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Abstract

■ In this study, we investigated the stages of information pro-
cessing in associative recognition. We recorded EEG data while
participants performed an associative recognition task that in-
volved manipulations of word length, associative fan, and probe
type, which were hypothesized to affect the perceptual en-
coding, retrieval, and decision stages of the recognition task,
respectively. Analyses of the behavioral and EEG data, supple-
mented with classification of the EEG data using machine-
learning techniques, provided evidence that generally supported

the sequence of stages assumed by a computational model
developed in the Adaptive Control of Thought-Rational cog-
nitive architecture. However, the results suggested a more com-
plex relationship between memory retrieval and decision-making
than assumed by the model. Implications of the results for mod-
eling associative recognition are discussed. The study illustrates
how a classifier approach, in combination with focused manip-
ulations, can be used to investigate the timing of processing
stages. ■

INTRODUCTION

A longstanding interest of cognitive psychologists and
neuroscientists has been the development of methods
to identify different stages of human information pro-
cessing. For example, the subtractive method of Donders
(1969) involves comparing tasks that are hypothesized
to share all but one processing stage, then making in-
ferences about the duration of that stage based on differ-
ences in RT between tasks. The additive factors method
of Sternberg (1969) involves studying the effects of vari-
ous experimental manipulations on RT, with additive
effects being diagnostic of separate stages. Such methods
allow for certain inferences about processing stages from
behavioral data, but they are fundamentally limited in
that RT is a coarse-grained measure that reflects the
cumulative duration of all stages.
EEG is a method that can provide a more fine-grained

view of different stages of information processing. The
temporal precision afforded by recording neurally gen-
erated electrical signals on a millisecond basis allows
researchers to determine whether, when, and for how
long an experimental manipulation modulates the neural
activity underlying cognitive processes, even in cases
where the manipulation does not produce an effect on
overall RT (Coles, 1988). Such knowledge can be useful

for evaluating computational models of cognition that
assume a particular composition of processing stages for
performing a task. The purpose of this study was to use
EEG data to evaluate the hypothesized information pro-
cessing stages in a computational model for the task of
associative recognition.

Associative Recognition

Associative recognition involves judging whether two
items were previously experienced together. For example,
the task used in this study involved determining whether
a probe stimulus consisted of two words that were studied
together (targets) or separately (re-paired foils). Successful
discrimination required remembering not only that the
words were studied (item information) but also how the
words were paired during study (associative information).

Among the many computational models of associative
recognition is a process model based on the Adaptive
Control of Thought-Rational (ACT-R) theory, which is an
integrated architecture for modeling cognition (Anderson,
2007). The ACT-R model assumes associative recognition
is accomplished by a sequence of four processing stages.
The first stage involves encoding a perceptual representa-
tion of the probe presented for recognition. Perceptual
encoding is sensitive to probe features such as the size
of a visually presented word pair. The second stage in-
volves using the encoded representation to retrieve a
studied word pair from memory. Retrieval is sensitive to
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the associative fan of the words used to access memory,
as discussed below. The third stage involves comparing
the retrieved word pair with the probe word pair and
deciding whether they match. The decision process is
sensitive to the type of probe, with targets resulting in
matches and re-paired foils resulting in mismatches. The
fourth stage involves executing the appropriate response
based on the outcome of the matching process (e.g., a
keypress indicating “yes” or “no” with respect to whether
the probe was studied). Responding is sensitive to motor
features such as the hand and the finger used to make a
keypress response.

The four stages in the ACT-R model are assumed to
occur in serial order, which implies that manipulations
affecting each stage should be manifest at different times
during task performance. For example, the effect of a per-
ceptual encoding manipulation should be evident before
the effect of a retrieval manipulation. In this study, we used
detailed temporal data from EEG to provide converging
evidence regarding the putative stages of associative rec-
ognition represented in the ACT-R model. We recorded
EEG data while participants performed an associative
recognition task that involved three manipulations, each
of which was intended to tap one or more of the first
three processing stages in the model.

Word Length

The first manipulation pertained to the perceptual en-
coding stage and involved presenting probe word pairs
that consisted of either short (four- or five-letter) or long
(seven- or eight-letter) words. EEG studies of word length
have yielded conflicting results, in part because word length
and word frequency are usually confounded—shorter
words occur more frequently in natural language corpora
(Zipf, 1935). However, studies that control for word fre-
quency provide a more consistent picture. Long words pro-
duce a greater positivity over the occipital region beginning
around 85 msec (Hauk, Pulvermüller, Ford, Marslen-Wilson,
& Davis, 2009; Hauk, Davis, Ford, Pulvermüller, & Marslen-
Wilson, 2006; Hauk & Pulvermüller, 2004), followed by a
broad positivity over the frontal region beginning around
300 msec (Van Petten & Kutas, 1990). The ERP component
underlying the early word length effect, called the P1, is
thought to reflect low-level perceptual analysis of visual
stimuli (Dien, 2009). The ERP component underlying the
later frontal positivity, however, is less understood. On the
basis of these findings, we predicted that long words would
produce more positive-going waveforms over the parietal
scalp around 85 msec and over the frontal scalp around
300 msec.

Associative Fan

The second manipulation pertained to the retrieval stage
and involved having probe words with different associative
fans, which refers to the number of episodic associations

that a word has with other words in memory. A well-
established phenomenon in associative recognition is the
fan effect, which is the finding that RT becomes longer as
fan increases (e.g., Pirolli & Anderson, 1985; Anderson,
1974; for reviews, see Anderson, 2007; Anderson & Reder,
1999). The ACT-R model explains the fan effect as a form of
associative interference, such that the activation that a
probe provides for items in memory decreases as its fan
increases. Retrieval time is inversely related to activation,
resulting in longer RTs for higher fan probes (Schneider
& Anderson, 2012; Anderson & Reder, 1999).
Besides expecting a fan effect on RT, we were inter-

ested in whether fan would be reflected in the EEG sig-
nal. Using a modified fan paradigm, Heil, Rösler, and
Hennighausen (1996, 1997) discovered negative slow po-
tentials that accompanied the reactivation of studied in-
formation. The amplitude of these potentials increased
with the amount of material retrieved (i.e., the number
of items associated with the probe). The topographic dis-
tribution of this effect was specific to the modality of the
studied material: words evoked a maximum negativity
over left-frontal sites, spatial configurations evoked a
maximum negativity over parietal sites, and faces evoked
a maximum negativity over left-central sites (Khader
et al., 2007; Khader, Heil, & Rösler, 2005; Heil et al.,
1997). Nyhus and Curran (2009) studied recognition
memory using a task in which the associative fan of the
font of presented words was manipulated. They found
that associative fan modulated the EEG signal at left fron-
tal and parietal sites. Finally, fMRI studies of the fan effect
have reported greater activity in left pFC as participants
retrieve high-fan items (Danker, Gunn, & Anderson,
2008; Sohn, Goode, Stenger, Carter, & Anderson,
2003). On the basis of these findings, we predicted that
differences in associative fan for word stimuli would pro-
duce modulation of the EEG waveform over the frontal
and parietal scalp, with the strongest effects appearing
in the left hemisphere.

Probe Type

The third manipulation pertained to the retrieval and de-
cision stages and involved having probes that either
matched or mismatched studied word pairs (targets
and re-paired foils, respectively). In the case of a target,
the ACT-R model assumes that the retrieval stage results
in the retrieval of a matching word pair because both
probe words provide activation for the same studied
word pair in memory. In the case of a re-paired foil,
the model assumes that retrieval produces a mismatching
word pair because the probe words provide partial activa-
tion for different studied word pairs in memory. Accord-
ing to the model, the lower activation for retrieval and
the resulting mismatch would prolong RT for re-paired
foils relative to targets.
Besides expecting a probe effect on RT, we were inter-

ested in whether probe type would be reflected in the
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EEG signal. Previous EEG research supports a dual-
process theory of recognition (for a review, see Rugg &
Curran, 2007; see also Diana, Reder, Arndt, & Park, 2006;
Yonelinas, 2002) involving two qualitatively distinct pro-
cesses: familiarity and recollection. Familiarity is a fast
and context-free process that provides an initial sense
of whether the probe was studied. Recollection is a slow
and effortful process that entails retrieving details about
studied pairs. It is generally agreed that associative recog-
nition involves recollection (e.g., Yonelinas, 2002; but see
Speer & Curran, 2007, for a discussion on possible in-
volvement of familiarity processes), which is akin to the
retrieval process in the ACT-R model.
In EEG studies of recognition memory, recollection is

