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a  b  s  t  r  a  c  t

To  behave  adaptively,  we must  learn  from  the  consequences  of our actions.  Studies  using  event-related
potentials  (ERPs)  have  been  informative  with  respect  to the question  of how  such  learning  occurs.
These  studies  have revealed  a frontocentral  negativity  termed  the  feedback-related  negativity  (FRN)
that  appears  after  negative  feedback.  According  to  one  prominent  theory,  the  FRN  tracks  the  difference
between  the  values  of  actual  and  expected  outcomes,  or reward  prediction  errors.  As  such,  the  FRN  pro-
vides  a  tool  for studying  reward  valuation  and  decision  making.  We  begin  this  review  by  examining  the
rror-related negativity (ERN)
vent-related potentials (ERPs)
emporal difference learning
nterior cingulate cortex

neural  significance  of  the  FRN.  We  then  examine  its  functional  significance.  To understand  the  cognitive
processes  that occur  when  the  FRN  is generated,  we explore  variables  that influence  its appearance  and
amplitude.  Specifically,  we  evaluate  four hypotheses:  (1) the  FRN  encodes  a quantitative  reward  predic-
tion error;  (2)  the  FRN  is  evoked  by outcomes  and  by  stimuli  that  predict  outcomes;  (3)  the  FRN  and
behavior  change  with  experience;  and  (4)  the  system  that produces  the  FRN  is maximally  engaged  by
volitional  actions.
© 2012  Elsevier  Ltd.  All  rights  reserved.
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. Introduction

To cope with the unique demands of different tasks, the cogni-
ive system must maintain information about current goals and the

eans for achieving them. Equally important is the ability to mon-
tor performance, and when necessary, to adjust ongoing behavior.
tudies of error detection show that people do monitor their per-
ormance. After committing errors, they exhibit compensatory
ehaviors such as spontaneous error correction and post-error
lowing (Rabbitt, 1966, 1968). Experiments using event-related
otentials (ERPs) have provided insight into the neural basis of
hese behavioral phenomena. Most of this research has focused on
he error-related negativity (ERN), an ERP component that closely
ollows error commission (Falkenstein et al., 1991; Gehring et al.,
993). In a seminal study, Gehring et al. (1993) demonstrated that
he ERN was enhanced when instruction stressed accuracy. Addi-
ionally, as the amplitude of the ERN increased, so too did the
requency of spontaneous error correction and the extent of post-
rror slowing. These findings support the claim that the ERN is

 manifestation of error detection or compensation (Coles et al.,
002; Gehring et al., 1993).1

The ERN typically appears in speeded reaction time tasks. In such
asks, errors are due to impulsive responding. A representation of
he correct response can be derived from ongoing stimulus pro-
essing. In other tasks, errors are due to uncertainty rather than
o impulsivity. In such tasks, individuals must rely on external
eedback to determine whether the responses are correct. Another
omponent called the feedback-related negativity (FRN) follows
he display of negative feedback (Miltner et al., 1997). Owing to
heir many similarities, the ERN and FRN are thought to arise from
he same system but in different circumstances (Gentsch et al.,
009; Holroyd and Coles, 2002; Miltner et al., 1997). The ERN
ollows response errors, and the FRN follows negative feedback
Fig. 1). We  highlight these components’ similarities throughout
his review.

Since its discovery, over 200 studies have been published on
he FRN. Table 1 contains the subset most pertinent to this review.
hese studies seek to clarify the cognitive processes that occur
hen the FRN is generated, and they seek to identify the brain

egions that implement these processes. Because so many of these
tudies are motivated by the idea that the FRN is a neural substrate
f error-driven learning, we begin by describing the principles of
einforcement learning (Sutton and Barto, 1998). We then exam-
ne the neural significance of the FRN. Specifically, we  evaluate the
laim that the FRN arises in the anterior cingulate cortex. In the
emainder of the paper, we explore the cognitive significance of the
RN by considering its antecedent conditions – the variables that
ffect its appearance and amplitude. Existing FRN research centers
n four themes, which we develop in turn: (1) the FRN encodes

 quantitative reward prediction error; (2) the FRN is evoked by
utcomes and by stimuli that predict outcomes; (3) the FRN and
Please cite this article in press as: Walsh, M.M.,  Anderson, J.R., Learning f
cessing, neural adaptation, and behavioral choice. Neurosci. Biobehav

ehavior change with experience; and (4) the system that produces
he FRN is maximally engaged by volitional actions.

1 These findings also support the claim that the ERN is a manifestation of conflict
onitoring, a possibility that we  return to.
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2. Principles of reinforcement learning 

2.1. Temporal difference learning 

To behave adaptively, we  must learn from the consequences 

of our actions (Thorndike, 1911). Reinforcement learning the- 

ories formalize how such learning occurs (Sutton and Barto, 

1998). According to these theories, differences between actual and
expected outcomes, or reward prediction errors, provide teaching
signals. Upon experiencing an outcome, the individual computes a
prediction error: 

ıt = [rewardt+1 + � × V(statet+1)] − V(statet). (1) 

Rewardt + 1 denotes immediate reward, V(statet + 1) denotes the 

estimated value of the new world state (i.e., future reward), and 

V(statet) denotes the estimated value of the previous state. The 

temporal discount rate (�) controls the weighting of future reward. 

Discounting future reward ensures that when state values are 

equal, the individual will favor states that are immediately reward- 

ing. 

The prediction error is calculated as the difference between the 

value of the outcome, [rewardt + 1 + � × V(statet + 1)], and the value 

of the previous state, V(statet). The individual uses the prediction 

error to update the estimated value of the previous state, 

V(statet) ← V(statet) +  ̨× ıt (2) 

The learning rate (˛) scales the size of updates. By revising 

expectations in this way, the individual learns to associate states 

with the sum of the immediate and future rewards that follow. This 

is called temporal difference learning. 

Physiological studies provided early support for temporal dif- 

ference learning by showing that firing rates of monkey midbrain 

dopamine neurons scaled with differences between actual and 

expected rewards (Schultz, 2007). Additionally, when a condi- 

tioned stimulus reliably preceded reward, the dopamine response 

transferred back in time from the reward to the conditioned stim- 

ulus, as predicted by temporal difference learning. Neuroimaging 

experiments have extended these results to humans by demon- 

strating that blood-oxygen level-dependent (BOLD) responses in 

the striatum and prefrontal cortex, regions innervated by dopamine 

neurons, mirror reward prediction errors as well (McClure et al., 

2004; O’Doherty, 2004). 

2.2. Actor-critic model 

Temporal difference learning allows the individual to predict 

immediate and future rewards. Prediction is only useful insofar 

as it allows the individual to select advantageous behaviors. The 

actor-critic model provides a two-process account of how humans 

and animals solve this control problem (Sutton and Barto, 1998). 

One component, the critic, computes and uses prediction errors to 

learn state values (Eqs. (1) and (2)). The other component, the actor, 

uses the critic’s prediction error signal to adjust the action selection 
rom experience: Event-related potential correlates of reward pro-
. Rev. (2012), http://dx.doi.org/10.1016/j.neubiorev.2012.05.008

policy, p(state, action), so that actions that increase state values are 142

repeated, 143

p(statet , actiont) ← p(statet , actiont) +  ̨× ıt (3) 144

dx.doi.org/10.1016/j.neubiorev.2012.05.008
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Table  1
Major themes and representative findings in FRN research.

