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Abstract In most problem-solving activities, feedback is
received at the end of an action sequence. This creates a
credit-assignment problem where the learner must associate
the feedback with earlier actions, and the interdependencies
of actions require the learner to remember past choices of
actions. In two studies, we investigated the nature of explicit
and implicit learning processes in the credit-assignment
problem using a probabilistic sequential choice task with and
without a secondary memory task. We found that when
explicit learning was dominant, learning was faster to select
the better option in their Wrst choices than in the last choices.
When implicit reinforcement learning was dominant, learn-
ing was faster to select the better option in their last choices
than in their Wrst choices. Consistent with the probability-
learning and sequence-learning literature, the results show
that credit assignment involves two processes: an explicit
memory encoding process that requires memory rehearsals
and an implicit reinforcement-learning process that propa-
gates credits backwards to previous choices.

Introduction

Some of the most diYcult situations in skill learning occur
when the learner has to perform a sequence of actions but
only receives feedback on their success at the end of the

sequence. Outcomes of action sequences are often probabi-
listic, so that learning has to occur through accumulation of
experiences. Learning action sequences with probabilistic
outcomes creates a credit-assignment problem, in which the
learner has to assign credits to earlier actions that are respon-
sible for eventual success. The credit-assignment problem is
even more diYcult when the actions are interdependent, and
the environment may change both autonomously and as a
result of the actions. In two experiments, we study how peo-
ple learn to solve the credit-assignment problem in a simple
but challenging example of such a situation. Our study is
developed based on the recent proposal that humans exhibit
two distinct processes when learning action sequences with
delayed feedback: an explicit memory encoding process that
requires attentional resources to encode the actions and their
outcomes, and an implicit reinforcement-learning process
that requires little attentional resources. The main goal of
our experiments is to study the nature of these two processes
when people learn to choose action sequences with probabi-
listic outcomes. We investigate how people solve the credit
assignment problem by bridging together two lines of psy-
chological research: Wrst, learning the sequential nature of
actions is related to the research on sequence learning; sec-
ond, learning the probabilistic relationship between actions
and their outcomes is related to the research on probability
learning and probabilistic classiWcation. We will Wrst review
research in these two areas. We will then show how the
credit assignment problem is related to the theory of rein-
forcement learning. These ideas are then integrated to guide
the design of our two experiments.

Sequence learning

The explicit and implicit learning distinction has often been
investigated through a paradigm called sequence learning
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(e.g., Cleeremans & McClelland, 1991; Cohen, Ivry, &
Keele, 1990; Curran & Keele, 1993; Frensch, Buchner, &
Lin, 1994; Jimenez, Mendez, & Cleeremans, 1996; Nissen
& Bullemer, 1987; Perruchet & Amorim, 1992; Stadler,
1995; Sun, Slusarz, & Terry, 2005; Willingham, Nissen, &
Bullemer, 1989). One typical paradigm is the serial reaction
time (SRT) task in which subjects have to press a sequence
of keys as indicated by a sequence of lights. A certain pat-
tern of button presses recurs regularly and subjects give
evidence of learning this sequence by pressing the keys for
this sequence faster than a random sequence. Although there
have been slightly diVerent deWnitions to capture the details
of the implicit/explicit distinction, the key factor is the idea
that implicit learning occurs as a facilitation of test perfor-
mance without concomitant awareness of what is being
learned (e.g., Frensch, 1998; Shanks & St. John, 1994;
Reber, 1989; Willingham, 1998). For example, learners in
the SRT task who show faster response time in structured
sequences are often unable to explicitly verbalize knowledge
of the sequence structure.

A number of studies have used a secondary task such as
counting of tones to study the eVects of diminished atten-
tion for implicit learning (e.g., Cohen et al., 1990; Curran &
Keele, 1993; Frensch et al., 1994; Nissen & Bullemer,
1987; Reed & Johnson, 1994; Stadler, 1995). Cohen et al.
(1990) found that when attention is diminished by a sec-
ondary task, subjects could only learn simple pair-wise
transitions, but failed to learn higher order hierarchical
structures in the sequence. Although, studies show that
sequences with higher order hierarchical structures can be
learned (e.g., Curran & Keele, 1993; Frensch et al., 1994),
the secondary task consistently reduces the amount of
learning relative to the single task condition (Stadler,
1995). Researchers have proposed that the secondary task
possibly disrupts learning by interfering with the ability to
associate stimuli in short-term memory (Frensch et al.,
1994; Stadler, 1995), thus diminishing implicit learning of
higher-order structures in complex sequences.