associated with more positive going waveforms for tar-
gets than for foils over the left-parietal scalp beginning
450 msec after stimulus presentation, a finding known
as the parietal old/new effect (e.g., Curran, 2000; Düzel,
Yonelinas, Mangun, Heinze, & Tulving, 1997). It has been
suggested that the effect is sensitive to the amount of in-
formation recollected (Vilberg & Rugg, 2009; Vilberg,
Moosavi, & Rugg, 2006; Wilding, 2000), although the rel-
evant evidence comes from judgments of recollected
details rather than manipulations of associative fan. Like-
wise, Nyhus and Curran (2009) found that the parietal old/
new effect interacted with associative fan. Given that the
retrieval stage of the ACT-R model is sensitive to probe type
(targets are retrieved faster than re-paired foils), we pre-
dicted a parietal old/new effect during the retrieval stage,
which is modulated by fan. Furthermore, because the de-
cision stage of the ACT-R model involves matching based
on the outcome of retrieval, the parietal old/new effect
was predicted to extend into the decision stage.
In summary, we expected to find an effect of word

length during the encoding stage, effects of fan and
probe type during the retrieval stage, and an effect of
probe type during the decision stage. The manner in
which the effects of these manipulations appear in the
EEG data can provide evidence for or against the stages
assumed by the ACT-R model. For example, if the onsets
of EEG modulations related to word length, fan, and
probe type occur in that order at reasonable times, then
it would represent evidence in support of the model.
However, if the effects occur in a different order or the
nature of an effect changes over time (e.g., the effect re-
verses), then it would represent evidence against the
model. In that case, the observed EEG pattern may sug-
gest revisions to the model that would make it more
compatible with the data.

Classification Analysis

The EEG data can also be used in a model-free way to
explore the processing stages involved in associative rec-
ognition. Recent advances in machine learning classifica-
tion allow one to use neural data to identify different
stages of cognitive processing. For example, machine

learning classifiers have been used to analyze fMRI data
(multivoxel pattern analysis or mind reading: e.g., Pereira,
Mitchell, & Botvinick, 2009; Haynes & Rees, 2006; Norman,
Polyn, Detre, & Haxby, 2006), EEG data (brain–computer
interfacing or decoding: e.g., Das, Giesbrecht, & Eckstein,
2010; Peters, Pfurtscheller, & Flyvbjerg, 1998), magneto-
encephalography (MEG) data (e.g., Parra et al., 2002), and
simultaneous EEG and MEG recordings (Chan, Halgren,
Marinkovic, & Cash, 2011). Instead of using univariate
methods to investigate which voxels or electrodes respond
to the conditions of the experiment, as most classical
analysis methods do, classifier approaches inspect how
information is spatially and/or temporally represented by
a combination of voxel or electrode values. For instance,
classifiers have been used to investigate the representation
of semantic categories (fMRI: Mitchell et al., 2008; MEG:
Sudre et al., 2012), stages in solving algebra problems (fMRI:
Anderson, Betts, Ferris, & Fin.am, 2011), distinctions be-
tween faces and cars (EEG: Philiastides & Sajda, 2006),
and states in a memory game (fMRI: Anderson, Fincham,
Schneider, & Yang, 2012).

To analyze the processing stages in our study, we trained
a classifier with EEG data to identify different experimental
conditions. We trained and tested the classifier on 50-msec
windows between stimulus onset and response genera-
tion to see when information related to the conditions
became available. The logic of the approach is that if the
classifier can distinguish between two conditions during a
certain time period (e.g., short and long words from 100
to 200 msec), then one can conclude that there is infor-
mation in the EEG data that distinguishes between those
conditions at that time. The time course and spatial rep-
resentation of the classification can then be used to
make inferences about the processing stages involved in
performing the task.

METHODS

The experiment consisted of two phases: a training phase
and a test phase. In the training phase, participants learned
32 word pairs by completing a cued recall task. In the
subsequent test phase—during which EEG data were col-
lected—participants completed an associative recognition
task in which they distinguished targets (trained word
pairs) from re-paired foils (alternative pairings of trained
words) and new foils (pairs of novel words not presented
during training) In addition to probe type, we manipulated
word length (words were either short [four or five letters]
or long [seven or eight letters]) and associative fan (words
had either one or two associates).

Participants

Twenty individuals from the Carnegie Mellon University
community each participated in a single 3-hr session for
monetary compensation (9 men and 11 women, ages
ranging from 18 to 40 years with a mean age of 26 years).
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All were right-handed, and none reported a history of
neurological impairment.

Materials

Word pairs were constructed from a pool of 464 words se-
lected from the MRC Psycholinguistic Database (Coltheart,
1981). The words were nouns with word frequency be-
tween 2 and 100 occurrences per million and a minimum
imageability rating of 300. Half of the words were four or
five letters and composed the short word list, which had
a mean word frequency of 24.3 occurrences per million
(SD = 22.1), mean imageability rating of 539.3 (SD =
55.3), and mean word length of 4.5 letters (SD = 0.5).
The other half of the words were seven or eight letters
and composed the long word list, which had a mean word
frequency of 24.4 occurrences per million (SD = 23.4),
mean imageability rating of 505.6 (SD = 81.6), and mean
word length of 7.2 letters (SD = 0.4). The 232 words of
each length were divided randomly into two lists—a
24-word study list and a 208-word new foil list—such that
the lists were matched on word frequency, imageability,
and word length according to t tests (all ps > .1). Word
frequency was also matched across the corresponding
lists of each length, thereby avoiding the natural confound
between word frequency and length. Study lists were also
constrained such that each word started with a unique
three-letter sequence.

The lists were used to create three sets of probes: tar-
gets, re-paired foils, and new foils. A set of 32 target word
pairs was constructed from the study lists such that there
were eight word pairs for each combination of length
(short or long) and fan (1 or 2). Both words in short pairs
were four or five letters, and both words in long pairs were
seven or eight letters. Each word in a Fan 1 pair appeared
only in that pair, whereas each word in a Fan 2 pair
appeared in two pairs. A corresponding set of 32 re-paired
foil word pairs was constructed in a similar manner by
recombining words from different target pairs of the ap-
propriate length and fan. A set of 208 new foil word pairs
was constructed from the new foil lists such that there were
104 word pairs for each length (all Fan 1). Thus, there were
10 conditions defined by the probes, reflecting the eight
conditions from a 2 (probe: target or re-paired foil) × 2
(length: short or long) × 2 (fan: 1 or 2) design and two
additional conditions represented by short and long new
foils.1 The randomization of words and their assignment
to conditions were unique for each participant.

Procedure

The experiment began with a training phase in which par-
ticipants learned the target word pairs. The training phase
started with each target word pair presented onscreen
(one word above the other) for 5000 msec and followed
by a 500-msec blank screen. Participants were instructed
to read each pair and make an initial effort to memorize

it. Following target presentation, participants completed
a cued recall task designed to help them learn the target
word pairs. On each trial, they were presented with a ran-
domly selected target word and had to recall the word(s)
paired with it (two-word responses were required for
Fan 2 words). The self-paced responses were typed and
feedback (in the form of the correct response) was provided
for 2500 msec following errors. If a target word elicited an
error, it was presented again after all other target words
had been presented. A block of trials concluded when all
48 target words had elicited correct responses. Participants
completed a total of three blocks of cued recall.
After the training phase, participants entered the EEG

recording chamber and completed the test phase. Each trial
began with a centrally presented fixation cross for a variable
duration (sampled from a uniform distribution ranging
from 400 to 600 msec). Following fixation, a probe word
pair appeared onscreen (one word above the other) until
the participant responded with a keypress to indicate
whether the probe had been studied during the training
phase. The probe was either a target, re-paired foil, or new
foil. Targets required “yes” responses (indicated by pressing
the J key with the right index finger) and foils required
“no” responses (indicated by pressing the K key with the
right middle finger). Participants made all responses with
the right hand to avoid confounding probe effects with
bilateral motor potentials (e.g., the lateralized readiness
potential; Smulders & Miller, 2013). Participants were in-
structed to respond quickly and accurately. Following the
response, accuracy feedback was displayed for 1000 msec,
after which a blank screen appeared for 500 msec before
the next trial began. Participants completed a total of
13 blocks with 80 trials per block. All 10 conditions occurred
equally often in random order in each block, resulting in
104 trials per condition during the test phase. All targets
and re-paired foils appeared once per block and were thus
presented 13 times during the test phase. Each new foil
appeared only once during the test phase.