Theme Result Representative evidence

Neural significance of the FRN Source localized to anterior cingulate Bellebaum and Daum (2008)
Gehring and Willoughby (2002)
Gruendler et al. (2011)
Hewig et al. (2007)
Mathewson et al. (2008)
Miltner et al. (1997)
Potts et al. (2006)
Ruchsow et al. (2002)
Tucker et al. (2003)
Zhou et al. (2010)

Source localized to posterior cingulate Badgaiyan and Posner (1998)
Cohen and Ranganath (2007)a

Doñamayor et al. (2011)a

Luu et al. (2003)
Müller et al. (2005)a

Nieuwenhuis et al. (2005a)a

Source localized to basal ganglia Carlson et al. (2011)
Foti et al. (2011)
Martin et al. (2009)

The  FRN encodes a quantitative reward
prediction error

Unexpected loss − win > expected loss − win Bellebaum et al. (2008b,  2010ac, 2011b,c)

Q41
Cohen et al. (2007)c

Eppinger et al. (2008)c

Hajcak et al. (2007)c

Hewig et al. (2007)d

Holroyd and Coles (2002)d

Holroyd et al. (2003c, 2009b,c, 2011c)
Kreussel et al. (2012)b,c

Liao et al. (2011)b,c

Martin et al. (2009b,c, Martin et al., 2011b)
Morris et al. (2008)b,c

Nieuwenhuis et al. (2002)d

Ohira et al. (2012)b
Q42

Potts et al. (2006, 2010)b,c

Pfabigan et al. (2011a,b)b,c

Smille et al. (2011)b,c

Walsh and Anderson (2011a,b)b,c

Large magnitude loss −win  > small magnitude
loss − win

Bellebaum et al. (2010)b,c

Goyer et al. (2008)d

Hajcak et al. (2006)c

Holroyd et al. (2004)c

Kreussel et al. (2012)c

Masaki et al. (2006)c

Santesso et al. (2011)c

Contradictory results Hajcak et al. (2005, 2007)e

Kamarajan et al. (2009)f

Sato et al. (2005)f

Toyomaki and Murohashi (2005)f

Yeung and Sanfey (2004)f

Yu and Zhou (2006)f

The FRN is evoked by outcomes and by stimuli
that predict outcomes

Inverse relationship between ERN and FRN Eppinger et al. (2008)

Heldmann et al. (2008)
Holroyd and Coles (2002)
Morris et al. (2008)
Nieuwenhuis et al. (2002)

FRN  evoked by predictive cues Baker and Holroyd (2008)
Dunning and Hajcak (2009)
Holroyd et al. (2011)
Liao et al. (2011)
Walsh and Anderson (2011b)

The  FRN and behavior change with experience Concurrent behavioral and neural adaptation Bellebaum and Daum (2008)g

Cavanagh et al. (2010)h

Chase et al. (2011)h

Cohen et al. (2007)g

Cohen and Ranganath (2007)h

Eppinger et al. (2008)g

Holroyd and Coles (2002)i

Ichikawa et al. (2010)h

Krigolson et al. (2009)g

Morris et al. (2008)g

Salier et al. (2010)g

dx.doi.org/10.1016/j.neubiorev.2012.05.008
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Table  1 (Continued)

Theme Result Representative evidence

van der Vijver et al. (2011)i

van der Helden et al. (2009)i

Walsh and Anderson (2011a,b)g,h

Yasuda et al. (2004)i

Independent behavioral and neural adaptation Bellebaum et al. (2010a)g

Eppinger et al. (2008, 2009)g

Groen et al. (2007)g

Hämmerer et al. (2010)g

Nieuwenhuis et al. (2002)g

Walsh and Anderson (2011a)g,h

The system that produces the FRN is engaged
by volitional actions

Instrumental responses > passive viewing Itagaki and Katayama (2008)

Marco-Pallarés et al. (2010)
Martin and Potts (2011)
Yeung et al. (2004)

High responsibility > low responsibility Holroyd et al. (2009)
Empathy Li et al. (2011, 2012)

Fukushima et al. (2006)j
Q43

Itagaki and Katayama (2008)j,k

Leng and Zhou (2010)l

Marco-Pallarés et al. (2010)j,k , l

Yu and Zhou (2006)k

a Source localization results revealed an additional generator in the anterior cingulate.
b High probability losses < low probability losses.
c High probability wins > low probability wins.
d Data on constituent win  and loss waveforms not included.
e Manipulations of reward probability that failed to influence FRN amplitude.
f Manipulations of reward magnitude that failed to influence FRN amplitude.
g Block-wise analysis.
h Model-based analysis.
i Parametric analysis.
j Observing adversary’s outcomes.

145

t146

d147

n148

t149

t150

1151

t152

i153

154

155

156

157

158

159

F
m
f

A

k Observing partner’s outcomes.
l Observing neutral outcomes.

The actor and critic components have been associated with
he dorsal and ventral striatum. Following the analogy between
opamine responses and temporal difference learning, dopamine
eurons in the substantia nigra pars compacta (SNc) project to
he dorsal striatum, and dopamine neurons in the ventral tegmen-
al area (VTA) project to the ventral striatum (Amalric and Koob,
Please cite this article in press as: Walsh, M.M.,  Anderson, J.R., Learning f
cessing, neural adaptation, and behavioral choice. Neurosci. Biobehav

993). Physiological and lesion studies implicate the dorsal stria-
um in the acquisition of action values, and the ventral striatum
n the acquisition of state values (Cardinal et al., 2002; Packard

ig. 1. The error-related negativity (ERN) appears in response-locked waveforms as the
ovement onset and peaks 100 ms  after response errors. The feedback-related negativity

eedback and positive feedback. The FRN emerges at 200 ms  and peaks 300 ms  after nega

dapted from Nieuwenhuis et al. (2002).
and Knowlton, 2002). In accord with these data, neuroimaging
studies have found that instrumental conditioning tasks, which 

require behavioral responses, engage the dorsal and ventral stria-
tum. Classical conditioning tasks, which do not require behavioral 

responses, only engage the ventral striatum (Elliott et al., 2004;
O’Doherty et al., 2004; Tricomi et al., 2004). These findings have led 
rom experience: Event-related potential correlates of reward pro-
. Rev. (2012), http://dx.doi.org/10.1016/j.neubiorev.2012.05.008

to the proposal that the dorsal striatum, like the actor, learns action 160

preferences, while the ventral striatum, like the critic, learns state 161

values (Joel et al., 2002; O’Doherty et al., 2004). 162

 difference between error trials and correct trials. The ERN emerges at the time of
 (FRN) appears in feedback-locked waveforms as the difference between negative

tive feedback.

dx.doi.org/10.1016/j.neubiorev.2012.05.008
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Fig. 2. Feedback-locked ERPs for probable and improbable wins and losses (colored Q40
lines), and FRN difference waves (colored regions). (For interpretation of the refer-
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2002; Tucker et al., 2003; Zhou et al., 2010). Similarly, distributed 245

source models indicate that the topography of the FRN is consistent 246
ARTICLEBR 1591 1–15

M.M. Walsh, J.R. Anderson / Neuroscience

.3. The reinforcement learning theory of the error-related
egativity

The principles of reinforcement learning have been instantiated
n the reinforcement learning theory of the error-related negativ-
ty (RL-ERN; Holroyd and Coles, 2002; Nieuwenhuis et al., 2004a).
his theory builds on the idea that the dopamine system monitors
utcomes to determine whether things have gone better or worse
han expected. Positive prediction errors induce phasic increases in
opamine firing rates, and negative prediction errors induce phasic
ecreases in dopamine firing rates. The SNc and VTA send pre-
iction errors to the basal ganglia where they are used to revise
xpectations. The VTA also sends prediction errors to cortical struc-
ures such as the anterior cingulate where they are used to integrate
eward information with action selection.

The FRN is thought to reflect the impact of dopamine signals on
eurons in the anterior cingulate. Phasic decreases in dopamine
ctivity disinhibit anterior cingulate neurons, producing a more
egative FRN. Phasic increases in dopamine activity inhibit ante-
ior cingulate neurons, producing a more positive FRN. Several
ources of evidence support the idea that dopamine responses
oderate the FRN. For example, dopamine functioning in the pre-

rontal cortex shows protracted maturation into adolescence and
arked decline during adulthood (Bäckman et al., 2010; Benes,

001). Paralleling this observation, the FRN distinguishes most
trongly between losses and wins in young adults and less strongly
n children and older adults (Eppinger et al., 2008; Hämmerer
t al., 2011; Nieuwenhuis et al., 2002; Wild-Wall et al., 2009).
dditionally, Parkinson and Huntington patients express decreased
opamine in the basal ganglia. Although the FRN has not been
tudied in these populations, the closely related ERN is attenu-
ted in advanced Parkinson and Huntington patients (Beste et al.,
006; Falkenstein et al., 2001; Stemmer et al., 2007).2 Lastly,
mphetamine, a dopamine agonist, increases the amplitude of the
RN (de Bruijn et al., 2004), and haloperidol and pramipexole,
opamine antagonists, attenuate the ERN (de Bruijn et al., 2006;
irnheld et al., 2004) and dampen neural responses to reward
Santesso et al., 2009). Collectively, these results point to the
nvolvement of dopamine in the FRN, although they do not pre-
lude the potential impact of other neurotransmitter systems on
ts expression (Jocham and Ullsperger, 2009).