An interesting paradigm studying the response-eVect
mapping in implicit learning was by Ziessler and his colle-
gues (1994, 1998; Ziessler & Nattkemper, 2001; Ziessler,
Nattkemper, & Frensch, 2004). In this paradigm, regulari-
ties were introduced between a response (a keypress) and
its eVect on the location of the next stimulus. Ziessler and
his colleagues found that subjects learned these regularities
implicitly and utilized the acquired implicit knowledge of
response-eVect regularities to anticipate the next stimulus
location to facilitate performance. The studies show that
learning and anticipating the outcome of a response could
be implicit and does not require explicit encoding of previ-
ous action–outcome pair, and that regularities in response-
eVect relationships are useful in acquisition of sequence
knowledge.

Although, the majority of the sequence-learning studies
have used deterministic sequences, some have used proba-
bilistic sequences in their experiments and have identiWed
interesting properties of implicit learning (Cleeremans &
McClelland, 1991; Stadler, 1992; Schvaneveldt & Gomez,
1998). For example, instead of using structured and random
sequences, Schvaneveldt and Gomez used a probable (more
likely to occur) and an improbable sequence in a SRT para-
digm. They found that people were faster at responding to
probable than the improbable sequence. The presence of a
secondary task did not show signiWcant diVerences in the
magnitude of learning; however, anticipatory errors on
improbable sequences were much more frequent in the sin-
gle task condition. The diVerence in errors suggests that
there are diVerences in the learning processes under single-
and dual-task conditions. In addition, Schvaneveldt and
Gomez found that when transferring subjects trained in the
single-task condition to the dual-task condition, there was
no signiWcance diVerence in reaction time or error rates
between the probable and improbable sequences. Schvan-
eveldt and Gomez concluded that attentional resources are
required to apply what is learned under single-task condi-
tions, suggesting that there may be diVerent modes of learn-
ing as elicited by the diVerent levels of attentional demand
in the single- and dual-task condition.

Probability learning and probabilistic classiWcation

Although, the sequence-learning studies have provided
important information about the distinction between
explicit and implicit learning, they are designed to answer
questions that are diVerent from ours, namely, how people
learn the probabilistic relationship between actions and
their outcomes. There have been numerous studies on the
learning of the probabilistic relationship between choices
and their consequences. The simplest situation is the prob-
ability-learning experiment in which subjects guess which
of the alternatives occurs and then receives feedback on
their guesses (e.g., Estes, 1964). One robust Wnding is that
subjects often “probability match”; that is, they will
choose a particular alternative with the same probability
that it is reinforced (e.g., Friedman et al., 1964). This leads
many to propose that probability matching is the result of
an implicit habit-learning mechanism that accumulates
information about the probabilistic structure of the envi-
ronment (e.g., Graybiel, 1995). One important characteris-
tic of this kind of habit learning is that information is
acquired gradually across many trials, and seems to be
independent of declarative memory as amnesic patients
were found to perform normally in a probabilistic classiW-
cation task (Knowlton, Squire, & Gluck, 1994; but see
Gallistel, 2005). However, for non-amnesic human
subjects, it is diYcult to determine whether this kind of
123



Psychological Research (2008) 72:321–330 323
probabilistic classiWcation is independent of the use of
declarative memory. Since declarative memory is dominant
in humans, it has been argued that learners often initially
engage in explicit memory encoding in which they seek to
remember sequential patterns even when there are none
(Yellott, 1969). Researchers argue that true probabilistic
trial-  by-trial behavior only appears after hundreds of
trials–perhaps by then subjects give up the idea of explic-
itly encoding patterns and the implicit habit-learning pro-
cess becomes dominant (Estes, 2002; Vulkan, 2000).
Similarly, recent research on complex category learning
has also provided interesting results suggesting multiple
learning systems (Allen & Brooks, 1991; Ashby, Queller,
& Berretty, 1999; Waldron & Ashby, 2001). For example,
Waldron and Ashby (2001) showed that although a con-
current Stroop task signiWcantly impaired learning of an
explicit rule that distinguished between categories by a
single dimension, it did not signiWcantly delay learning of
an implicit rule that requires integration of information
from multiple dimensions. The results, consistent with
those from the sequence-learning studies, have led many to
propose the explicit and implicit modes of learning. One
common way to distinguish between the two learning
modes is to introduce the secondary distractor task to
suppress the otherwise dominant explicit learning mode,
so that the diVerent properties of the implicit learning
mode can be studied.