EEG Recording and Analysis

Participants sat in an electromagnetically shielded cham-
ber. Stimuli appeared on a CRT monitor placed behind
radio frequency shielded glass and set 60 cm from partici-
pants. The EEG was recorded from 32 Ag-AgCl sintered
electrodes (10–20 system). Electrodes were also placed
on the right and left mastoids. The right mastoid served
as the reference electrode, and scalp recordings were
algebraically re-referenced off-line to the average of the
right and left mastoids. The vertical EOG was recorded
as the potential between electrodes placed above and
below the left eye, and the horizontal EOG was recorded
as the potential between electrodes placed at the external
canthi. The EEG and EOG signals were amplified by a
Neuroscan bioamplification system with a bandpass of
0.1–70.0 Hz and were digitized at 250 Hz. Electrode im-
pedances were kept below 5 kΩ.
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The EEG recording was decomposed into indepen-
dent components using the EEGLAB infomax algorithm
(Delorme & Makeig, 2004). Components associated with
eye blinks were visually identified and projected out of the
EEG recording. Stimulus-locked epochs of 1200 msec
(including a 200-msec baseline) were then extracted from
the continuous recording and baseline-corrected using the
prestimulus interval. Response-locked epochs of 1200 msec
(including a 600-msec pre-response period) were also
extracted from the continuous recording. Response-locked
analyses allowed us to examine late-occurring effects of
fan and probe while controlling for variability in the time
to respond to the different probes. Because we were inter-
ested in decision-related effects rather than response-
related effects, we corrected response-locked epochs using
the 200-msec prestimulus baseline (Luck, 2005). Stimulus-
and response-locked epochs containing voltages above
+75 μV or below −75 μV were excluded from further
analysis. Furthermore, trials with incorrect responses and
trials with RTs more than 3 SDs longer than the mean cor-
rect RT for a given condition and participant were excluded
from analysis.
To identify time periods of interest, we computed

average voltages over adjacent 50-msec windows at each
electrode, both for the stimulus- and response-locked
ERPs. We then performed a 2 (length: short or long) ×
2 (fan: 1 or 2) × 2 (probe: target or re-paired foil)
repeated-measures ANOVA at each electrode and for each
time window (32 electrodes × 24 windows). We identified
windows where electrodes showed significant main effects
following false discovery rate (FDR) correction for multiple
comparisons (Genovese, Lazar, & Nichols, 2002), using
an FDR of 0.01.2 Although it was not a necessary outcome
of this analysis, significant electrodes within each of the
temporally defined windows were contiguous and showed
consistent effects. Thus, we used the FDR analysis to
construct ROIs involving the subsets of electrodes show-
ing significant effects within each of the temporally de-
fined windows. We used repeated-measures ANOVAs to
examine the effects of length, fan, and probe on ERPs
recorded over the FDR-defined ROIs.

Classifier

To classify the data, we followed the methodology out-
lined by Sudre et al. (2012), who used a classifier in com-
bination with MEG data to investigate when perceptual
and semantic features of nouns were reflected in neural
activity. We first discuss how we preprocessed the data
for the classifier, and then we describe the algorithm and
the training/testing methodology.

Classifier Preprocessing

Because the classifier algorithm requires that trials be the
same length, we stimulus- and response-locked the data,
which enabled us to capture effects occurring at both the

start and the end of the trials in a synchronized manner.
Trials were adjusted to be 1200 msec in length, with the
first 500 msec constructed from stimulus-locked data and
the remaining 700 msec constructed by resampling the
period of each trial that occurred after 500 msec but before
the response. In other words, the portion of each trial
occurring after 500 msec was “shrunk” or “stretched” to
a duration of 700 msec. This approach preserved peaks
in the EEG waveforms that were present at the start and
the end of a trial. This type of event-locking procedure
has also been used to align individual trials of varying
durations in fMRI experiments (Anderson et al., 2008).

After stimulus- and response-locking the data, we created
classifier examples by averaging over the 13 presentations
of each word pair for each participant. This resulted in
eight examples for each of the eight conditions formed by
the factorial combination of fan, length, and probe, creat-
ing 64 examples in total. Classifier epochs of 1400 msec
(including a 200-msec prestimulus interval) were extracted
from the 32 channels. Before creating epochs, we applied
a 0.5–30 Hz band-pass filter to attenuate low- and high-
frequency noise. The data were recorded at 250 Hz, yield-
ing 351 × 32 = 11,232 features per example, where each
feature is a time point at a certain channel. From the
examples and features, we created a 64 × 11,232 matrix X
for each participant.

The final step in preprocessing the data was normalizing
each channel in each row inX to amean of 0 and a standard
deviation of 1. Each channel was normalized separately to
prevent channels with higher amplitudes from dispropor-
tionately influencing the classifier results. Normalizing also
ensured that different examples received equal weight.
In addition to matrix X, we also created a 64 × 3 matrix Y
that contained the labels for the examples. The columns in
Y coded fan (Fan 1 = −1 and Fan 2 = 1), length (short =
−1 and long = 1), and probe (re-paired foil = −1 and
target = 1).

Classifier Algorithm

To classify the data, we used a machine-learning technique
called ridge regression (e.g., Hastie, Tibshirani, & Friedman,
2001). In essence, ridge regression is a linear regression
method that can handle situations with many correlated
predictors, as is the case here. Ridge regression learns a
mapping Ŵ between the n × p example matrix X and the
labels Y:

Ŵ ¼ XTX þ λIp
� �−1

XTY ð1Þ

Ip is the p× p identity matrix and λ is a complexity param-
eter that penalizes large coefficientsŴ. Equation 1 requires
the inversion of a p× pmatrix. Equation 1 can be rewritten
in its dual form:

Ŵ ¼ XT XXT þ λIn
� �−1

Y ð2Þ
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in which In is the n × n identity matrix. The dual form
requires the inversion of an n × n matrix rather than
a p × p matrix. Given that n = 64 examples and p =
11,232 features per example in our case, the dual form
enables the algorithm to run considerably faster.

Ŵ is a p × 3 matrix where each column contains the
weights for one of the three labels. These weights can
be used to predict classes (e.g., Fan 1 or Fan 2) to which
new examples belong by multiplying new examples T
by Ŵ:

Ŷ ¼ T �Ŵ ð3Þ

Ŷ denotes the classification. In our case, the labels Y were
either 1 or−1. Positive Ŷ were interpreted as a 1 classifica-
tion (Fan 2, long, or target), and negative Ŷ as a −1 classi-
fication (Fan 1, short, or re-paired foil).

Training and Testing the Classifier

We trained and tested the classifier separately for each
participant. This involved two steps. First, the best value
of λ (the complexity parameter) was determined. Second,
the classifier was trained and tested on separate sets of
examples. For both steps, we used leave-one-out cross-
validation (LOOCV). That is, we trained the classifier on
63 examples and used the resulting Ŵ to classify the 64th
example. We repeated this procedure for all examples,
giving 64 accuracy measures.

To determine the optimal value for λ, we used LOOCV
to minimize the mean squared prediction error (MSE)
separately for each label (fan, length, and probe):

MSE ¼ 1
n

X64

i¼1

yi − ŷið Þ2 ð4Þ

where yi is the label for example i and ŷi is the raw classi-
fication value for that example. We searched for a value of
λ between 0 and 10,000 in the following manner. First,
MSEs were calculated for 11 linearly spaced values of λ
between 0 and 10,000. Next, we calculated MSEs for 11 lin-
early spaced points spanning the region that contained
the value of λ that previously minimized MSE. We re-
peated this procedure until the improvement in MSE was
smaller than .01. When the optimal value of λ was deter-
mined, we ran the classifier once more using LOOCV to
calculate final prediction accuracy (percentage of correct
classifications), which is reported in the Results section.

The classifier was first trained on all data between −200
and 1200 msec to assess how well it could perform given
all data. To determine when different types of informa-
tion processing occurred in the brain, we subsequently
trained and tested the classifier using 50-msec windows.
We included data from before stimulus presentation as a
control; because the prestimulus interval does not contain
information about condition, the classifier should perform

at chance over this interval. To ensure that the stimulus-
and response-locking procedure described above did not
introduce latency confounds (i.e., conditions with shorter
RTs were stretched more than conditions with longer RTs,
affecting the alignment of classifier features and therefore
possibly classifier performance), we also performed sepa-
rate stimulus- and response-locked classifier analyses. For
these analyses we excluded trials with an RT shorter than
700 msec and investigated intervals from−200 to 700 msec
(stimulus-locked) and−700 to 200msec (response-locked).