.4. Alternate accounts

RL-ERN accounts for the FRN in terms of reward prediction
rrors that arise from the dopamine system and arrive at the ante-
ior cingulate. According to other accounts, the FRN and related
omponents (i.e., the ERN and the N2) reflect response conflict
Cockburn and Frank, 2011; Yeung et al., 2004), surprise (Alexander
nd Brown, 2011; Jessup et al., 2010; Oliveira et al., 2007), or evalua-
ion of the motivational impact of events (Gehring and Willoughby,
002; Luu et al., 2003). We  return to these alternatives in the dis-
ussion.

. Neural significance of the FRN
Please cite this article in press as: Walsh, M.M., Anderson, J.R., Learning f
cessing, neural adaptation, and behavioral choice. Neurosci. Biobehav

Fig. 2 presents ERP waveforms from a probabilistic learning
xperiment conducted in our laboratory (Walsh and Anderson,
011a).  In each trial, participants selected between two  stimuli.

2 Mood disorders (i.e., depression), anxiety disorders (i.e., obsessive compulsive
isorder), and schizophrenia are also associated with abnormal ERNs and FRNs (for

 review, see Weinberg et al., 2012). Because these disorders have complex phar-
acological etiologies, the pathways by which they affect the ERN and FRN are not

lear.
ences to color in this figure legend, the reader is referred to the web version of the
article.)

Data from the no instruction condition of Walsh and Anderson (2011a).

The experiment contained three stimuli that were rewarded with
different probabilities, P = {0%, 33%, and 66%}. The FRN is com- 

puted as the difference in voltages following losses and wins that
occurred with low probability (losses|66% cue − wins|33% cue) and 

with high probability (losses|33% cue − wins|66% cue).3 The FRN 

appears as a negativity following losses and is maximal from 200 to 

350 ms.4 Although waveforms are relatively more negative follow- 

ing losses, they do not literally drop below zero. This is because the 

FRN is superimposed upon the larger, positive-going P300, which 

is evoked by stimulus processing (Johnson, 1986). Fig. 3 shows the 

topography of the FRN following probable and improbable out- 

comes. For both outcome types, the FRN has a frontocentral focus. 

These results coincide with other studies in showing that the FRN 

is maximal over the frontocentral scalp and from 200 to 350 ms. 

The topography of the FRN is compatible with a generator in
the anterior cingulate. Investigators have used equivalent cur- 

rent dipole localization techniques (e.g., BESA; Scherg and Berg, 

1995), and distributed source localization techniques (e.g., LORETA; 

Pascual-Marqui et al., 2002) to identify the FRN’s source. The former 

approach involves modeling the observed distribution of voltages 

over the scalp using a small number of dipoles with variable loca- 

tions, orientations, and strengths. The latter approach involves 

modeling observed voltages using a large number of voxels with 

fixed locations and orientations but with variable strengths. 

Dipole source models indicate that the topography of the FRN 

is consistent with a source in the anterior cingulate (Gehring 

and Willoughby, 2002; Hewig et al., 2007; Miltner et al., 1997; 
rom experience: Event-related potential correlates of reward pro-
. Rev. (2012), http://dx.doi.org/10.1016/j.neubiorev.2012.05.008

3 The P300 is also sensitive to outcome likelihood (Johnson, 1986). By comparing
outcomes that are equally likely, one can control for the P300 and isolate the FRN
(Holroyd et al., 2009).

4 The same events that produce an FRN cause changes in neural oscillatory activ-
ity. Time-frequency analyses show that negative feedback and response errors are
accompanied by increased power in the theta (5–7 Hz) frequency band (Cavanagh
et al., 2010; Cohen et al., 2007; Marco-Pallares et al., 2008; van de Vijver et al., 2011),
and positive feedback is accompanied by increased power in the beta (15–30 Hz)
frequency band (Cohen et al., 2007; Marco-Pallares et al., 2008; van de Vijver et al.,
2011). Q4

dx.doi.org/10.1016/j.neubiorev.2012.05.008
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Fig. 3. Topography of the FRN following probable outcomes (losses|33%
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5 Neurological patients with lesions to the lateral prefrontal cortex and basal gan-
ue  − wins|66% cue) and improbable outcomes (losses|66% cue − wins|33% cue).

ata from the no instruction condition of Walsh and Anderson (2011a).

ith graded activation in the anterior cingulate (Bellebaum and
aum, 2008; Cohen and Ranganath, 2007; Gruendler et al., 2011;
athewson et al., 2008). The response-locked ERN also has a fron-

ocentral distribution that, like the FRN, is consistent with a source
n the anterior cingulate (Dehaene et al., 1994; Gruendler et al.,
011).

The anterior cingulate receives inputs from the limbic system
nd from cortical structures including the prefrontal cortex and
otor cortex (Paus, 2001). Pyramidal neurons in the anterior cin-

ulate, in turn, project to motor structures including the basal
anglia, the primary and supplementary motor areas, and the spinal
ord (van Hoesen et al., 1993). Thus, the anterior cingulate is in a
rime position to transform motivational and cognitive inputs into
ctions. The foci of activation in ERP studies overlap with the rostral
ingulate zone, the human analog of the monkey cingulate motor
rea (Picard and Strick, 1996; Ridderinkhof et al., 2004). The pro-
osal that the ERN and FRN originate from the anterior cingulate
oincides with this region’s role in planning and executing behavior
Bush et al., 2000; Kennerley et al., 2006; Ridderinkhof et al., 2004).

Source localization results must be regarded with caution
ecause different configurations of neural generators can produce

dentical voltage distributions (i.e., the inverse problem). Never-
heless, neuroimaging studies have reported anterior cingulate
ctivation following negative feedback and response errors (Bush
t al., 2002; Holroyd et al., 2004b; Jocham et al., 2009; Mathalon
t al., 2003; Ullsperger and von Cramon, 2003).

Paralleling these neuroimaging results, local field potentials in
he human anterior cingulate are sensitive to losses and negative
eedback (Halgren et al., 2002; Pourtois et al., 2010), as are the
esponses of individual anterior cingulate neurons (Williams et al.,
004). Thus, there is a convergence of evidence at the levels of indi-
idual neuron responses, local field potentials, and scalp-recorded
RPs. Likewise, extracranial EEG recordings from monkeys reveal
n analog to the human ERN and FRN (Godlove et al., 2011; Vezoli
nd Procyk, 2009). Local field potentials in the monkey anterior cin-
ulate are sensitive to errors and negative feedback (Emeric et al.,
008; Gemba et al., 1986), as are the responses of individual ante-
ior cingulate neurons (Ito et al., 2003; Niki and Watanabe, 1979;
hima and Tanji, 1998). The onset of the FRN coincides with the tim-
Please cite this article in press as: Walsh, M.M.,  Anderson, J.R., Learning f
cessing, neural adaptation, and behavioral choice. Neurosci. Biobehav

ng of local field potentials and of individual neuron responses, and
s somewhat earlier in monkeys than humans as would be expected
iven the shorter latencies of monkey ERP components (Schroeder
 PRESS
iobehavioral Reviews xxx (2012) xxx–xxx

et al., 2004). The electrophysiological response of dopamine neu- 

rons begins 60–100 ms  after reward delivery (Schultz, 2007). That 

the FRN emerges slightly later is not surprising given that it reflects 

the summation of postsynaptic potentials caused by dopamine 

release, rather than the responses of dopamine neurons them- 

selves. 