In both the sequence-learning and the probability-
learning paradigms, subjects do not need to learn from the
delayed feedback of a single action as immediate feed-
back is given. In a typical SRT task there is a sequence of
actions but there is a deterministic relationship (given by
instructions) between the stimuli and their responses. Sub-
jects in the SRT may anticipate the next stimuli but they
always get immediate feedback after their responses. In
probability learning the stimulus-response relationship is
probabilistic but there is a single action after which feed-
back is received. Neither of these paradigms then reXects
the complexity of the credit-assignment problem
in situations in which people learn to sequentially choose
actions with probabilistic outcomes and receive feedback
only after the whole action sequence is executed. Our
studies are designed by combining research from both
areas by studying how people learn to assign credits to
diVerent actions in a probabilistic sequential choice task.
In this task, a sequence of actions is executed before feed-
back on its correctness is received, and a particular action
sequence is correct only with a certain probability. Our
goal is that the novel paradigm we used will contribute to
the understanding of the nature of the explicit and implicit
learning modes in the general context of skill learning
when the learner has to choose the right action sequences
that accomplish a task.

Implicit reinforcement learning and explicit memory 
encoding

As discussed earlier, previous research in sequence learning
and probability learning leads us to expect that people may
exhibit an implicit and explicit mode of learning in our
probabilistic sequential choice tasks. In addition, as we will
discuss next, recent research in neuroscience suggests that
the implicit mode of learning is associated with the rein-
forcement-learning process, and the explicit mode of learn-
ing is associated with memory encoding of action
sequences and their outcomes (e.g., Daw, Niv, & Dayan,
2005; Grafton, Hazeltine, & Ivry, 1995; Keele, Ivry, Mayr,
Hazeltine, & Heuer, 2003; Packard & Knowlton, 2002;
Poldrack et al., 2001). For example, Daw et al. (2005)
described the implicit learning process as a habit-formation
process and the explicit learning process as a goal-directed
“tree-searching” memory encoding process, and showed
that these two processes together account for a wide set of
animal choice behavior. We will show that our task is
designed such that these two modes of learning will lead to
very diVerent predictions of behavior. However, we will
Wrst review recent research in reinforcement learning that
serves as the basis of our predictions.

Converging evidence have shown that structures in the
basal ganglia is closely related to the habit-learning and
procedural system in which past response-outcome infor-
mation is accumulated through experience (e.g., Fu &
Anderson, in press; Graybiel, 1995; Schultz, Dayan, &
Montague, 1997), and the prefrontal cortex and the medial
temporal lobe is related to the declarative system that asso-
ciates with more reXexive and goal-directed activities.
Recent research has also shown that the neural activities in
the basal ganglia correlate well with the predictions of rein-
forcement learning (e.g., Schultz et al., 1997), and are dis-
tinct from the activities in the declarative memory system
(Packard & Knowlton, 2002; Poldrack et al., 2001). The
basic prediction of reinforcement learning (e.g., see Sutton
& Barto, 1998) is that when feedback is received after a
sequence of actions, only the last action in the sequence
will receive feedback but that on later trials its value will
then propagate back to early actions. By itself this mecha-
nism cannot learn in cases where success depends on the
sequence of actions rather than the individual actions.
Memories of previous actions or observations are required
to disambiguate the states of the world (e.g., McCallum,
1995). This implies that the cognitive agent needs to explic-
itly adopt some forms of a memory encoding strategy to
retain relevant information in memory for future choices.
An explicit memory encoding strategy allows chaining
together of action sequence in working memory, so that the
outcome of the whole action sequence can be observed.
Practically, this strategy implements a “tree-searching”
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procedure, in which the outcome of a branching set of pos-
sible response-outcome situations is tested. The advantage
of the explicit memory encoding strategy is that the success
of an action sequence can be evaluated and updated with a
single feedback. In contrast, reinforcement learning
requires the backward propagation of credits to earlier
actions, and is thus less eYcient. On the other hand, main-
taining action sequences in memory puts a high demand on
attentional resources. It is therefore expected that a second-
ary task will signiWcantly hamper the explicit memory
encoding strategy. Since the habit-learning mechanism is
often thought to be less dependent on attentional resources
(e.g., Packard & Knowlton, 2002), it is expected that rein-
forcement learning is still eVective even when attention is
diminished by the secondary task.

In two experiments, we study the nature of the learning
processes in a probabilistic sequential choice task with and
without a secondary distractor task. The sequential choice
task is speciWcally designed to distinguish between explicit
and implicit learning processes and we have strong predic-
tions about the outcome: when the implicit reinforcement
learning process is dominant, learning will be in the back-
ward direction, i.e., learning of items closer to the feedback
will be faster than those farther away. When the explicit
memory encoding process is dominant, learning of items
will be in the forward direction, i.e., learning of items pre-
sented earlier will be faster.