RESULTS

Behavioral Data

Training

The frequency with which target words were presented
during each block of the cued recall task can be used to
assess learning. The minimum possible frequency is one
because each target word had to be presented at least
once per block. The data were submitted to a repeated-
measures ANOVA with fan, length, and block as factors.
Mean frequency decreased across blocks (4.4, 1.6, and
1.3 for Blocks 1–3, respectively), reflecting a main effect
of block, F(2, 38) = 9.08, MSE = 26.60, p < .01. The fre-
quency was higher for Fan 2 pairs than for Fan 1 pairs
(3.4 vs. 1.4, respectively), reflecting a main effect of fan,
F(1, 19) = 15.48, MSE = 15.62, p < .01, although this fan
effect decreased across blocks, consistent with an inter-
action between block and fan, F(2, 38) = 9.41, MSE =
10.83, p < .01. No other effects were significant. The
decreases in overall frequency and the fan effect across
blocks both indicate progress in learning the target word
pairs during the training phase.

Test

The test data were trimmed by excluding 2.3% of trials with
RTs more than 3 SDs longer than the mean correct RT
for a given condition and participant, leaving a mean of
98 observations per condition for each participant. The
mean correct RTs and mean error rates appear in Table 1.
RT was longer, and error rate was higher for Fan 2 probes
compared with Fan 1 probes, reflecting main effects of
fan on RT, F(1, 19) = 67.30, MSE = 71131, p < .01, and
on error rate, F(1, 19) = 26.57, MSE = 0.002, p < .01, in a
pair of repeated-measures ANOVAs with probe, fan, and
length as factors. RT was longer and the fan effect on RT
was larger for re-paired foils than for targets, reflecting
a main effect of probe, F(1, 19) = 47.21, MSE = 17154,
p < .01, and an interaction between probe and fan, F(1,
19) = 39.25, MSE = 4513, p < .01. There were no other
significant effects on either RT or error rate. These results
indicate that re-paired foils were slightly more difficult
compared with targets and that there were large effects of
associative interference produced by the fan manipulation
for both probe types.
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ERP Data

Stimulus-locked Analysis

Analysis of the 32 electrodes and the 24 stimulus-locked
time periods revealed significant effects of word length
from 300 to 350 msec (see Figure 1), fan from 400 to
450 msec and from 700 to 900 msec (see Figure 2), and
probe from 500 to 900 msec (see Figure 3). The word
length effect was present at a single electrode, the early
fan effect was present at 16 electrodes, the late fan effect
was present at 5 electrodes, and the probe effect was
present at 23 electrodes. Significant electrodes were con-
tiguous in each temporally defined window and are de-
noted by points in Figures 1, 2, and 3. To examine these
effects in detail, we performed separate 2 (length) ×
2 (fan) × 2 (probe) repeated-measures ANOVAs on data
from ROIs during each of the four periods.
Word length produced a significant effect from 300 to

350 msec, F(1, 19) = 35.67, MSE = 1.23, p < .001. Long
words produced more positive voltages than short words
over the left-frontal scalp (see Figure 1). The length effect
was weaker over the central region and was absent over
the parietal region. No other main effects or interactions
reached significance.
Fan produced a significant effect from 400 to 450 msec,

F(1, 19) = 57.08,MSE=1.07, p< .0001. Fan 1 pairs yielded

more negative voltages than Fan 2 pairs over the central
and parietal scalp (see Figure 2, top). The main effect of
probe was also significant, F(1, 19) = 13.48, MSE = 0.33,
p < .01, but the main effect of length and the interactions
were not.

Fan produced another significant effect from 700 to
900 msec, F(1, 19) = 51.16, MSE= 1.66, p< .0001, though
in the reverse direction. Waveforms were more positive fol-
lowing Fan 1 pairs than following Fan 2 pairs. The late fan
effect was maximal over the right-frontal and central scalp
(see Figure 2, bottom). The main effect of probe was also
significant, F(1, 19) = 27.28, MSE = 2.06, p < .0001, but
the main effect of length and the interactions were not.

Probe produced a significant effect from 500 to 900msec,
F(1, 19) = 55.45, MSE = 78.25, p < .0001. Targets evoked
more positive waveforms than re-paired foils over the right-
parietal and central scalp (see Figure 3). The main effect
of fan was also significant, F(1, 19) = 6.76, MSE = 9.69,
p < .05, but the main effect of length and the interactions
were not.

Response-locked Analysis

We performed a response-locked analysis of the ERP data
to investigate stimulus-related processing while controlling

Figure 1. Topography and waveforms for stimulus-locked word length effect. Voltages differed between short and long words from 300 to
350 msec (site F3).

Table 1. Mean Correct RTs (in msec) and Mean Error Rates (as %) in the Test Phase, with SEMs in Parentheses

Measure Probe

Fan 1 Fan 2

Short Long Short Long

RT Target 1015 (38) 1026 (31) 1317 (67) 1282 (61)

Re-paired Foil 1079 (45) 1113 (37) 1493 (82) 1524 (96)

Error rate Target 3.7 (0.7) 2.5 (0.6) 7.3 (1.0) 6.1 (1.1)

Re-paired Foil 3.1 (0.7) 3.1 (0.6) 5.8 (1.2) 6.1 (1.4)
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for response onset. Analysis of the 32 electrodes and the
24 response-locked time periods revealed no signifi-
cant effects of length, but significant effects of fan from
−150 to 0 msec (see Figure 4) and of probe from −350

to −50 msec (see Figure 5). The fan effect was pres-
ent at 5 electrodes, and the probe effect was present at
20 electrodes. Significant electrodes were contiguous in
each temporally defined window and are denoted by

Figure 3. Topography and waveforms for stimulus-locked probe effect. Voltages differed between targets and re-paired foils from 500 to
900 msec (sites F3, FC3, FCz, FC4, FT8, C3, Cz, C4, T8, TP7, CP3, CPz, CP4, TP8, P7, P3, Pz, P4, P8, POz, O1, Oz, O2).

Figure 2. Topography and waveforms for stimulus-locked fan effects. Voltages differed between Fan 1 and Fan 2 pairs from 400 to 450 msec
(top; sites FC3, FC4, T7, C3, Cz, C4, CP3, CPz, CP4, P3, Pz, P4, POz, O1, Oz, O2) and from 700 to 900 msec (bottom; sites F4, F8, FC4, FT8, T8).
Note the reversal in the direction of the late fan effect compared with the early fan effect.

8 Journal of Cognitive Neuroscience Volume X, Number Y



Un
co
rre
cte
d
Pr
oo
f

points in Figures 4 and 5. To examine these effects in detail,
we performed separate 2 (length) × 2 (fan) × 2 (probe)
repeated-measures ANOVAs on the data from the two
periods.
Fan produced a significant effect from −150 to 0 msec,

F(1, 19) = 23.82, MSE = 2.28, p < .001. Waveforms were
more positive after Fan 1 pairs than after Fan 2 pairs over
the midparietal region (see Figure 4). The fan effect was
weaker over the central region and was absent over the
frontal region. The main effect of probe was also signifi-
cant, F(1, 19) = 19.93, MSE = 5.99, p < .01, but the main
effect of length and the interactions were not.
Probe produced a significant effect from −350 to

−50 msec, F(1, 19) = 48.38, MSE = 2.89, p < .0001.
Waveforms were more positive after targets than after
re-paired foils over the midparietal and central scalp
(see Figure 5). No other main effects of interactions were
significant.

Classifier

Figure 6D shows classification accuracy when the classifier
was trained and tested on all data, averaged over partici-
pants. The red bar indicates 37.7% accuracy for classify-
ing all three conditions (fan, length, and probe) correctly
on an example (chance is 12.5%). The blue, green, and
orange bars indicate accuracy for classifying fan, length,
and probe separately, which ranged from 67.3% for length
to 79.2% for fan (chance is 50%). Accuracy was signifi-
cantly greater than chance in all cases ( ps < .001). Table 2
reports minimal and maximal MSEs over the range of
complexity values that was applied during the classifier
training. In addition, it shows the mean optimal complexity
parameter.