Given its purported role in reward learning, one might expect 

that ablation of the anterior cingulate would disrupt responses to 

errors and feedback. Indeed, the ERN is attenuated in neurological 

patients with lesions to the anterior cingulate (Swick and Turken, 

2002; Ullsperger et al., 2002). It would be interesting to see whether 

the FRN is also reduced in these patients, as ablation of the ante- 

rior cingulate impairs feedback-driven learning of action values 

(Camille et al., 2011; Williams et al., 2004).5

Source localization studies have identified alternative (or addi- 

tional) neural generators for the FRN. Some studies indicate that the
FRN arises in the posterior cingulate cortex (Badgaiyan and Posner,
1998; Cohen and Ranganath, 2007; Doñamayor et al., 2011; Luu 

et al., 2003; Müller et al., 2005; Nieuwenhuis et al., 2005a). Many 

of these studies identified an additional source in the anterior cin-
gulate, suggesting that the anterior and posterior cingulate jointly 

contribute to the FRN. This is plausible given that the anterior and 

posterior cingulate are reciprocally connected, and that the poste- 

rior cingulate also signals reward properties (Hayden et al., 2008; 

McCoy et al., 2003; Nieuwenhuis et al., 2004b, 2005a; van Veen 

et al., 2004) and response errors (Menon et al., 2001). Still other 

studies indicate that the FRN arises in the ventral and dorsal stria- 

tum (Carlson et al., 2011; Foti et al., 2011; Martin et al., 2009). These 

regions are densely innervated by dopamine neurons, and striatal 

BOLD responses mirror reward prediction errors (O’Doherty et al., 

2004). Researchers traditionally thought that subcortical structures 

such as the striatum contribute little to scalp-recorded EEG signals. 

This view has been challenged, however, raising the possibility that 

the striatum contributes to the FRN (Foti et al., 2011). These results 

notwithstanding, the anterior cingulate has most consistently been 

associated with the FRN. Although other regions are undoubtedly 

involved in reward learning, their contributions to scalp-recorded 

ERPs remain less studied. 

As the focus of the FRN along the anterior–posterior axis of 

the scalp varies between studies, so too do the locations of the 

modeled generators within the anterior cingulate (Fig. 4). This 

spatial variability is expected for three reasons. First, some stud- 

ies do not freely fit dipoles, raising the possibility that a different 

source would account equally well for the observed voltage dis- 

tribution. Second, source models that localize components using 

the difference-wave approach (i.e., the difference between voltage 

topographies following losses and wins) are associated with a spa- 

tial error on the order of tens of millimeters (Dien, 2010). Third, 

neuroimaging techniques with far greater spatial resolution than 

EEG also reveal activation in extensive and variable portions of 

the anterior cingulate during error processing (Bush et al., 2000; 

Ridderinkhof et al., 2004). The anterior cingulate can be subdivided 

into its dorsal and rostral-ventral aspects. Neuroimaging experi- 

ments and lesion studies implicate the dorsal anterior cingulate in 

cognitive processing and the rostral-ventral anterior cingulate in 

affective processing (Bush et al., 2000). Localization of the FRN to 

the dorsal and rostral-ventral subdivisions of the anterior cingu- 
rom experience: Event-related potential correlates of reward pro-
. Rev. (2012), http://dx.doi.org/10.1016/j.neubiorev.2012.05.008

glia also show attenuated responses to errors relative to correct trials (Gehring and
Knight, 2000; Ullsperger and von Cramon, 2006). The reduced ERN is thought to
arise indirectly from impaired inputs from the lateral prefrontal cortex and basal
ganglia to the anterior cingulate.

dx.doi.org/10.1016/j.neubiorev.2012.05.008
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that matched the FRN. The factor displayed a positive deflection 432

following rewards, and no change following non-rewards. This 433

result is consistent with the idea that the FRN arises from the 434
ig. 4. Equivalent dipole solutions from source localization studies. Miltner et al. (
wo  experiment contrasts. Several studies modeled the FRN using two-dipole solut
uchsow et al., 2002).

. Cognitive significance of the FRN

.1. The FRN reflects a quantitative reward prediction error

Phasic responses of dopamine neurons scale with differences
etween actual and expected outcomes (Schultz, 2007). A central
laim of RL-ERN is that the amplitude of the FRN also depends on
he difference between the actual and the expected value of an
utcome. Expected value, in turn, depends on the probability and
agnitude of rewards,

xpected Value =
∑

i
Probabilityi × Valuei (4)

.1.1. Reward probability
Investigators have examined the relationship between reward

robability and FRN amplitude. Fig. 2 presents ERPs from a proba-
ilistic learning experiment conducted in our laboratory (Walsh
nd Anderson, 2011a).  If the FRN tracks quantitative reward
rediction errors, we expected that FRN amplitude, defined as
he difference between losses and wins, would be greater for
mprobable outcomes than for probable outcomes. This is because
mprobable losses yield more negative prediction errors than prob-
ble losses, and improbable wins yield more positive prediction
rrors than probable wins. Thus, the difference between improba-
le losses and wins should exceed the difference between probable

osses and wins. As expected, the FRN was greater for improba-
le outcomes than for probable outcomes. Although many other
tudies have found that FRN amplitude is inversely related to out-
ome likelihood (Eppinger et al., 2008, 2009; Hewig et al., 2007;
olroyd and Coles, 2002; Holroyd et al., 2003, 2009; Nieuwenhuis
t al., 2002; Potts et al., 2006, 2010; Walsh and Anderson, 2011a,b),
ome have not (Hajcak et al., 2005, 2007). In these cases, par-
icipants may  have received insufficient experience to develop
trong expectations. Indeed, when participants rated their confi-
ence immediately before outcomes were revealed, the FRN related
o their expectations (Hajcak et al., 2007).

RL-ERN further predicts that ERPs will be more positive after
mprobable wins than probable wins, and that ERPs will be more
egative after improbable losses than probable losses. Fig. 2 ren-
ers such a valence-by-likelihood interaction. Studies that report
ifference waves along with the constituent win and loss ERPs lend
ixed support to this prediction. In many cases, outcome likeli-
Please cite this article in press as: Walsh, M.M., Anderson, J.R., Learning f
cessing, neural adaptation, and behavioral choice. Neurosci. Biobehav

ood influences win and loss waveforms in opposite directions
s predicted by RL-ERN, but in other cases, outcome likelihood
nly affects win waveforms. To determine whether outcome likeli-
ood consistently affects win and loss waveforms, we examined
he direction of the effects in 25 studies of neurotypical adults
 fit dipoles for three experiment conditions, and Hewig et al. (2007) fit dipoles for
arlson et al., 2011; Foti et al., 2011; Müller et al., 2005; Nieuwenhuis et al., 2005a;

that manipulated reward probability (Table 1).6 Waveforms were 

more positive after unexpected than expected wins in 84% of stud-
ies (sign test: p < .001). Conversely, waveforms were more negative 

after unexpected than expected losses in 76% of studies (sign test:
p < .01). Although the number of experiments showing expected 

effects for wins and losses are equivalent by McNemar’s test, p > .1,
the magnitude of the effect is typically larger for wins. 

These results confirm that outcome likelihood affects win 

and loss waveforms, but they also point to a win/loss asym- 

metry: outcome likelihood modulates neural responses to wins
more strongly than to losses. Such an asymmetry could arise for 

two reasons. First, because of their low baseline rate of activ- 

ity, dopamine neurons exhibit a greater range of responses to 

positive events than to negative events. As such, the phasic 

increase in dopamine firing rates that follows improbable positive 

outcomes exceeds the phasic decrease that follows improba- 

ble negative outcomes (Bayer and Glimcher, 2005; Mirenowicz 

and Schultz, 1996). Amplifying this effect, dopamine concentra- 

tion increases in a non-linear, accelerated manner with firing 

rate (Chergui et al., 1994). For these reasons, positive predic- 

tion errors could disproportionately influence neural activity in 

concomitant structures like the anterior cingulate. According 

to this account, the impact of negative outcomes on the FRN, 

though real, is slight. The greater source of variance comes from 

the superposition of a reward positivity on EEG activity after 

positive outcomes (Holroyd et al., 2008). 

Second, the effect of outcome likelihood on waveforms follow- 

ing losses may  be obscured by the P300, a positive component that 

follows low probability events (Johnson, 1986). According to this 

view, improbable wins produce a reward positivity that summates 

with the P300. Improbable losses produce an FRN, but a still-larger 

P300 obscures the FRN. Although the P300 is maximal at posterior 

sites, the P300 extends to central and frontal sites. When outcome 

probabilities are not equal, as when directly comparing probable 

losses and improbable losses, measures of the FRN from frontal 

sites and especially from central and posterior sites are likely to be 

confounded by the P300. 