Experiment 1

Subjects were presented with two consecutive choice sets. In
each choice set, subjects were asked to choose one of the two
colors (one of the boxes in Fig. 1) presented on a computer
screen, and the probabilities that the options were correct
were independent between the two choices. Subjects were
told to imagine that the two colors were on the two sides of a
biased coin that was Xipped and the side that turned up would
be the correct color for that trial. Subjects used the arrow but-
tons on a standard US keyboard to choose one of the colors.
Subjects were instructed to press the left arrow button to
select the color on the left side of the screen, and to press the
right arrow button to select the color of the right side of the
screen. After subjects made the Wrst response, the second
choice set were presented immediately (<50 ms). After the
second response, a feedback message was presented immedi-
ately (<50 ms) on the screen to inform subject as to whether
both of the two choices had led to success. Subjects were
instructed that if the feedback was “Correct,” both choices
made were correct; but if the feedback was “Wrong,” then
either one of the choices was wrong or both choices were
wrong, and they would never receive any feedback on the
correctness of the individual choices in this case.

In this task, four choice sets, each with two colors, were
constructed by randomly selecting from eight colors (red,
green, yellow, blue, brown, gray, magenta, and orange). In
each choice set, one of the colors was randomly selected to
be the color that was more likely to be correct. The choice
sets were randomly divided into two groups of two. On
each trial, the Wrst pair was randomly chosen from the Wrst
group (i.e., either 1 or 2 in Fig. 1) and the second pair from
the second set (i.e., either 3 or 4 in Fig. 1). Thus, a particu-
lar subject might either see the pair red and blue or the pair
yellow and green as the Wrst choice and the pair orange and
gray or the pair magenta and brown as the second choice.
For that subject, one randomly chosen member of each pair
would be correct on 80% of the trials and the other on 20%.

When engaged in explicit memory encoding, subjects
had to keep previous choices and their outcomes in memory
and essentially identify the correct Wrst choices and the cor-
rect second choices. Since these choices were equal and
independent one might expect equal learning of Wrst and
second choice. However, given evidence of strong primacy
eVects in sequential learning tasks involving explicit mem-
ory encoding (e.g., Drewnowski & Murdock, 1980; Ward,
1937), our expectation was that the Wrst choices would tend
to be learned Wrst.

To study the impact of a secondary task, we introduced a
“2-back” task to suppress the otherwise dominant explicit
memory encoding process. The secondary task required
subjects to listen to a continuous stream of numbers (from 0
to 9) from the speakers. Starting from the third number,
subjects had to press the control key on the keyboard if the
number is identical to the numbers two numbers before. For
example, if they heard the numbers 0, 3, 2, 3, and 0, they
had to press the control key the second time they heard 3.

Fig. 1 The probabilistic sequential choice task in Experiments 1 and
2. Each box represents a choice set, and the actual colors were ran-
domly selected from a Wxed set of colors (red, green, yellow, blue,
brown, gray, magenta, and orange). Four randomly selected choice
sets were selected for each subject. Subjects were presented with two
choice sets in each trial. The Wrst choice set was randomly selected
from (Red, Blue) or (Yellow, Green), and the second choice set is ran-
domly selected from (Orange, Gray) or (Magenta, Brown). In each
choice set, the probability that one of the colors was correct was manip-
ulated diVerently in the two experiments. See text for details
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Red    Blue Yellow    Green
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Magenta  Brown
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The numbers were presented once every 2 s. Subjects had
to maintain their performance at 80% or better at the 2-back
task while performing the sequential choice task. From ear-
lier discussion, the basic prediction of the implicit process
is that actions close to the feedback will acquire value Wrst
and then their value will propagate back to early actions.
Thus, learning of the second choice will be faster than the
Wrst choice in the dual-task condition.

Method

About 60 subjects in the Carnegie Mellon University and
University of Illinois community were recruited for the
experiment. Subjects received a base payment of $8 plus a
bonus payment of up to $7 depending on performance. Half
of the subjects were assigned to the single task condition
and the other half to the dual task condition. Subjects
started with an initial score of ten points. For each correct
choice, Wve points would be added to the Wnal score; for
each wrong choice, one point would be deducted from the
Wnal score. Subjects completed ten 40-trial blocks. Subjects
were paid one cent for each point in the total score for the
bonus payment. At the end of the experiment, subjects were
asked to write down any strategy they used and whether
they were aware of any patterns in the probabilistic sequen-
tial choice task.