Figure 6A shows classification accuracy when the clas-
sifier was trained and tested on 50-msec windows sepa-
rately for fan, length, and probe. The horizontal bars at

Figure 5. Topography and waveforms for response-locked probe effect. Voltages differed between targets and re-paired foils from −350 to
−50 msec (sites FC3, FCz, FC4, C3, Cz, C4, TP7, CP3, CPz, CP4, TP8, P7, P3, Pz, P4, P8, POz, O1, Oz, O2).

Figure 4. Topography and waveforms for response-locked fan effect. Voltages differed between Fan 1 and Fan 2 pairs from −150 to 0 msec
(sites TP8, Pz, P4, P8, POz).
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the bottom of the figure indicate when classification accu-
racy significantly exceeded 50% (based on t tests for each
window, a conservative threshold of p < .001 was used
given the multiple comparisons). Before stimulus onset,
the classifier performed at chance. The first variable clas-
sified above chance was length: The EEG signal contained
information from 100 to 500 msec that enabled the classi-
fier to distinguish between long and short words. The next
variable classified above chance was fan: from 400 msec

onward, the classifier distinguished between Fan 1 and
Fan 2 pairs. The last variable classified above chance was
probe: although the classifier distinguished between tar-
gets and re-paired foils beginning around 600 msec, classi-
fication accuracy continued to increase over time, reaching
75.3% just before the response.
Figure 6B and 6C show separate stimulus- and response-

locked analyses, respectively. These analyses replicate the
effects in Figure 6A.3 The main difference was a later and
more sudden onset of reliable probe classification in the
response-locked analysis. Whereas the stimulus- and-
response-locked classifier reliably distinguished between
targets and re-paired foils from about 400 msec before
the response, the response-locked classifier only distin-
guished between these conditions from about 300 msec
before the response, which is in agreement with the ERP
analysis.
Figure 6E shows the classifier weights (Ŵ) correspond-

ing to significant windows of Figure 6A, averaged over
100-msec periods. These weights are the averages of the
64 classifiers trained for each participant in the LOOCV,
averaged over participants. Note that Fan 2 pairs, long

Table 2. Minimal and Maximal Mean Squared Prediction Error
and Mean Optimal Complexity Parameter

Mean Squared
Prediction Error

Optimal λMinimum Maximum

Fan 0.60 (0.037) 0.70 (0.040) 2240 (549)

Word length 0.79 (0.032) 0.91 (0.042) 3975 (1234)

Probe 0.72 (0.039) 0.88 (0.063) 7092 (1272)

SEMs in parentheses.

Figure 6. Classifier results. (A) Percentage of correctly classified examples when trained using 50-msec windows on stimulus- and response-locked
data, where 0 denotes stimulus onset and 1200 the response (see the main text for details). The colored horizontal bars at the bottom indicate
when accuracy significantly exceeded 50% ( p < .001). The same information (B) for stimulus-locked data (C) for response-locked data (0 denotes
the response). (D) Percentage of correctly classified examples when trained on both stimulus- and response-locked data, with the broken lines
indicating chance. (E) Classifier weights corresponding to significant windows in A, averaged over 100-msec periods. Error bars in D and shaded
areas in A–C denote SEMs.
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words, and targets were coded as 1, resulting in positive
weights when Fan 2 pairs, long words, and targets yielded
larger voltages than Fan 1 pairs, short words, and re-paired
foils, respectively. We scaled the weights to a maximum
absolute value of one for display purposes. For length,
there was an early occipital positivity (not evident in the
conventional ERP analysis) from 200 to 300 msec, followed
by a later frontal positivity from 300 to 500 msec. For fan,
there was a midparietal positivity from 400 to 700 msec
followed by a negativity from 800 to 1200 msec, mirror-
ing the early and late fan effects seen in the ERP analysis.
For probe type, there was a left-parietal positivity from
900 msec onward.

DISCUSSION

In this study we examined the processing stages involved
in associative recognition. We conducted an EEG experi-
ment that involved manipulations of word length, asso-
ciative fan, and probe type, which were intended to tap
the perceptual encoding, retrieval, and decision stages
assumed by an ACT-R model of associative recognition.
In the following sections, we discuss what the behavioral,
ERP, and classifier results pertaining to each manipula-
tion reveal about the processing that occurred, plus the
implications for modeling associative recognition.

Word Length Effects and Perceptual Encoding

The manipulation of word length was expected to affect
the perceptual encoding stage and to be manifest early
in performance. There were no effects of length in the
behavioral data, possibly because the manipulationʼs early
locus led to any effects on RT being absorbed or washed
out by later processing. The ERP analyses revealed that
long words produced more positive voltages than short
words over the left-frontal scalp from 300 to 350 msec
(see Figure 1), consistent with a previous finding of broad
positivity over the frontal region from300msec (Van Petten
& Kutas, 1990). The classifier showed that information in
the EEG signal distinguished between long and short words
from 100 to 500 msec (see Figure 6). Given that perceptual
encoding was a necessary first step in processing and
word length is a perceptual feature, it makes sense that
the classifier detected information early in the EEG signal
for discrimination of word length. Collectively, these results
indicate that word length had an effect on the early percep-
tual encoding stage but not on later stages.
These results—particularly the success of the classifier

in isolating an early neural signature of word length over
the occipital scalp—are consistent with the broader neuro-
scientific literature. EEG (Hauk & Pulvermüller, 2004), MEG
(Sudre et al., 2012; Assadollahi & Pulvermuller, 2003), PET
(Mechelli, Humphreys, Mayall, Olson, & Price, 2000), and
fMRI studies (Indefrey et al., 1997) show that the visual
cortex contributes to word processing and that responses
from areas within the visual cortex are modulated by word

length. Although the early occipital word length effect is
consistent with what is known about the visual cortex, the
later frontal word length effect is more difficult to interpret.
Van Petten and Kutas (1990) suggested that the frontal
effect is related to some linguistic difference between long
and short words; however, they did not perform the re-
quisite manipulations necessary to make any stronger
claim. At present, it is unclear whether the frontal word
length effect depends on orthographic, phonological, or
semantic properties of long and short words.

Associative Fan Effects and Retrieval

The manipulation of associative fan was expected to affect
the retrieval stage and be manifest in the middle of per-
formance. The behavioral data revealed longer RTs and
higher error rates for Fan 2 pairs compared with Fan 1 pairs
(see Table 1), in accord with previous research and the
ACT-R model (e.g., see Anderson, 2007; Anderson &
Reder, 1999). The ERP data painted an interesting picture,
showing distinct early and late fan effects. The stimulus-
locked analysis revealed an early fan effect from 400 to
450 msec, during which time Fan 1 pairs produced more
negative voltages than Fan 2 pairs over central and parietal
sites (see Figure 2). The stimulus-locked analysis also re-
vealed a late fan effect from 700 to 900 msec, during
which time Fan 1 pairs produced more positive voltages
than Fan 2 pairs over right frontal and central sites. The
response-locked analysis showed that this late fan effect
increased until the response (see Figure 4).

The early and late fan effects in the ERP data can be
understood in terms of dual-process theories of recognition
(Rugg & Curran, 2007). Familiarity and recollection, the
two processes evoked in dual-process theories, are sensi-
tive to fan (Nyhus & Curran, 2009). The fan effects in the
current study might provide information about these pro-
cesses. The early fan effect, which occurred soon after the
word length effect, could reflect a familiarity signal from
initial processing of the encoded probe words. The late fan
effect, which occurred before the response, could reflect
recollection of studied word pairs.

The nature of the late effect—Fan 2 pairs producing
more negative voltages than Fan 1 pairs over the frontal
scalp—is similar in some respects to the negative slow
potential observed by Heil et al. (1996). Nyhus and Curran
(2009) also reported an effect of fan on ERPs over the
frontal scalp. Our effect was right-lateralized, whereas
Nyhus and Curran (2009) and Heil et al. (1996) found that
the effect of fan was maximal over the left hemisphere.
Our experiment differs from Heil et al. (1996) in two
important ways. First, we applied a high-pass filter (0.1 Hz)
to our data whereas Heil et al. did not. Second, our task
permitted participants to respond significantly faster. These
differences may have limited our ability to detect the slow
potential reported by Heil et al. (1996).