To distinguish between these accounts, Foti et al. (2011) used 

principal components analysis (PCA), a data reduction technique 

that decomposes ERP waveforms into their latent factors. They 

identified a reward-related factor with a latency and topography 
rom experience: Event-related potential correlates of reward pro-
. Rev. (2012), http://dx.doi.org/10.1016/j.neubiorev.2012.05.008

6 Because few studies report results separately for wins and losses, we classified
effects using peak values from grand-averaged waveforms.

dx.doi.org/10.1016/j.neubiorev.2012.05.008
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uperposition of a reward positivity on EEG activity after posi-
ive outcomes. These results do not unambiguously establish that
utcome likelihood only affects neural activity following wins,
owever. Foti et al. (2011) did not vary reward probability. As such,

t is unclear whether the reward-related factor is sensitive to out-
ome likelihood, or just outcome valence. Additionally, other PCA
ecompositions have revealed separate reward- and loss-related
actors (Potts et al., 2010), or a single factor that distinguishes
etween losses and rewards (Boksem et al., 2012; Carlson et al.,
011; Foti and Hajcak, 2009). Because none of these studies manip-
lated outcome likelihood, however, it is unclear whether the
actors in each are sensitive to outcome likelihood or just outcome
alence.

.1.2. Reward magnitude
In addition to examining the effect of reward probability on the

RN, investigators have examined the relationship between reward
agnitude and FRN amplitude. RL-ERN predicts that the difference

etween large magnitude losses and wins will exceed the differ-
nce between small magnitude losses and wins. In contrast to this
rediction, the FRN is typically sensitive to reward valence, whereas
he P300 is sensitive to reward magnitude (i.e., the independent cod-
ng hypothesis;  Kamarajan et al., 2009; Sato et al., 2005; Toyomaki
nd Murohashi, 2005; Yeung and Sanfey, 2004; Yu and Zhou, 2006).
L-ERN also predicts that ERPs will be more positive after large wins
han small wins, and ERPs will be more negative after large losses
han small losses. Few studies have reported such a valence-by-

agnitude interaction (but for partial support, see Bellebaum et al.,
010b; Goyer et al., 2008; Hajcak et al., 2006; Holroyd et al., 2004a;
reussel et al., 2012; Marco-Pallarés et al., 2008; Masaki et al., 2006;
antesso et al., 2011). These results might indicate that separate
rain systems represent reward probability and magnitude, and
hat the FRN is sensitive to the former but not the latter dimension
f expected value. This interpretation is at odds with the finding
hat anterior cingulate neurons and the BOLD response in the ante-
ior cingulate are sensitive to outcome magnitude, however (Amiez
t al., 2005; Fujiwara et al., 2009; Sallet et al., 2007).

In most FRN studies that manipulated reward magnitude, out-
ome values were known in advance. In such circumstances,
he brain displays adaptive scaling. Neural firing rates and BOLD
esponses adapt to the range of outcomes such that maximum devi-
tions from baseline remain constant regardless of absolute reward
alues (Bunzeck et al., 2010; Nieuwenhuis et al., 2005b; Tobler
t al., 2005). Failure to find an effect of reward magnitude on FRN
mplitude might indicate that the FRN also scales with the range
f reward values (i.e., the adaptive scaling hypothesis). In two stud-
es that permit evaluation of this hypothesis, trial values were not
nown in advance (Hajcak et al., 2006; Holroyd et al., 2004a).  In both
tudies, large magnitude wins produced more positive waveforms
han small magnitude wins, whereas large and small magnitude
osses produced identical waveforms.7 These results indicate that
he FRN is sensitive to reward magnitude when trial values are
ot known in advance, and they replicate the win/loss asymmetry
haracteristic of reward probability.

Understanding the effect of outcome magnitude on FRN activ-
ty is complicated by the fact that subjective values may  differ
rom objective utilities. For instance, participants may adopt a
on-linear value function (Tversky and Kahneman, 1981). In the
Please cite this article in press as: Walsh, M.M.,  Anderson, J.R., Learning f
cessing, neural adaptation, and behavioral choice. Neurosci. Biobehav

xtreme case, they may  encode all outcomes that exceed an aspi-
ation level as wins, and all outcomes that fall below an aspiration
evel as losses (Simon, 1955). Although no ERP study has attempted

7 Hajcak et al. (2006) may  not have detected an effect of outcome magnitude on
eural activity following wins because they only measured the amplitude of negative
eflections in the ERP waveforms.
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to infer subjective value functions, one study did find that the FRN 

is sensitive to how participants code feedback (Nieuwenhuis et al., 

2004b).  In that study, participants chose between two alternatives, 

and the valence and magnitude of each alternative was  revealed. 

When feedback emphasized the valence of the selection (greater 

than or less than zero), choosing a negative outcome produced 

an FRN. When feedback emphasized the correctness of the selec- 

tion (greater than or less than the alternative), choosing the lesser 

outcome produced an FRN. These results confirm that the FRN is 

sensitive to subjective interpretations of feedback, and is subse- 

quently dependent upon participants’ representation of outcomes. 

4.2. The FRN is evoked by stimuli that predict outcomes 

The dopamine response transfers back in time from outcomes 

to the earliest events that predict outcomes (Schultz, 2007). RL-
ERN also holds that outcomes and events that predict outcomes
will evoke a frontal negativity. To test this hypothesis, investiga-
tors first examined the relationship between the ERN and the FRN. 

These components differ with respect to their eliciting events: the
ERN immediately follows response errors, and the FRN follows 

negative feedback (Fig. 1). When responses determine outcomes 

(i.e., the correct response is rewarded with certainty), the response 

itself provides complete information about future reward. When 

responses do not determine outcomes (i.e., reward is delivered ran- 

domly), the response provides no information about future reward. 

By varying the reliability of stimulus–response mappings, inves- 

tigators have demonstrated an inverse relationship between the 

amplitude of the ERN and the FRN (Eppinger et al., 2008, 2009; 

Holroyd and Coles, 2002; Nieuwenhuis et al., 2002). The ERN is 

larger when responses strongly determine outcomes (i.e., punish- 

ment can be anticipated from the response), and the FRN is larger 

when responses weakly determine outcomes (i.e., punishment can- 

not be anticipated from the response). 

The inverse relationship between the ERN and the FRN also 

holds as the detectability of response errors vary (i.e., the first- 

indicator hypothesis). For example, in a task where participants had 

to respond within an allocated time interval, large timing errors 

produced an ERN, but subsequent negative feedback did not pro- 

duce an FRN. Response errors committed marginally beyond the 

response deadline did not produce an ERN, but subsequent neg- 

ative feedback did produce an FRN (Heldmann et al., 2008). This 

presumably reflects the fact that participants could more readily 

detect large timing errors than marginal timing errors. 

More recently, researchers have examined whether stimulus 

cues that predict outcomes also evoke an FRN. In some studies, 

cues provided complete information about forthcoming outcomes. 

Cues that predicted future losses produced more negative wave- 

forms than cues that predicted future rewards (Baker and Holroyd, 

2009; Dunning and Hajcak, 2008). In other studies, cues provided 

probabilistic information about forthcoming outcomes. Again, 

waveforms were more negative after cues that predicted probable 

future losses than after cues that predicted probable future rewards 

(Holroyd et al., 2011; Liao et al., 2011; Walsh and Anderson, 2011b). 

In all of these cases, the topography of the negativity produced by 

cues that predicted future losses coincided with the topography of 

the negativity produced by losses themselves. 

The relative magnitude of cue-locked and feedback-locked 

FRNs varies considerably across studies. According to RL-ERN, 

the size of cue-locked prediction errors should vary with the 

amount of information that the cue conveys about the out- 

come (i.e., reward probability). As the amount of information
rom experience: Event-related potential correlates of reward pro-
. Rev. (2012), http://dx.doi.org/10.1016/j.neubiorev.2012.05.008

conveyed by cues increases, so too do their predictive values 555

and the resulting cue-locked FRN. The predictive values of cues 556

also shape neural responses to feedback. Outcomes that confirm 557

expectations induced by cues produce smaller prediction errors 558

dx.doi.org/10.1016/j.neubiorev.2012.05.008
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ig. 5. Model FRNs and observed FRNs. Squares correspond to cue-locked FRNs, and
ircles correspond to feedback-locked FRNs.

and feedback-locked FRNs), and outcomes that violate expec-
ations induced by cues produce larger prediction errors (and
eedback-locked FRNs).