Results

Figure 3 shows the mean choice proportions of the more
likely colors in each 40-trial block. The main eVect of con-
dition (single/dual) was signiWcant [F(1,58) = 29.97,
MSE = 12.51, P < 0.001]. Consistent with previous results,
subjects in the single-task condition performed better than
those in the dual-task condition, showing that the secondary
task impairs overall performance. There was a signiWcant
eVect of block [F(9,522) = 37.87, MSE = 0.54, P < 0.001]
conWrming the apparent learning trend in Fig. 2. There was
no overall diVerence between learning of the Wrst and sec-
ond choice [F(1,58) = 1.23, MSE = 0.0074]. However, the
interaction between condition and choice was signiWcant
[F(1,58) = 5.15, MSE = 0.31, P < 0.05]. The only other sig-
niWcant interaction was that between condition, block, and
choice [F(9,522) = 3.85, MSE = 0.0047, P < 0.001]. This
reXects the fact, apparent in Fig. 3 that the interaction eVect
between condition and choice only appears in the early
blocks. The average performance over the Wrst two blocks
of the subjects in the single-task condition was higher for
the Wrst choice [t(28) = 2.44, P < 0.05] while the reverse
was true for the Wrst three blocks in the dual-task condition
of the not aware group [t(22) = 2.55, P < 0.05]. All choices
were signiWcantly above chance in the last four blocks of
trials.

The results were consistent with our predictions of the
two learning processes in the task. Because of the primacy
eVect of sequence memory, subjects in the Single-Task
condition learned the Wrst choice faster than the second
choice. Consistent with the reinforcement-learning mecha-
nism, learning of the second choice was faster than the Wrst
choice.

We also examined the self-reports by the subjects after
the experiment to assess whether there were any diVerences
in their knowledge of the task. Our hypothesis was that sub-
jects in the single task condition were more likely to engage
in the explicit memory encoding and were therefore more
likely to be aware of the structure of the task. Since the dual
task required signiWcant working memory resources,
explicit memory encoding would be much more diYcult.
Therefore, in the dual-task condition, subjects were more
likely engaged in implicit reinforcement learning.

We counted the number of subjects who could report at
least one of the more likely colors in both choices and
assigned them to the “aware group” and the rest to the “not
aware” group. By this criterion, we found that there were
22 and 7 subjects in the aware group in the single- and

Fig. 2 An example of the choice sets presented in Experiment 1 and
the probabilities for each of the two choices made being correct. The
bolded color is the more likely color in the choice set
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Orange   Gray

P(Red, Orange)=0.64
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Fig. 3 The mean choice proportions of the more likely colors in
Experiment 1 in each 40-trial block
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dual-task conditions, respectively. This was found be to
signiWcantly diVerent from chance [�2(1) = 15.07, P < 0.01],
suggesting that the task knowledge acquired by the subjects
were signiWcantly diVerent between the two conditions.
However, since we did not assess subject’s knowledge
during the early part of the task, this post hoc comparison
does not allow us to infer whether this diVerence in task
knowledge existed in the early blocks of learning.

We were also interested in how subjects in diVerent con-
ditions would change their choices after feedback. In partic-
ular, we calculated the choice proportions of the more likely
colors according to the feedback they received in the last
trial. Our prediction was that since the explicit “tree-search-
ing” strategy was dominant in the single-task condition, sub-
jects would learn the Wrst choice faster than the second
choice during the early trials, and as a consequence, they
would be more likely to switch to a diVerent color in the sec-
ond choice than in the Wrst choice. However, this diVerence
should disappear at later blocks after subjects learned both
choices. In addition, since explicit learning would encode in
memory the more likely colors, subjects should be more
likely to continue choosing the more likely colors even after
a “wrong” feedback. On the other hand, since implicit rein-
forcement learning was mostly driven by the external feed-
back, we predicted that subjects would be more likely to
switch to a diVerent color after a “wrong” feedback.

Figure 4 shows the choice proportions of the more likely
colors in the Wrst two (Early) and the last two (Late) blocks
of trials in the single- and dual-task conditions. The main
eVects of condition, blocks (Early/Late), choice (Wrst/sec-
ond), and feedback (correct/wrong) were signiWcant
[F(1,58) = 26.3, MSE = 1.87, P < 0.001, F(1,58) = 49.67,
MSE = 3.0, P < 0.001, F(1,58) = 9.95, MSE = 0.70, P < 0.01,
and F(1,58) = 42.98, MSE = 2.22, P < 0.001, respectively].
The interaction between condition and feedback was sig-
niWcant [F(1,58) = 26.60, MSE = 1.37, P < 0.001]. The
diVerence between condition when the last feedback was
“correct” was not signiWcant [t(58) =  0.60], but that when
the last feedback was “wrong” was signiWcant. Subjects

in the dual-task condition switched to a diVerent color when
the last feedback was “wrong” signiWcantly more often than
those in the single-task condition [t(58) = 5.24, P < 0.001],
conWrming our prediction that implicit reinforcement learn-
ing was more sensitive to immediate feedback than explicit
memory encoding. Indeed, this diVerence was signiW-
cant in both early [t(58) = 2.60, P < 0.05] and late blocks
[t(58) = 6.05, P < 0.05].

