Times listed are for Matlab 2010a running on Mac, 2.8 Ghz Intel Core i7.

To recreate paper Figure 10 results:
	
 Matlab call (takes about 45 minutes):
	
	>> results=test8a(Imclicks,triples,states,odds336a,triscan,opstates,subBlock,matrix);

 Function: test8a – defined in test8a.m
 Required Data/Arguments: test8.mat – set of variables to be used in call of function test8a
Imclicks: information about the 4165 x 3 = 12495 clicks. The first column gives the time in milliseconds, the fifth column the category (1 = math first, 2 = math return, 3 = verbal first, 4 = verbal return, 5 = mismatch interturn, 6 = match interturn), the sixth column indicates the click position in the turn.
triples: A representation of the 24 operators
states: A representation of the 25 possible states of math cards or verbal cards
odds336a: Odds of the 6 scan categories for each scan, calculated as specified below.
triscan: An association of the 4165 turns with scans
opstates: a specification of how the 24 operators change math states (first 3 columns) and verbal states (next 3 columns)
subBlock: first column is the subject associated with as scan and the second column gives the turn in the game
matrix: a 625x3x24x18 array giving the probabilities of the 24 operators for the 625x3 states for each of the 18 subjects. This is calculated from the imperfect memory model as specified below.
 Output Data:
		results: 2 x 2 x 2 array of test8a output results, each element represents a different test condition

Classification work-horse function can be independently called. To generate the 80.2% classification using all sources of information:

 Matlab call (takes about 6.5 minutes):

>> [seq,matrix1,matrix2] = yclassifygames25(Imclicks, triples, states, odds336a, triscan, opstates, subBlock,prior,1,1);

 Function: yclassifygames25 – defined in yclassifygames25.m
 Required Data/Arguments: test8.mat – same as above
Imclicks: same as above in test8a
triples: same as above in test8a
states: same as above in test8a
odds336a: same as above in test8a
triscan: same as above in test8a
opstates: same as above in test8a
subBlock: same as above in test8a
prior: prior transition probabilities as created within the function test8a (see test8a.m)
1 (ninth argument in call): < ------ need text here -------- >
1 (tenth argument in call): < ------ need text here -------- >
	Output Data:
		seq: < ------ need text here -------- >
		matrix1: < ------ need text here -------- >
		matrix2: < ------ need text here -------- >

Predicting a single game:

The major function used by yclassifygames25 is ymemViterbi9 which predicts a game. It implements the Viterbi algorithm.

 Matlab call:

>> ymemViterbi9(trans,clicks(first:last,:),triples,subj,others,states,opstates,cprob,visited,flag);

 Function: ymemViterbi9 – defined in ymemViterbi9.m
 Required Data/Arguments (see source in yclassifygames25.m for understanding arguments described below):
 	trans: is a representation of the relevant transition probabilities
	clicks(first:last,:): is the click information (after processing by transformClicks2)
	triples: same as above in test8a
	subj: is the click information for other games for the subject
	others: is the click information for other subjects
	states and opstates: same as above in test8a
	cprob: is a compilation of the information in odds (as computed by ycalccprob6)
	visited: is an efficiency limitation of the search space
	flag: determined whether the timing information is to be used (= 1)

Figure 8 Classification and related computations:

	The classification shown in Figure 8 (matrix336 below) and odds336a referenced in the calls above are computed as shown below.

 Matlab call (takes about 12 minutes):

>> [odds336a, matrix336] = constructOdds2(Imclicks,triscan,normed(:,filter<300),subBlock,3);

 Function: constructOdds2 – defined in constructOdds2.m
 Required Data/Arguments: constructOdds2.mat – set of variables to be used in call to constructOdds2
				normed.mat - the 345 mega-regions
Imclicks & triscan: same as above in test8a
normed: the 345 mega-regions (4x4x4 voxel cubes) which give the percent activity on this scan relative to the mean of the block. This is separately provided from the other files because of its large size (74 MB)
filter: Number of outliers, defined as percent changes of 10% or more of baseline.
subBlock: defined as above
3: Instruction to use the activity 3 scans after the scan for classification of the scan.

Calculation of the memory model data (the variable matrix given as argument in call to test8a)

 Matlab call (takes about 10 minutes):

 >> [data, matrix, turns] =exploreNoise1(100,calcMem(subs(:,5)),states,triples);

Note this is probabilistic process and as such the numbers will not be exactly the same from one run to the next.

 Function: constructOdds2 – defined in constructOdds2.m
 Required Data/Arguments:
	100: the number of 100s of game played per subject – i.e. 10,000 per subject in this case
States & triples: As above
Subs Summary data for the 18 subjects – in subs1.mat
 Col 1: Subject number
Col 2: Number of games
Col 3: Number of turns
Col 4: Number of scans
Col 5: Mean number of turns per game
Col 6: Mean number of scans per turn
calcMem: uses the information in the fifth column to calculate a value of p for the subject

Times listed

are for Matlab 2

010a runnin

g on Mac, 2.8 Ghz Intel Core i7.

T

o recreat

e p

aper

Figure

10

resu

lts

:

Matlab call

(takes about 45 minutes)

:

>>

results

=

test8a(Imclicks,triples,states,odds336a,t

riscan,opstates,subBlock,matrix

)

;

Function:

test8a

–

defined

in

test8a.m

Required Data

/Arguments

:

test8.mat

–

set of variables to be used in call of

function

test8a

Imclicks

:

information about the 4165 x 3 = 12495 clicks

. The first column gives the time in

millisecond

s

, the fifth column the category (1 = math first, 2 = math return, 3 = verbal first, 4 =

verbal return, 5 = mismatch interturn, 6 = ma

tch interturn), the sixth column indicates the click

position in the turn.

triples

:

A representation of the 24 operators

states

:

A representation of the 25 possible states of math cards or verbal cards

odds336

a

:

Odds of the 6 scan categories for each scan,

calculated as specified below.

triscan

:

An association of the 4165 turns with scans

opstates

: a specification of how the 24 operators change math states (first 3 columns) and verbal

states (next 3 columns)

subBlock

:

first column is the subject associated

with as scan and the second column gives the

turn in the game

matrix

:

a 625x3x24x18 array giving the probabilities of the 24 operators for the 625x3 states for

each of the 18 subjects. This is calculated from the imperfect memory model

as specified below.

Output Data:

r

esults

:

2 x 2 x 2 array of

test8a output

results

, each element

represents

a

different test condition

C

lassification work

-

horse

function

can be independently called. T

o generate the 80.2

% classification

u

sing all sources of information:

Matlab call

(takes about 6.

5 minutes)

:

>>

[seq,matrix1

,matrix2]

=

yclassifygames25

(Imclicks,

triples,

states,

odds336

a

,

triscan,

opstates,

subBlock,prior,1,1);

Function:

yclassifygames25

–

defined

in

yclassifygames25

.m

Required Data

/Arguments

:

test8.mat

–

same

as above

Imclicks

:

same

as above

in

test8a

triples

:

same

as

above

in

test8a

states

:

same

as

above

in

test8a

odds336

a

:

same

as

above

in

test8a

triscan

:

same

as

above

in

test8a

opstates

:

same

as

above

in

test8a

subBlock

:

same as

above

in

test8a

prior

:

prior

transition

probabilities as created within the function

test8

a

(see

test8

a.

m

)

1 (

ninth argument in call):

<

need text

here

-

--

>

1 (tenth argument in call)

:

<

need text here

-

>