For data sets that included cue- and feedback-locked FRNs,
e calculated model prediction errors (Baker and Holroyd, 2009;
unning and Hajcak, 2008; Holroyd et al., 2011; Liao et al., 2011;
alsh and Anderson, 2011b). Cue values depended on the amount

f information the cue conveyed about the outcome (i.e., reward
robability). We  estimated the value of the temporal discount
arameter (�) that minimized the sum of the squared errors
etween observed FRNs and model FRNs across the five data sets.
e  also estimated slope and intercept terms to scale model FRNs to

bserved FRNs for each data set (Appendix B). A value of � near one
ould indicate that the FRN is sensitive to future reward. Fig. 5 plots

bserved FRNs against model FRNs for the best-fitting value of �
0.86).8 The results of this analysis make clear two  points. First, the

agnitudes of cue- and feedback-locked FRNs are consistent with
 temporal difference learning model. Second, the FRN is sensitive
o future reward.

Some researchers have incorporated eligibility traces into mod-
ls of dopamine responses (Pan et al., 2005). When a state is visited
r an action is selected, a trace is initiated. The trace marks the
tate or action as eligible for update and gradually decays. Traces
ermit prediction errors to bridge gaps between states, actions,
nd rewards (Sutton and Barto, 1998). In one study of sequential
hoice, we found that behavior was most consistent with a model
hat used eligibility traces (Walsh and Anderson, 2011b). The ERP
esults were not conclusive with respect to this issue, however. One
venue for future research is to understand how temporal delays
nd intervening events between actions and outcomes affect the
RN.

.3. The FRN and behavior change with experience

.3.1. Block-wise analyses
Reinforcement learning seeks to explain how experience influ-

nces ongoing behavioral responses. Likewise, RL-ERN is a theory
f how experience influences ongoing neural responses. As such, it
s informative to ask how behavior and the FRN change over time.

any studies report concomitant behavioral and neural adaptation.
or example, in one condition of Eppinger et al. (2008),  the cor-
Please cite this article in press as: Walsh, M.M., Anderson, J.R., Learning f
cessing, neural adaptation, and behavioral choice. Neurosci. Biobehav

ect response to a cue was rewarded with 100%. Response accuracy
n adults was initially low and positive feedback evoked a reward
ositivity. As response accuracy increased, the feedback positivity

8 As a further test, we found the value of � that maximized the correlation between
bserved and model FRNs for each of the five data sets. This analysis eliminates the
eed to estimate slope and intercept terms, which do not affect correlations between
odel and observed FRNs. Consistent with our earlier analysis, the value of � that
aximized the correlation was 0.90.
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decreased, indicating that participants came to expect reward after 

correct responses. At the same time, the amplitude of the response- 

locked ERN following errors increased, indicating that participants 

came to expect punishment after incorrect responses. Other studies 

have found that as participants learn which responses are likely to 

be rewarded and which are not, the FRN develops increasing sensi- 

tivity to outcome likelihood in parallel (Cohen et al., 2007; Morris 

et al., 2008; Müller et al., 2005; Pietschmann et al., 2008; Walsh 

and Anderson, 2011a,b). 

Interestingly, the FRN only changes in participants who  exhibit 

behavioral learning (Bellebaum and Daum, 2008; Krigolson et al., 

2009; Salier et al., 2010). One recent study used a blocking paradigm 

to explore this issue (Luque et al., 2012). In the first phase of 

the experiment, participants learned to predict whether different 

stimuli would produce an allergy. One stimulus did (conditioned 

stimulus), and the other did not (neutral stimulus). In the second 

phase of the experiment, novel stimuli appeared in compounds
with the conditioned stimulus and the neutral stimulus. In the
test phase, participants predicted whether the novel stimuli alone 

would produce the allergy. Participants predicted “allergy” more
frequently for the novel stimulus that appeared with the neutral 

stimulus than for the novel stimulus that appeared with the con-
ditioned stimulus, replicating the standard blocking effect. More 

critically, the FRN was greater when participants received punish- 

ment for responding “allergy” to the predictive stimulus than when 

they received punishment for responding “allergy” to the blocked 

stimulus, indicating that they came to expect reward in the former 

case but not the latter. 

Collectively, these results are consistent with the hypothesis 

that the neural system that generates the FRN influences behavior. 

These results are also consistent with the hypothesis that expecta- 

tions, which shape behavior, influence the system that generates 

the FRN. Thus, these results do not unambiguously demonstrate 

that the FRN contributes to behavior. 

Not all studies report concomitant behavioral and neural adap- 

tation. For example, the FRN sometimes remains constant as 

response accuracy increases (Bellebaum et al., 2010a; Eppinger 

et al., 2009; Holroyd and Coles, 2002).9 Additionally, participants 

sometimes learn despite the absence of any clear FRN (Groen 

et al., 2007; Hämmerer et al., 2010; Nieuwenhuis et al., 2002). 

Finally, response accuracy sometimes remains constant as the 

FRN becomes more sensitive to outcome likelihood. In one study 

that demonstrated such a dissociation, participants performed a 

probabilistic learning task (Walsh and Anderson, 2011a).  In the 

instruction condition, they were told how frequently each of three 

stimuli was rewarded (0%, 33%, and 66%). In the no instruction 

condition, they were not. Two  stimuli appeared in each trial. Par- 

ticipants selected a stimulus and received feedback about whether 

their selection was  rewarded. Although response accuracy began 

and remained at asymptote in the instruction condition, the FRN 

only distinguished between probable and improbable outcomes 

after participants experienced the consequences of several choices. 

Collectively, these results demonstrate that behavioral and neural 

adaptations can occur independently. 

4.3.2. Verbal reports 

Establishing a relationship between the FRN and reward pre- 

diction errors is complicated by the fact that prediction errors 

depend on participants’ ongoing experience. Block-wise analyses 
rom experience: Event-related potential correlates of reward pro-
. Rev. (2012), http://dx.doi.org/10.1016/j.neubiorev.2012.05.008

eschew this issue by assuming that expectations gradually con- 659

verge to true reward values. Such analyses may  be too coarse 660

to detect rapid neural adaptation, however. To overcome this 661

9 Such null effects are difficult to interpret. Binning trials to create learning curves
leave few observations per time point, reducing statistical power.

dx.doi.org/10.1016/j.neubiorev.2012.05.008
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imitation, researchers have examined the trial-by-trial correspon-
ence between EEG activity and participants’ verbally reported
xpectations. For example, in Hajcak et al. (2007),  participants
uessed which of four doors contained a reward. Before the out-
ome was revealed, participants predicted whether they would be
ewarded in that trial. Waveforms were more negative after unpre-
icted losses than after predicted losses, and waveforms were more
ositive after unpredicted wins than after predicted wins. Other
tudies have since confirmed that trial-by-trial changes in FRN
mplitude relate to participants’ reported expectations (Ichikawa
t al., 2010; Moser and Simons, 2009).

.3.3. Model-based analyses
Verbal reports, though informative, are obtrusive. An alternate

pproach is to construct a computational model of the task the par-
icipant must solve. Free parameters like temporal discounting rate
�) and learning rate (˛) are estimated from observable behavioral
esponses. One can then simulate how latent model variables like
eward prediction error change over time (Mars et al., 2012).

Studies have increasingly employed this model-based approach
Cavanagh et al., 2010; Chase et al., 2011; Ichikawa et al., 2010;
hiliastides et al., 2010; Walsh and Anderson, 2011a,b). For exam-
le, Walsh and Anderson (2011a) fit computational models to
articipants’ behavioral and neural data in two experiment con-
itions. Behavior in the instruction condition was consistent with

 model that only learned from instruction, whereas behavior in
he no instruction condition was consistent with a model that only
earned from feedback. In both conditions, changes in the FRN were
onsistent with a model that only learned from feedback. Besides
stablishing a relationship between the FRN and trial-by-trial pre-
iction errors, these results demonstrated that behavioral and
eural responses could arise from separate processes as evidenced
y the different computational models that best characterized
ach in the instruction condition. Other model-based analyses have
ound a relationship between negative prediction errors and FRN
mplitude (Cavanagh et al., 2010; Chase et al., 2011; Ichikawa et al.,
010), while one study found that the FRN was only sensitive to the
alence of prediction errors (Philiastides et al., 2010). These model-
ased analyses establish a link between behavior and the FRN by
howing that prediction errors, which guide behavior, influence
eural responses as well.