The interaction between condition and choice and that
between choice and blocks were not signiWcant [F(1,58) =
2.00, MSE = 0.14 and F(1,58) = 0.19, MSE = 0.001,
respectively], but the interaction three-way interaction
between condition, choice, and blocks was signiWcant
[F(1,58) = 6.94, MSE = 0.50, P < 0.05]. Only in the single-
task condition subjects chose the more likely colors in the
Wrst choice more often in the early blocks [t(58) = 3.69,
P < 0.05], although this diVerence was gone in the late
blocks [t(58) = 0.41], conWrming our prediction that the
explicit “tree-searching” strategy would learn the Wrst
choice faster than the second choice. No other interaction
was signiWcant.

To summarize our results, we found that subjects in the
single-task condition performed better and acquired more
task knowledge than subjects in the dual-task condition.
Most importantly, we found that in the single-task condition,
subjects learned in the forward direction but subjects in the
dual-task condition learned in the backward direction. We
also found that subjects in the dual-task condition were more
sensitive to the immediate feedback. These Wndings were
consistent with the predictions that the explicit memory
encoding process is dominant in the single-task condition
while the implicit reinforcement learning process is domi-
nant in the dual-task condition.

Experiment 2

Since the two choices were independent in Experiment 1,
implicit reinforcement learning was possible as learning

Fig. 4 The choice proportions 
of the more likely colors broken 
down by the Wrst/second choice 
and feedback received in the pre-
vious trial (correct/wrong) dur-
ing the Wrst two (Early) and last 
two (Late) 40-trial blocks in the 
single- and dual-task condition 
of Experiment 1
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of the second choice did not depend on memory of the
Wrst choice. In Experiment 2, we designed the task such
that the choices were dependent. For example, in Fig. 1
when (Red, Blue) are presented in the Wrst choice set, the
more likely color would be Orange or Magenta in the sec-
ond choice; but when (Yellow, Green) are presented as
the Wrst choice set, the more likely color would be Gray
or Brown. Although, subjects could learn the Wrst color,
learning of the second color required memory of the Wrst
choice set. For example, given the second choice set of
the colors Orange and Gray, the more likely color
depends on whether the Wrst choice set was (Red, Blue)
or (Yellow, Green). This should not create any problem
for subjects who learn this dependency by explicit mem-
ory encoding, because the Wrst choice set is already
encoded into memory. However, the implicit reinforce-
ment learning process would not be possible to learn this
dependency, as reinforcement learning could only learn
an earlier choice after a later one was learned. Without
memory of the Wrst choice, the colors in the second
choice will be equally likely to be correct and thus could
not be distinguished. When learning of the second choice
fails, propagating credits backward would be impossible
(Fig. 5).

Method

About 60 subjects in the Carnegie Mellon University
and University of Illinois community were recruited
for the experiment. Half of the subjects were assigned to
the single task condition and the other half to the
dual task condition. Subjects completed ten 40-trial
blocks. The payment scheme was the same as that in
Experiment 1.

Results

Figure 6 shows the mean choice proportions of the more
likely colors in each 40-trial block. The main eVect of con-
dition was signiWcant [F(1,58) = 38.39, MSE = 8.04,

P < 0.001]. As in Experiment 1, subjects in the single-task
condition performed better than those in the dual-task con-
dition. The main eVect of block was signiWcant
[F(9,522) = 5.50, MSE = 0.009, P < 0.001], as well as the
diVerence between learning of the Wrst and second choice
[F(1,58) = 24.95, MSE = 2.34, P < 0.001]. However, the
interactions between condition and block was signiWcant
[F(9,522) = 2.08, MSE = 0.003, P < 0.05], as well as that
between condition and choice [F(1,58) = 9.89, MSE = 0.925,
P < 0.01]. The interaction between choice and block was
also signiWcant [F(9,522) = 2.65, MSE = 0.003, P < 0.001],
as well as the three-way interaction between condition,
choice, and block [F(9,522) = 4.10, MSE = 0.004,
P < 0.001]. The signiWcant interactions were due to the
large diVerential diVerence between the choices in the two
conditions. In fact, in the single-task condition, the main
eVects of choice and block were signiWcant [F(1,29) = 22.89,
MSE = 3.1, P < 0.001 and F(9,261) = 6.19, MSE = 0.11,
P < 0.001, respectively]. The choice by block interaction
was also signiWcant [F(9,261) = 4.89, MSE = 0.007,
P < 0.001]. On the other hand, the main eVects of choice
and block were not signiWcant [F(1,29) = 3.1, MSE = 0.16
and F(9,261) = 0.89, MSE = 0.002], nor their interaction
[F(9,261) = 0.76, MSE = 0.0003]. There was therefore no
signiWcant learning in both choices in the dual-task condi-
tion. In fact, none of the choices in the dual-task condition
was above chance. In the single-task condition, both
choices were signiWcantly above chance in the last Wve
blocks, suggesting subjects learned the dependencies in the
single-task condition, and they learned the Wrst choice
faster than the second choice.

