mean correlation between non-corresponding states is now negative

(mean �0.42).

We examined how well the self-trained HMM could do at detecting the onset of feed-

back on a trial-by-trial basis. We used the Forward Algorithm (see Anderson et al.,

2012a) that interprets each scan as it comes in without waiting until the end of the trial.

We looked at Experiment 2 because there is an extra fixation period after the feedback,

resulting in a full four scans after feedback onset. This gives more room for overshoot

errors. Estimating a three-state solution for the expanded Experiment 2 trials produced

similar results except that the third state is longer—5.2, 11.6, and 8.0 s for the three

states (compare with times in Fig. 12).

The Forward algorithm gives the probability that a scan comes from each of the three

states. Fig. 13A shows the probability of assigning a scan to State 3 as a function of

when the feedback begins (0 on the X axis). Fig. 13B looks at the estimated first scan of

feedback (defined as when State 3 becomes the most probable interpretation) as a func-

tion of the true first scan of feedback. Both halves of Fig. 13 show that the HMM is quite

sensitive to the onset of feedback. Previously, we had trained HMMs with ground truth

data as to where such boundaries are. In this case, the method is deciding where the

boundaries are without the benefit of knowing the ground truth.

(A) (B)

Fig. 13. Ability for the self-trained HMM to identify when feedback begins as the scans come in. (A) Proba-

bility of labeling a scan as feedback as function of distance from initiation of feedback. (B) Estimated first

trial of feedback as a function of true first trial of feedback.
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