.3.4. Sequential effects
Researchers have also used traditional signal averaging tech-

iques to examine trial-by-trial changes in FRN amplitude. These
nalyses show that previous outcomes affect FRN amplitude. For
xample, when wins and losses occurred with equal probability
Holroyd and Coles, 2002), FRN amplitude was greater after out-
omes that disconfirmed expectations induced by the immediately
receding trial (e.g., losses following wins). These analyses also
how that FRN amplitude predicts subsequent behavioral adap-
ation. For example, as the size of the FRN following negative
utcomes increases, so too does the probability that participants
ill not repeat the punished response in the next trial (Cohen and
anganath, 2007; van der Helden et al., 2010; Yasuda et al., 2004).
astly, time-frequency analyses reveal associations between neural
scillations and behavioral adaptation. Increases in midline frontal
heta following negative feedback predict post-error slowing and
rror correction, whereas increases in midline frontal beta follow-
ng positive feedback predict response repetition (Cavanagh et al.,
010; van de Vijver et al., 2011).
Please cite this article in press as: Walsh, M.M.,  Anderson, J.R., Learning f
cessing, neural adaptation, and behavioral choice. Neurosci. Biobehav

.3.5. Integration
Theories of behavioral control propose that choices can arise

rom a habitual system situated in the basal ganglia, or a goal-
irected system situated in the prefrontal cortex and medial
 PRESS
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temporal lobes (Daw et al., 2005). The habitual system uses tempo- 

ral difference learning to select actions that have been historically 

advantageous. The goal-directed system learns about rewards con- 

tained in different world states and the probability that actions will 

lead to those states. The goal-directed system uses this internal 

world model to prospectively identify actions that result in goal 

attainment. The FRN is thought to arise from the reward signals 

of dopamine neurons in the basal ganglia, which are conveyed to 

the anterior cingulate. As such, the FRN and behavior may  coincide 

when the habitual system controls responses. When behavior is 

goal-directed, dopamine neurons may  continue to compute reward 

prediction errors even though these signals do not impact behavior. 

As such, the FRN and behavior may  dissociate when the goal- 

directed system controls responses. 

4.4. The system that produces the FRN is maximally engaged by 

volitional actions

According to RL-ERN, the anterior cingulate maps onto the actor
element in the actor-critic architecture (Holroyd and Coles, 2002). 

As such, the anterior cingulate should be maximally engaged when
participants must learn action values. Physiological studies show 

that neurons in the anterior cingulate do respond more strongly 

when monkeys must learn action–outcome contingencies as com- 

pared to when rewards are passively delivered (Matsumoto et al., 

2007; Michelet et al., 2007). Likewise, the FRN is larger when instru- 

mental responses are required than when rewards are passively 

delivered (Itagaki and Katayama, 2008; Marco-Pallarés et al., 2010; 

Martin and Potts, 2011; Yeung et al., 2005). Although it is not a 

requisite of the actor-critic architecture, anterior cingulate activa- 

tion is also greater when participants monitor outcomes of freely 

selected responses as compared to fixed responses (Walton et al., 

2004). Likewise, the FRN is larger when outcomes are attributed 

to one’s own  actions (Holroyd et al., 2009; Li et al., 2010, 2011). 

Collectively, these findings indicate that the FRN tracks values of 

volitional actions. 

These results notwithstanding, the FRN has been observed in 

tasks that do not feature overt responses (Donkers and van Boxtel, 

2005; Holroyd et al., 2011; Martin et al., 2009; Potts et al., 2006, 

2010; Yeung et al., 2005). For example, in Martin et al. (2011), 

participants passively viewed a cue followed by an outcome. The 

cue indicated whether the trial was likely to result in reward. Par- 

ticipants exhibited an FRN that scaled with outcome likelihood 

even though they made no response. Additionally, in studies that 

reported neural responses to cues that predicted future losses or 

wins, cue-locked FRNs were not preceded by responses (Dunning 

and Hajcak, 2008; Holroyd et al., 2011). These results challenge the 

notion that response selection is necessary for FRN generation. 

These results can be reconciled with RL-ERN in three ways. First, 

the FRN could reflect the critic’s prediction error signal. By this 

view, the FRN appears in instrumental and classical conditioning 

tasks alike. Physiological and neuroimaging studies show that the 

anterior cingulate is especially engaged in tasks that involve learn- 

ing action–outcome associations, however, whereas other regions 

such as the orbitofrontal cortex and ventral striatum show equal or 

greater activation in tasks that involve learning stimulus–outcome 

associations (Kennerley et al., 2006; Ridderinkhof et al., 2004; 

Walton et al., 2004). Thus, the profile of anterior cingulate acti- 

vation across tasks is more consistent with the actor element than 

the critic element. 

Second, the anterior cingulate could represent and credit
rom experience: Event-related potential correlates of reward pro-
. Rev. (2012), http://dx.doi.org/10.1016/j.neubiorev.2012.05.008

abstract actions not included in the task set (e.g., the decision to 784

enter the experiment). Alternatively, the anterior cingulate could 785

compute fictive error signals to learn the values of selecting differ- 786

ent cues in the absence of actual choices. It is unclear why  other 787

dx.doi.org/10.1016/j.neubiorev.2012.05.008
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asks that fail to produce anterior cingulate activation would not
lso evoke such action representations, however.

Third, the FRN could reflect separate signals arising from distinct
ctor and critic elements. These elements could be instantiated
n heterogeneous populations of anterior cingulate neurons or in
eparate divisions of the prefrontal cortex and basal ganglia. This
roposal is in line with existing data that highlights the multi-
aceted responses of anterior cingulate neurons to different tasks
Bush et al., 2002; Shima and Tanji, 1998).

The FRN is evoked in another scenario that does not involve
ehavioral responses; observation of aversive outcomes adminis-
ered to others (Leng and Zhou, 2010; Marco-Pallarés et al., 2010;
u and Zhou, 2006). This is true even when outcomes do not affect
he observer (Leng and Zhou, 2010; Marco-Pallarés et al., 2010). The
nterior cingulate represents affective dimensions of pain (Singer
t al., 2004). Experiencing and observing pain produces overlapping
ctivation in the anterior cingulate (Singer et al., 2004). The finding
hat the FRN is also evoked when people observe aversive outcomes
ovetails with this result. The relationship between the observer
nd performer mediates the direction of the FRN, however. When
he observer is punished for the performer’s wins, outcomes pro-
uce an inverted FRN (Fukushima and Hiraki, 2006; Itagaki and
atayama, 2008; Marco-Pallarés et al., 2010). The experience of
versive outcomes apparently outweighs empathetic responses.

. Discussion

To behave adaptively, the cognitive system must monitor per-
ormance and regulate ongoing behavior. Studies of error detection
rovided early evidence of such monitoring (Rabbitt, 1966, 1968).
he discovery of the error-related negativity (ERN) provided further
nsight into the neural basis of error detection and cognitive control.

ore recently, experiments have revealed a frontocentral compo-
ent that appears after negative feedback (Miltner et al., 1997).
onverging evidence indicates that this feedback-related negativity
FRN) arises in the anterior cingulate, a region that transforms moti-
ational and cognitive inputs into actions. Four features of the FRN
uggest that it tracks a reinforcement learning process: (1) the FRN
epresents a quantitative prediction error; (2) the FRN is evoked by
ewards and by reward-predicting stimuli; (3) the FRN and behav-
or change with experience; and (4) the system that produces the
RN is maximally engaged by volitional actions.

.1. Alternate accounts

RL-ERN is but one account of the FRN (Holroyd and Coles,
002). According to another proposal, the anterior cingulate moni-
ors response conflict (Botvinick et al., 2001; Yeung et al., 2004).
pon detecting activation of mutually incompatible responses,

he anterior cingulate signals the need to increase control to
he prefrontal cortex in order to resolve the conflict. The con-
ict monitoring hypothesis accounts for the ERN in the following
anner. Activation of the incorrect response quickly reaches the

ecision threshold, causing the participant to commit an error.
ngoing stimulus processing increases activation of the correct

esponse. The ERN reflects co-activation of the correct and incorrect
esponses immediately following errors.