The dependency between choices in Experiment 2
implied that learning to choose the more likely color in
the second choice required memory of the Wrst choice.
About 22 subjects in the single-task condition and four
subjects in the dual-task condition were aware of the
more likely colors in both choices and learned to choose

Fig. 5 Two examples of the choice sets presented in Experiment 2 and
the probabilities for each of the two choices made being correct in each
of the example. The bolded color is the more likely color in the choice
set. In Experiment 2, the more likely color in the second choice set is
dependent on the Wrst choice set
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Fig. 6 The mean choice proportions of the more likely colors in
Experiment 2 in each 40-trial block
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them increasingly often across trials. This suggests that
subjects in the aware group did manage to learn the
dependency of choices. Similar to the same condition in
Experiment 1, learning of the Wrst choice was faster, but
unlike the results from Experiment 1, the diVerence
between the Wrst and second choice remained large even
after 400 trials. The slower learning of the second choice
in Experiment 2 could be explained by its dependency on
the Wrst choice: the amount of experience for the most
likely color in the second choice was half of those for the
Wrst choice.

As in Experiment 1, we analyzed the self-reports given
the subjects at the end of the experiment to compare
whether there was any diVerence in the acquisition of task
knowledge between the two conditions. Subjects who wrote
down at least one of the color combinations that were more
likely to be correct were placed in the aware group, other-
wise they were put in the not aware group. As a result, 27
and 4 subjects were placed in the aware group in the single
and dual-task condition, respectively, the rest were placed
in the not aware group. The diVerence between condition
was again signiWcant [�2(1) = 18.07, P < 0.01].

Similar to Experiment 1, we calculated the choice pro-
portions of the more likely colors in cases where the feed-
back from the last trial was “correct” and “wrong” (see
Fig. 7). The main eVects of condition, choice, and feedback
were signiWcant [F(1,58) = 24.86, MSE = 1.69, P < 0.001,
F(1,58) = 6.87, MSE = 0.49, P < 0.05, and F(1,58) = 4.92,
MSE = 0.42, P < 0.05, respectively], but the main eVect of
blocks was not signiWcant [F(1,58) = 1.00, MSE = 0.009].
Subjects chose the more likely colors more often in the sin-
gle-task condition, in the Wrst choice, and when the feed-
back from the previous trial was “correct.” The interactions
between condition and blocks, condition and choice, and
condition and feedback were signiWcant [F(1,58) = 6.30,
MSE = 0.58, P < 0.05, F(1,58) = 8.74, MSE = 0.62, P < 0.05,
and F(1,58) = 3.86, MSE = 0.33, P < 0.05, respectively].
The three-way interaction among condition, choice, and
blocks was also signiWcant [F(1,58) = 5.10, MSE = 0.34,
P < 0.05]. All signiWcant diVerences were in the single-task
condition, and none of the diVerences in the dual-task

condition was signiWcant. As in Experiment 1, subjects in
the single-task condition chose the more likely colors more
often in the Wrst choice than in the second choice in early
blocks [t(58) = 4.20, P < 0.05] but the diVerence was not
signiWcant in late blocks [t(58) = 1.33], conWrming the pre-
diction that subjects learned the Wrst choice faster than the
second choice during the early blocks, but later the diVerent
disappeared when the learned both choices in late blocks.
They also tended to switch to a diVerent color more often in
the second choice than in the Wrst choice when the feedback
from the previous trial was “wrong” during the early
blocks, but not in the late blocks. This was consistent with
the prediction that in the single-task condition, when sub-
jects learned which colors were more likely to be correct in
late blocks, they could ignore the immediate feedback and
continue to choose the more likely colors. In the dual task
condition, the more likely colors in the second choice
depended on the Wrst choice. Without memory of the Wrst
choice, immediate feedback appeared random to the sub-
jects when learning the second choice. The implicit rein-
forcement learning was therefore not eVective to guide the
selection of colors.

To summarize, the results from Experiment 2 were again
consistent with the predictions of the two learning modes
proposed earlier. In the single-task condition, explicit mem-
ory encoding was dominant, and because of the primacy
eVect and the sequential dependency, the Wrst choice was
learned faster than the second choice (in fact, in Experiment
2, it was impossible to learn the second choice before the
Wrst choice). On the other hand, the weak memory trace of
the Wrst choice signiWcantly hampered the discovery of the
dependency in the dual-task condition. Unlike Experiment
1, reinforcement learning by itself was not suYcient to
learn the second choice in the current design because when
the Wrst choice was excluded, the chance that either one of
the colors in the second choice would lead to a success was
the same. As a result, none of the colors would be preferred
to the others even after 400 trials. Since learning of the sec-
ond choice was not possible, the credit could not be propa-
gated back to the Wrst choices. Thus, there was eVectively
no learning in both choices in the dual-task condition.