The difference in the lateralization of the fan effect might
also reflect differences in task materials. Both Khader et al.
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(2005, 2007) and Heil et al. (1996) found that the topo-
graphical distribution of the fan effect varied by stimu-
lus modality. Although fMRI experiments with stimuli
similar to those used in the current study have found
the strongest effects of fan in the left pFC (Danker et al.,
2008), Sohn et al. (2003) reported effects in the right pFC
as well.

The classifier showed there was information in the EEG
signal from 400 msec onward that distinguished between
Fan 1 and Fan 2 pairs (see Figure 6). The fact that fan
information became available near the end of the time
period during which the classifier accurately discriminated
between word length (100–500 msec) suggests that re-
trieval began once the probe words had been encoded,
with no intervening stage. This inference is consistent with
the results of a study by Anderson, Bothell, and Douglass
(2004), who monitored eye movements during associative
recognition and found evidence suggesting that retrieval
did not begin until the probe word pair had been fully
encoded. The persistence of good classification accuracy
for fan over several hundred milliseconds suggests that
each of the distinct fan effects in the ERP data provided
diagnostic information to the classifier. Collectively, the
behavioral, ERP, and classifier results support the iden-
tification of the associative fan manipulation with a retrieval
stage in associative recognition.

Probe Effects, Retrieval, and Decision-making

The manipulation of probe type was expected to affect
both the retrieval and the decision stage and be manifest
late in performance, just before the response. The behav-
ioral data revealed longer RTs for re-paired foils compared
with targets (see Table 1), which is consistent with the
idea that it may be more difficult to make a decision when
there is a match at the item level but not at the associative
level (i.e., the probe words matched studied words but
were from different pairs).

The stimulus-locked analysis of the ERP data revealed
that targets producedmore positive voltages than re-paired
foils over parietal and central sites from 500 to 900 msec
(see Figure 3), similar in some respects to the parietal
old/new effect observed in previous research (e.g., Curran,
2000; Düzel et al., 1997). The response-locked analysis re-
vealed that the effect was present just before the response
(see Figure 5). The classifier showed that information
in the EEG signal starting around 300 msec before the re-
sponse distinguished clearly between targets and re-paired
foils (see Figure 6; note that there seems to be an earlier
effect around 600 msec before the response) and became
increasingly diagnostic leading up to the response. The
later onset of good classification accuracy for the probe
conditions relative to the early fan effect indicates that
targets and re-paired foils could only be differentiated
once some retrieval had occurred.

As hypothesized, the probe manipulation resulted in a
parietal old/new effect, which overlapped with the effect

of fan during the retrieval stage. This effect was bilateral,
although the parietal old/new effect is typically left later-
alized (e.g., Rugg & Curran, 2007; however, the effect
is often present over the right hemisphere as well, e.g.,
Woodruff, Hayama, & Rugg, 2006; Curran, 2000, 2004).
One difference between previous studies of recognition
memory and the current study is that old/new status dif-
fered between targets and re-paired foils at the associative
level of word pairs rather than at the item level of individ-
ual words. In a study more similar to our own, Speer and
Curran (2007) tested participantsʼ ability to distinguish
between studied and rearranged item pairs and also
found strongest effects over the right hemisphere. Thus,
associative differences in old/new status may result in
stronger effects in the right hemisphere than in the left
hemisphere.
In the current experiment, both targets and re-paired

foils were presented 13 times during the test phase.
Although participants initially had to perform associative
recognition by remembering whether words had been
studied together, they might have eventually switched to
a strategy in which they determined when during the
experiment (training vs. test phase) the words had been
presented together. Although there was still a clear dif-
ference in RT between targets and re-paired foils in the
last block of the experiment (1117 vs. 1277 msec), F(1,
19) = 29.81, p< .001, this might be because of differences
in memory strength. To investigate whether the parietal
old/new effect changed over the course of the experiment,
we analyzed the effect of probe type from 500 to 900 msec
during the first and second halves of the test phase. Tar-
gets consistently evoked a more positive response than
re-paired foils over the right-parietal scalp and the inter-
action between probe and test half did not approach
significance, F(1, 19) = 0.97, p > .1.

Implications for Modeling Associative Recognition

The behavioral, ERP, and classifier results generally sup-
port the nature and ordering of information processing
stages assumed by the ACT-R model for associative recog-
nition. The manipulations of word length, associative fan,
and probe type affected the hypothesized stages of per-
ceptual encoding, retrieval, and decision-making in the
expected order and at sensible times, as reflected by mod-
ulations in the ERP waveforms and changes in classifier
accuracy. However, the reversal of the fan effect in the
ERP data during the time course of task performance im-
plicates a more complex retrieval stage than originally
assumed by the ACT-Rmodel, which would predict a single
fan effect in the latter half of the experiment.
We hypothesize that the early fan effect reflects access

to item information in memory (i.e., whether the indi-
vidual probe words were studied), whereas the late fan
effect reflects access to associative information in memory
(i.e., whether the probe word pair was studied). From
the perspective of dual-process theories of recognition,
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item information would become available because of
familiarity and associative information would become
available because of recollection (Diana et al., 2006;
Yonelinas, 2002). The ACT-R model does not include
a familiarity process. Item information is accessed in a
manner analogous to how associative information is
retrieved by using individual probe words to retrieve
studied words from memory (Anderson, Bothell, Lebiere,
& Matessa, 1998).
The retrieval of both item and associative information

in the ACT-R model could be reconciled with the reversed
fan effects in the ERP data if those effects reflect the
strength of the memories being retrieved. In the case of
item retrieval, Fan 2 words could have been represented
more strongly in memory compared with Fan 1 words
because they occurred more often among studied pairs,
reflecting the nature of the fan manipulation. It also took
participants longer to learn Fan 2 pairs during training,
which meant they were exposed to Fan 2 words more
often than Fan 1 words in that phase. Items presented
more often during study are recognized better than items
presented less often (e.g., Stretch & Wixted, 1998; Ratcliff,
Clark, & Shiffrin, 1990). As a result, item retrieval for
Fan 2 words might have been facilitated relative to that
for Fan 1 words, resulting in a more positive potential for
Fan 2 words. This is consistent with a study by Finnigan,
Humphreys, Dennis, and Geffen (2002), who reported
more positive N400 effects for strongly encoded items than
for weakly encoded items. In the case of associative re-
trieval, Fan 2 pairs would be difficult to access than Fan 1
pairs because their constituent words were shared across
multiple pairs, yielding a form of associative interference.
As a result, associative retrieval for Fan 2 pairs would be
impaired relative to that for Fan 1 pairs. Combining these
ideas, facilitated item retrieval for Fan 2 words and im-
paired associative retrieval for Fan 2 pairs could have
resulted in the reversed fan effects we observed in the
ERP data.
The ERP and classifier results also suggest that the re-

trieval and decision stages coincide to some extent. The
late fan effect persisted until the response (see Figures 4
and 6) and the response-locked analysis revealed similar
scalp topographies for the late fan effect and the target
foil effect (see Figures 4 and 5). One interpretation of
these results is that associative retrieval represents part
of the decision process, with the outcome of retrieval
automatically providing evidence for and against different
decisions. Alternatively, these late parietal effects might in-
dicate response confidence (e.g., Woodruff et al., 2006).
Targets produced more positive voltages than re-paired
foils, and Fan 1 pairs produced more positive voltages
than Fan 2 pairs. These effects resemble P300 effects (the
parietal old/new effect encompasses the P300; e.g., Curran,
DeBuse, Woroch, & Hirshman, 2006), which are known to
correlate with response confidence (e.g., Nieuwenhuis,
Aston-Jones, & Cohen, 2005; Sutton, Ruchkin, Munson,
Kietzman, & Hammer, 1982; Wilkinson & Seales, 1978).

Besides the ACT-R model, these results have implica-
tions for other models of associative recognition, includ-
ing those that do not make the same distinctions among
processing stages. For example, evidence accumulation
models typically involve a stage that integrates the
retrieval and decision processes (e.g., Ratcliff & Smith,
2004; Ratcliff, 1978). More specifically, evidence for re-
sponses gradually accumulates based on information re-
trieved from memory, and a decision occurs when the
accumulated evidence reaches a criterion. The decision is
not a separate process but rather the endpoint of retrieval-
based evidence accumulation, which is consistent with the
aforementioned similarities between the late fan effect and
the probe effect.