The conflict monitoring hypothesis also accounts for the no-
o N2, a frontocentral negativity that appears when participants
ust inhibit a response (Pritchard et al., 1991). Source local-

zation studies indicate that the N2, like the ERN, arises from
Please cite this article in press as: Walsh, M.M., Anderson, J.R., Learning f
cessing, neural adaptation, and behavioral choice. Neurosci. Biobehav

he anterior cingulate (Nieuwenhuis et al., 2003; van Veen and
arter, 2002; Yeung et al., 2004). The N2 is maximal when par-
icipants must inhibit a prepotent response, as with incongruent
rials in the flanker and Stroop tasks. According to the conflict
 PRESS
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monitoring hypothesis, incongruent trials concurrently activate 

correct and incorrect responses. The N2 reflects co-activation of 

the correct and incorrect responses prior to successful resolution. 

RL-ERN and the conflict monitoring hypothesis are difficult to 

compare because RL-ERN focuses on the ERN and the FRN, whereas 

the conflict monitoring hypothesis focuses on the N2 and the ERN. 

RL-ERN can be augmented to account for the N2, however, by 

assuming that conflict resolution incurs cognitive costs, penalizing 

high conflict states (Botvinick, 2007). Alternatively, high conflict 

states may  have lower expected value because they engender 

greater error likelihoods (Brown and Braver, 2005). 

The conflict monitoring hypothesis has been augmented to 

account for the FRN (Cockburn and Frank, 2011). In the aug- 

mented model, negative feedback decreases activation of the 

selected response, which reduces lateral inhibition of the unse- 

lected response. The FRN reflects co-activation of the selected and
unselected responses following negative feedback. The function
of such a post-feedback conflict signal is unclear, however. When
errors are due to impulsive responding, augmenting cognitive con- 

trol will improve performance by facilitating stimulus processing.
When errors are due to response uncertainty, however, augment- 

ing cognitive control will not directly improve performance. Even 

if stimuli are fully processed, response uncertainty will remain. 

According to another account, the ERN and FRN are evoked 

by all outcomes, positive and negative alike, that violates expec- 

tations (Alexander and Brown, 2011; Jessup et al., 2010; Oliveira 

et al., 2007). By this view, errors produce an ERN because they are 

rare. Similarly, negative feedback produces an FRN because partic- 

ipants learn which responses reduce the frequency of losses. Even 

when outcome likelihoods are equated, losses may be more sub- 

jectively surprising because people are overly optimistic (Miller 

and Ross, 1975). This theory appears to be inconsistent with key 

findings, however. For example, in a challenging time interval esti- 

mation task where participants received negative feedback with 

70% (Holroyd and Krigolson, 2007), losses produced an FRN even 

though they were more likely than wins. Additionally, in proba- 

bilistic learning tasks that manipulate outcome likelihoods, ERPs 

are more negative after high probability losses than after low prob- 

ability wins (Cohen et al., 2007; Holroyd et al., 2009, 2011; Walsh 

and Anderson, 2011a,b). In these examples, positive outcomes that 

violate expectations do not produce negativities, while negative 

outcomes that confirm expectations do. 

According to a final account, the ERN and FRN reflect affective 

responses of the limbic system to errors and negative feedback 

(Gehring and Willoughby, 2002; Hajcak and Foti, 2008; Luu et al., 

2003). It is not clear where this account’s predictions diverge from 

RL-ERN and the conflict monitoring hypothesis. Prediction errors 

and conflict could trigger negative affect, or negative affect could 

signal the need to adjust behavior. 

5.2. Outstanding questions 

In addition to synthesizing research on the neural basis and cog- 

nitive significance of the FRN, this review raises several questions. 

First, does the FRN win/loss asymmetry reflect the limited firing 

range of dopamine neurons, the superposition of a P300 upon loss 

waveforms, or something else entirely? Techniques like PCA seem 

ideal for distinguishing among these accounts, but the results of 

PCA analyses to date have been conflicting. Careful manipulations 

aimed at disentangling the N2, the P300, and the FRN (e.g., Donkers 

and van Boxtel, 2005) will provide insight into this question. Inter- 

estingly, fMRI studies have also revealed asymmetries in neural
rom experience: Event-related potential correlates of reward pro-
. Rev. (2012), http://dx.doi.org/10.1016/j.neubiorev.2012.05.008

responses to rewards and punishments (Robinson et al., 2010; 909

Seymour et al., 2007; Yacubian et al., 2006). This raises the pos- 910

sibility that the win/loss asymmetry is a general feature of neural 911

reward processing (Daw et al., 2002). 912

dx.doi.org/10.1016/j.neubiorev.2012.05.008
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Second, might some FRN results actually arise from compo-
ent overlap (Holroyd et al., 2008)? Folstein and van Petten (2008)
roposed an N2 classification schema that included two  classes
f anterior N2 components. The first class, to which the ERN and
RN belong, relate to cognitive control. The second class relate to
erceptual mismatch detection. Several studies that manipulate
erceptual properties of outcome stimuli have shown that neu-
al responses are sensitive to the content and form of feedback
Donkers and van Boxtel, 2005; Jia et al., 2007; Liu and Gehring,
009). For example, waveforms were most negative following
eedback stimuli that conveyed losses and that deviated from an
stablished stimulus template (Donkers and van Boxtel, 2005; Jia
t al., 2007). One puzzling feature of the FRN in several studies
s that its amplitude is greater following uninformative feedback
han negative feedback (Hirsh and Inzlicht, 2008; Holroyd et al.,
006; Nieuwenhuis et al., 2005a).  This may  reflect the fact that
erceptual features of uninformative feedback deviated most from
ositive and negative feedback, and thus evoked a larger perceptual
ismatch N2.
Third, when do behavior and the FRN coincide, and when do

hey differ? Theories of behavioral control posit that choices can
rise from a habitual system or a goal-directed system (Balleine
nd O’Doherty, 2010; Daw et al., 2005). If the habitual system pro-
uces the FRN, experiment manipulations that favor goal-directed
ontrol should weaken the association between the FRN and behav-
or. For example, humans and animals display sensitivity to assays
f goal-directness early in training, but not after extended training
Balleine and O’Doherty, 2010). Consequently, the strength of the
ssociation between the FRN and behavior should increase over the
ourse of training. Additionally, instruction promotes goal-directed
ontrol by minimizing uncertainty in the goal-directed system’s
alue estimates. As such, instruction should weaken the association
etween the FRN and behavior. The results of Walsh and Anderson
2011a) support this prediction.10 Lastly, pharmacological chal-
enges that disrupt the goal-directed system (i.e., midazolam; Frank
t al., 2006) should enhance the association between the FRN and
ehavior. This prediction has not yet been tested.

Fourth, how do heterogeneous signals in the anterior cingulate
ontribute to the FRN? Although most studies report punishment-
ensitive neurons within the anterior cingulate, some neurons
how elevated responses to reward, and still others show elevated
esponses to punishment and reward alike (Fujiwara et al., 2009;
atsumoto et al., 2007; Sallet et al., 2007). Likewise, neuroimaging

xperiments have shown that while the dorsal anterior cingulate
odes negative outcomes, the closely adjacent rostral anterior cin-
ulate and posterior cingulate code positive outcomes (Liu et al.,
011). The anterior cingulate is also sensitive to abstract costs and
enefits (Bush et al., 2002; Shima and Tanji, 1998). For example,
nterior cingulate neurons signal the value of information con-
eyed by events (Matsumoto et al., 2007), and the physical costs
f performing actions (Kennerley et al., 2009).

Fifth, and finally, how is the FRN affected by other functions of
he anterior cingulate? In our research, we have often observed
nterior cingulate activity when participants must update inter-
al goal states (Anderson et al., 2008). Unexpected outcomes could
onceivably signal the need to update goal states. Additionally,
he relationship between FRN activity and behavioral adaptation
Please cite this article in press as: Walsh, M.M.,  Anderson, J.R., Learning f
cessing, neural adaptation, and behavioral choice. Neurosci. Biobehav

s logically consistent with this function. Yet RL-ERN ascribes the
RN a separate role in updating action values rather than updating
oal states. Future experiments that vary task demands and reward

10 When instruction dictates how participants must respond, the anterior cingulate
ecomes less responsive (Walton et al., 2004). The results of Walsh and Anderson
2011a) suggest that when instruction dictates how participants should respond, the
nterior cingulate remains engaged.
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properties will help to characterize the diverse signals that arise in 

the anterior cingulate, and to understand their impact on the FRN. 
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