Fig. 7 The choice proportions 
of the more likely colors broken 
down by the Wrst/second choice 
and feedback received in the pre-
vious trial (correct/wrong) dur-
ing the Wrst two (Early) and last 
two (Late) 40-trial blocks in the 
single- and dual-task condition 
of Experiment 2
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Discussions

We developed a probabilistic sequential choice task to
study how people learn action sequences with probabilistic
outcomes with and without a secondary task. As we
expected from previous research, we conclude that subjects
in our task exhibited two modes of learning by showing that
they learned the Wrst choice faster in the single-task condi-
tion and learned the second choice faster in the dual-task
condition. This Wnding was consistent with the explicit and
implicit modes of learning: an explicit memory encoding
mode that requires attentional resources for maintaining
past choices and outcomes in memory, and an implicit rein-
forcement learning mode that is eVective even with dimin-
ished attention. In Experiment 2, further support was found
for the credit-assignment mechanism in this implicit rein-
forcement learning process–when choices are interdepen-
dent, the propagation of credits from the reward to earlier
responses will be ineVective, as credits cannot be appropri-
ately assigned to the corresponding choices.

Our Wndings are consistent with previous Wndings that
people can learn some sequences even with the presence of
a secondary task. When choices are dependent, however,
we found that people fail to learn when explicit memory
encoding is suppressed by the secondary task. This Wnding
may seem to be diVerent from the Wndings by Curran and
Keele (1993) and Frensch et al. (1994), who found that
even complex sequences are learned in the presence of a
secondary task. The inconsistency is perhaps due to the
inherent diVerence in the task and how learning is mea-
sured: in the typical sequence learning task, people follow a
deterministic stimulus-response mapping, receive immedi-
ate feedback, and learning is measured by faster response
time, but in our task, the mapping is determined by past
outcomes, receive delayed feedback, and learning is mea-
sured by choice proportions.1 It is therefore not clear
whether our results can be directly compared to previous
sequence-learning studies. In addition, in our studies as
well as in others, only aggregate results were analyzed. It is
possible that the smooth learning curves could arise out of a
mixture of diVerent learning functions (e.g., Haider &
Frensch, 2002).

Previous studies suggest that the explicit and implicit
modes of learning may either compete against each other
(e.g., Poldrack et al., 2001), or independent of each other
(e.g., Curran & Keele, 1993; Cleeremans, 1997). In fact, it
is not necessary that in the current task the implicit learning
process we identiWed be a single, modular process in the
basal ganglia; rather it is possible that it may involves
diVerent areas such as the association cortex or even parts

of the frontal cortex that process and represent the stimuli
and outcomes. The current studies obviously were not
designed to provide clear answer to this question. This
question deWnitely requires further research to test and
examine the interaction of these two modes of learning.

Our measure of awareness requires subjects to self-
report their knowledge of the more likely colors in the task.
This may lead to the issue of sensitivity of measure (Shanks
& St. John, 1994). It is possible that people categorized in
the not aware group might have adopted some form of
explicit learning but the awareness test was not sensitive
enough to detect. At this point of the research, our goal is to
manipulate the attentional load by the secondary task to
study how people learn probabilistic action sequences.
Indeed, we found striking qualitative behavioral diVerences
that correspond to changes in the availability of attentional
resources (and the diVerent levels of awareness). In future
studies we plan to address how manipulations of attention
load and other task variables may inXuence the two modes
of learning to extend our results reported in this article.

The probabilistic sequential choice task used in the
experiments, although simple, contains essential compo-
nents in complex skill learning, in which a sequence of
actions are performed before reinforcement on the full
course of action is received. Solving the credit-assignment
problem is crucial for learning in this kind of situation, as
the delayed feedback has to be assigned to earlier actions
that are responsible for the desirable or undesirable out-
come. The reinforcement-learning process provides a
straightforward explanation of how feedback propagates
back to earlier actions. Initially, only the action that leads to
outcome gets credit or blame. The next time some of that
credit/blame propagates back to the previous actions. Even-
tually, credit/blame can Wnd its way back to critical early
actions in a long chain of productions leading to a reward.
The eVectiveness of this process, however, depends on
whether the eVects of these actions are independent of each
other. When the actions are interdependent, memory of ear-
lier actions are required to ensure the proper assignment of
credits for eVective cognitive skill learning.
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