Although it is possible for evidence accumulation models
to produce the behavioral fan effects we observed, it is not
obvious whether they could be reconciled with the re-
versed fan effects in the ERP data. One could argue that
the reversed fan effects reflect changes in the type of evi-
dence being accumulated, with the early fan effect reflecting
item information and the late fan effect reflecting associa-
tive information, as discussed earlier. Indeed, there are
models that allow for such changes in evidence accumula-
tion during the time course of processing (e.g., Brockdorff
& Lamberts, 2000; Ratcliff, 1980). However, given that both
types of information would contribute to the same evi-
dence accumulation process, one might expect the early
and late fan effects to have similar scalp topographies. In
contrast, we found that the early fan effect was manifest
over left-central and left-parietal sites, whereas the late fan
effect was manifest over right-frontal and right-central sites
(see Figure 2).

Despite the challenges from the ERP data, evidence
accumulation models do receive support from the classifier
results (see Figure 6). A fan effect would be expected for
the duration of the evidence accumulation process, con-
sistent with the classifierʼs accuracy at distinguishing be-
tween Fan 1 and Fan 2 pairs from 400 msec onward. A
probe effect would be expected to emerge gradually as the
accumulated evidence points increasingly to either a target
or a re-paired foil, consistent with the classifierʼs growing
accuracy at distinguishing between targets and re-paired
foils from 600 msec onward. However, note that the
classification patterns are also consistent with the ACT-R
model. Its discrete processing stages can produce graded
changes in accuracy over time if the finishing times of
the processes are variable (e.g., Schneider & Anderson,
2012). Thus, the classifier results do not uniquely support
either model.

Conclusion

The preceding discussion highlights the ways in which the
combination of behavioral, ERP, and classifier results can
inform the modeling of associative recognition. Although
the results provide general support for the stages of pro-
cessing assumed by the ACT-R model, there was no prior
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guarantee that they would. For example, from the perspec-
tive of a simple evidence accumulation model, one might
have expected fan and probe effects in the ERP data to
completely overlap temporally and topographically based
on their attribution to a common stage. There was evi-
dence of overlap between the late fan effect and the probe
effect, but the early fan effect had different character-
istics, suggesting a complex relationship between retrieval
and decision-making processes. The classification method-
ology used in this study showed how machine-learning
techniques can provide additional leverage in data inter-
pretation. For example, although the standard ERP analysis
did not reveal an early occipital effect of word length, the
multivariate pattern used by the classifier enabled dis-
crimination between word lengths as early as 100 msec.
In addition, the classifierʼs discrimination of the fan and
probe conditions provided insight regarding the retrieval
and decision stages of processing that could not be
inferred from the behavioral data alone. Thus, this study
represents an example of how the detailed temporal data
from EEG, supplemented by modern classification tech-
niques, can be used to evaluate basic components of
computational models of cognition.

Reprint requests should be sent to Jelmer P. Borst, Department
of Psychology, Carnegie Mellon University, 5000 Forbes Avenue,
Pittsburgh, PA 15213, or via e-mail: jelmer@cmu.edu.

Notes

1. New foils were included for the initial purpose of contrasting
item recognition with associative recognition. However, consid-
ering the many ways in which new foils differed from the other
probe types (e.g., they were not present during the training
phase, they were not repeated during the test phase, they could
be rejected as nonstudied without retrieving associative informa-
tion, and their associative fan could not be manipulated), we
subsequently chose to focus exclusively on associative recogni-
tion and restrict our analyses to targets and re-paired foils.
2. Genovese et al. (2002) recommended setting the FDR be-
tween 0.01 and 0.05. Because of the exploratory nature of our
study, we favored a conservative FDR (0.01). The results re-
mained essentially unchanged as we varied the FDR over two
orders of magnitude (from 0.001 to 0.1).
3. Trials with RTs shorter than 700 msec were excluded from
these analyses, resulting in less power. Consequently, the length
effect from 100 to 200 msec did not reach significance in the
stimulus-locked classifier.

REFERENCES

Anderson, J. R. (1974). Retrieval of propositional information
from long-term memory. Cognitive Psychology, 6, 451–474.

Anderson, J. R. (2007). How can the human mind occur in
the physical universe? New York: Oxford University Press.

Anderson, J. R., Betts, S., Ferris, J. L., & Fincham, J. M.
(2011). Tracking childrenʼs mental states while solving
algebra equations. Human Brain Mapping, 33,
2650–2665.

Anderson, J. R., Bothell, D., & Douglass, S. (2004). Eye
movements do not reflect retrieval processes: Limits

of the eye-mind hypothesis. Psychological Science, 15,
225–231.

Anderson, J. R., Bothell, D., Lebiere, C., & Matessa, M.
(1998). An integrated theory of list memory. Journal of
Memory and Language, 38, 341–380.

Anderson, J. R., Carter, C. S., Fincham, J. M., Qin, Y., Ravizza,
S. M., & Rosenberg-Lee, M. (2008). Using fMRI to test
models of complex cognition. Cognitive Science, 32,
1323–1348.

Anderson, J. R., Fincham, J. M., Schneider, D. W., &
Yang, J. (2012). Using brain imaging to track problem
solving in a complex state space. Neuroimage, 60,
633–643.

Anderson, J. R., & Reder, L. M. (1999). The fan effect:
New results and new theories. Journal of Experimental
Psychology: General, 128, 186–197.

Assadollahi, R., & Pulvermuller, F. (2003). Early influences
of word length and frequency: A group study using MEG.
NeuroReport, 14, 1183–1187.

Brockdorff, N., & Lamberts, K. (2000). A feature-sampling
account of the time course of old-new recognition
judgments. Journal of Experimental Psychology:
Learning, Memory, and Cognition, 26, 77–102.

Chan, A. M., Halgren, E., Marinkovic, K., & Cash, S. S. (2011).
Decoding word and category-specific spatiotemporal
representations from MEG and EEG. Neuroimage, 54,
3028–3039.

Coles, M. G. H. (1988). Modern mind-brain reading:
Psychophysiology, physiology, and cognition.
Psychophysiology, 26, 251–269.

Coltheart, M. (1981). The MRC psycholinguistic database.
Quarterly Journal of Experimental Psychology, 33A,
497–505.

Curran, T. (2000). Brain potentials of recollection and
familiarity. Memory & Cognition, 28, 923–938.

Curran, T. (2004). Effects of attention and confidence
on the hypothesized ERP correlates of recollection
and familiarity. Neuropsychologia, 42, 1088–1106.

Curran, T., DeBuse, C., Woroch, B., & Hirshman, E. (2006).
Combined pharmacological and electrophysiological
dissociation of familiarity and recollection. Journal of
Neuroscience, 26, 1979–1985.

Danker, J. F., Gunn, P., & Anderson, J. R. (2008). A rational
account of memory predicts left prefrontal activation during
controlled retrieval. Cerebral Cortex, 18, 2674–2685.

Das, K., Giesbrecht, B., & Eckstein, M. P. (2010). Predicting
variations of perceptual performance across individuals
from neural activity using pattern classifiers. Neuroimage,
51, 1425–1437.

Delorme, A., & Makeig, S. (2004). EEGLAB: An open source
toolbox for analysis of single-trial EEG dynamics including
independent component analysis. Journal of Neuroscience
Methods, 134, 9–21.

Diana, R. A., Reder, L. M., Arndt, J., & Park, H. (2006). Models
of recognition: A review of arguments in favor of a dual
process account. Psychonomic Bulletin & Review, 13,
1–21.

Dien, J. (2009). The neurocognitive basis of reading single
words as seen through early latency ERPs: A model of
converging pathways. Biological Psychology, 80, 10–22.

Donders, F. C. (1969). On the speed of mental processes.
Acta Psychologica, 30, 412–431. (Translation of original
work published in 1868.)

Düzel, E., Yonelinas, A. P., Mangun, G. R., Heinze, H. J.,
& Tulving, E. (1997). Event-related brain potential
correlates of two stages of conscious awareness in
memory. Proceedings of the National Academy of
Sciences, U.S.A., 94, 5973–5978.

14 Journal of Cognitive Neuroscience Volume X, Number Y



Un
co
rre
cte
d
Pr
oo
f

Finnigan, S., Humphreys, M. S., Dennis, S., & Geffen, G.
(2002). ERP “old/new” effects: Memory strength and
decisional factor(s). Neuropsychologia, 40, 2288–2304.

Genovese, C. R., Lazar, N. A., & Nichols, T. (2002). Thresholding
of statistical maps in functional neuroimaging using the
false discovery rate. Neuroimage, 15, 870–878.

Hastie, T., Tibshirani, R., & Friedman, J. (2001). The elements
of statistical learning. Data mining, inference, and
prediction. New York: Springer-Verlag.

Hauk, O., Davis, M. H., Ford, M., Pulvermüller, F., &
Marslen-Wilson, W. D. (2006). The time course of visual
word recognition as revealed by linear regression analysis
of ERP data. Neuroimage, 30, 1383–1400.

Hauk, O., & Pulvermüller, F. (2004). Effects of word length
and frequency on the human event-related potential.
Clinical Neurophysiology, 115, 1090–1103.

Hauk, O., Pulvermüller, F., Ford, M., Marslen-Wilson, W. D.,
& Davis, M. H. (2009). Can I have a quick word? Early
electrophysiological manifestations of psycholinguist
processes revealed by event-related regression analysis
of the EEG. Biological Psychology, 80, 64–74.

Haynes, J. D., & Rees, G. (2006). Decoding mental states from
brain activity in humans. Nature Reviews Neuroscience, 7,
523–534.

Heil, M., Rösler, F., & Hennighausen, E. (1996). Topographically
distinct cortical activation in episodic long-term memory:
The retrieval of spatial versus verbal information. Memory
& Cognition, 24, 777–795.

Heil, M., Rösler, F., & Hennighausen, E. (1997). Topography
of brain electrical activity dissociates the retrieval
of spatial versus verbal information from episodic
long-term memory in humans. Neuroscience Letters,
222, 45–48.

Indefrey, P., Kleinschmidt, A., Merboldt, K. D., Kruger, G.,
Brown, C., Hagoort, P., et al. (1997). Equivalent responses
to lexical and nonlexical visual stimuli in occipital cortex:
A functional magnetic resonance imaging study.
Neuroimage, 5, 78–81.

Khader, P., Heil, M., & Rösler, F. (2005). Material-specific
long-term memory representations of faces and spatial
positions: Evidence from slow event-related brain
potentials. Neuropsychologia, 43, 2109–2124.

Khader, P., Knoth, K., Burke, M., Ranganath, C., Bien, S., &
Rösler, F. (2007). Topography and dynamics of associative
long-term memory retrieval in humans. Journal of
Cognitive Neuroscience, 19, 493–512.

Luck, S. J. (2005). An introduction to the event-related
potential technique. Cambridge, MA: MIT Press.

Mechelli, A., Humphreys, G. W., Mayall, K., Olson, A., &
Price, C. J. (2000). Differential effects of word length
and visual contrast in the fusiform and lingual gyri during
reading. Proceedings of the Royal Society of London,
Series B, 267, 1909–1913.

Mitchell, T. M., Shinkareva, S., Carlson, A., Chang, K., Malave, V.,
Mason, R., et al. (2008). Predicting human brain activity
associated with the meanings of nouns. Science, 320,
1191–1195.

Nieuwenhuis, S., Aston-Jones, G., & Cohen, J. D. (2005).
Decision making, the P3, and the locus coeruleus-
norepinephrine system. Psychological Bulletin, 131,
510–532.

Norman, K. A., Polyn, S. M., Detre, G. J., & Haxby, J. V.
(2006). Beyond mind-reading: Multi-voxel pattern
analysis of fMRI data. Trends in Cognitive Sciences,
10, 424–430.

Nyhus, E., & Curran, T. (2009). Semantic and perceptual
effects on recognition memory: Evidence from ERP.
Brain Research, 1283, 102–114.

Parra, L., Alvino, C., Tang, A., Pearlmutter, B., Yeung, N.,
Osman, A., et al. (2002). Linear spatial integration for
single-trial detection in encephalography. Neuroimage,
17, 223–230.

Pereira, F., Mitchell, T., & Botvinick, M. (2009). Machine
learning classifiers and fMRI: A tutorial overview.
Neuroimage, 45, S199–S209.

Peters, B. O., Pfurtscheller, G., & Flyvbjerg, H. (1998).
Mining multi-channel EEG for its information content:
An ANN-based method for a brain-computer interface.
Neural Networks, 11, 1429–1433.

Philiastides, M. G., & Sajda, P. (2006). Temporal characterization
of the neural correlates of perceptual decision making in
the human brain. Cerebral Cortex, 16, 509–518.

Pirolli, P. L., & Anderson, J. R. (1985). The role of practice
in fact retrieval. Journal of Experimental Psychology:
Learning, Memory, and Cognition, 11, 136–153.

Ratcliff, R. (1978). A theory of memory retrieval. Psychological
Review, 85, 59–108.

Ratcliff, R. (1980). A note on modeling accumulation of
information when the rate of accumulation changes
over time. Journal of Mathematical Psychology, 21,
178–184.

Ratcliff, R., Clark, S. E., & Shiffrin, R. M. (1990). List-strength
effect: I. Data and discussion. Journal of Experimental
Psychology: Learning, Memory, and Cognition, 16,
163–178.

Ratcliff, R., & Smith, P. L. (2004). A comparison of sequential
sampling models for two-choice reaction time. Psychological
Review, 111, 333–367.

Rugg, M. D., & Curran, T. (2007). Event-related potentials
and recognition memory. Trends in Cognitive Sciences,
11, 251–257.

Schneider, D. W., & Anderson, J. R. (2012). Modeling fan
effects on the time course of associative recognition.
Cognitive Psychology, 64, 127–160.

Smulders, F. T. Y., & Miller, J. O. (2013). The lateralized
readiness potential. In S. J. Luck & E. S. Kappenman
(Eds.), The Oxford handbook of event-related
potential components (pp. 209–229). New York:
Oxford University Press.

Sohn, M. H., Goode, A., Stenger, V. A., Carter, C. S., &
Anderson, J. R. (2003). Competition and representation
during memory retrieval: Roles of prefrontal cortex and
the posterior parietal cortex. Proceedings of the National
Academy of Sciences, U.S.A., 100, 7412–7417.

Speer, N. K., & Curran, T. (2007). ERP correlates of familiarity
and recollection processes in visual associative recognition.
Brain Research, 1174, 97–109.

Sternberg, S. (1969). The discovery of processing stages:
Extensions of Dondersʼ method. Acta Psychologica, 30,
276–315.

Stretch, V., & Wixted, J. T. (1998). On the difference
between strength-based and frequency-based mirror
effects in recognition memory. Journal of Experimental
Psychology: Learning, Memory, and Cognition, 24,
1379–1396.

Sudre, G., Pomerleau, D., Palatucci, M., Wehbe, L., Fyshe, A.,
Salmelin, R., et al. (2012). Tracking neural coding of
perceptual and semantic features of concrete nouns.
Neuroimage, 62, 451–463.

Sutton, S., Ruchkin, D. S., Munson, R., Kietzman, M. L.,
& Hammer, M. (1982). Event-related potentials in a
two-interval forced-choice detection task. Psychonomic
Bulletin & Review, 32, 360–374.

Van Petten, C., & Kutas, M. (1990). Interactions between
sentence context and word frequency in event-related
brain potentials. Memory & Cognition, 18, 380–393.

Borst et al. 15



Un
co
rre
cte
d
Pr
oo
f

Vilberg, K. L., Moosavi, R. F., & Rugg, M. D. (2006).
The relationship between electrophysiological correlates
of recollection and amount of information retrieved.
Brain Research, 1122, 161–170.

Vilberg, K. L., & Rugg, M. D. (2009). Functional significance
of retrieval-related activity in lateral parietal cortex:
Evidence from fMRI and ERPs. Human Brain Mapping,
30, 1490–1501.

Wilding, E. L. (2000). In what way does the parietal ERP
old/new effect index recollection? International Journal
of Psychophysiology, 35, 81–87.

Wilkinson, R. T., & Seales, D. M. (1978). EEG event-related
potentials and signal detection. Biological Psychology,
7, 13–28.

Woodruff, C. C., Hayama, H. R., & Rugg, M. D. (2006).
Electrophysiological dissociation of the neural correlates of
recollection and familiarity. Brain Research, 1100, 125–135.

Yonelinas, A. P. (2002). The nature of recollection and
familiarity: A review of 30 years of research. Journal
of Memory and Language, 46, 441–517.

Zipf, G. K. (1935). The psycho-biology of language.
Boston: Houghton Mifflin.

16 Journal of Cognitive Neuroscience Volume X, Number Y



Un
co
rre
cte
d
Pr
oo
f

AUTHOR QUERY

No query.


