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Abstract—Functional decay theory proposes that decay and interfer-
ence, historically viewed as competing accounts of forgetting, are in-
stead functionally related. The theory posits that (a) when an attribute
must be updated frequently in memory, its current value decays to pre-
vent interference with later values, and (b) the decay rate adapts to
the rate of memory updates. Behavioral predictions of the theory were
tested in a task-switching paradigm in which memory for the current
task had to be updated every few seconds, hundreds of times. Reaction
times and error rates both increased gradually between updates, re-
flecting decay of memory for the current task. This performance de-
cline was slower when updates were less frequent, reflecting a
decrease in the decay rate following a decrease in the update rate. A
candidate mechanism for controlled decay is proposed, the data are
reconciled with practice effects, and implications for models of execu-
tive control are discussed.

In silicon memory, losing information is as simple as deleting a file
or overwriting a variable. In human memory, the mechanisms of for-
getting are not so clear. Early in the cognitive revolution, one view
was that short-term memory is vulnerable to decay (Brown, 1958;
Peterson & Peterson, 1959): Information “evaporates” with time un-
less it is actively maintained. A competing view was that forgetting is
caused by interference from distracting elements (Keppel & Under-
wood, 1962; McGeoch, 1932; Waugh & Norman, 1965): Retrieving
one fact among many is something like searching for a friend in a
crowded airport.

Interference has dominated the memory literature, but decay is not
entirely forgotten. Support for decay comes from evidence of forget-
ting in the absence of interference (Baddeley & Scott, 1971; Muter,
1980; Reitman, 1974). Further evidence comes from an unlikely
source: A data set widely cited in support of interference (Waugh &
Norman, 1965) seems to show distinct decay effects as well (Hintz-
man, 1978; Wickelgren, 1977a). In theoretical terms, decay is argu-
ably an adaptation to the statistical structure of the environment
(Anderson & Milson, 1989). Indeed, the functional argument for some
decaylike process is compelling. Consider, for example, that one
would not be able to drive an automobile correctly if every change in
the speed limit increased the overall level of interference in memory
for speed limits. Were such interference to build up monotonically, re-
membering the current speed limit would quickly become impossible.
Interference certainly remains a potent source of forgetting even at
long delays (Keppel, Postman, & Zavortink, 1968), but unless there is
some forgetting of distractors, memory would quickly fail to serve ev-
eryday needs (cf. Luria, 1968).
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We propose not only that items in memory decay, but also that
such decay is functional in that it mitigates interference. This func-
tional view of decay can be understood within a signal detection
framework. Figure 1 shows two items being encoded, one after the
other. In the top panel, Item 1 has just been encoded. Because memory
is a noisy system, the activation of Item 1 is represented by a probabil-
ity density function. In the middle panel, this density function shifts
gradually to the left, representing decay (loss of activation) in the in-
teritem interval. In the bottom panel, Item 2 is encoded, representing a
memory update. At this point, there is a positive d' between the two
density functions because Item 1 has decayed. This d’ allows the sys-
tem to distinguish Item 2 (the current speed limit, say) from Item 1
(the previous speed limit). That is, a positive d" allows the system to
sample the correct item. This mechanism of item discrimination is
quite similar to that of strength theory (Murdock, 1974; Wickelgren &
Norman, 1966), and to the mechanism of temporal distinctiveness
(Baddeley & Hitch, 1993; Neath, 1993) with d’ interpreted as the
measure of distinctiveness. What is novel here is the specification of
decay as the mechanism behind d’.

When memory must be updated frequently, functional decay the-
ory makes two counterintuitive predictions. First, if performance de-
pends on periodically sampling (“calling to mind”) the current item,
then performance should decline gradually as time passes after an up-
date, as the current item decays and becomes harder to sample. In
terms of our example, if performance at some driving-related task de-
pends on remembering the current speed limit, then performance at
that task should decline, albeit slightly, within the current speed zone.
Such a decline would be adaptive—forgetting the current item would
make the next item distinguishable. However, it would also be un-
usual, in that sampling an item (as during verbal rehearsal, say) is gen-
erally taken to increase activation and thereby improve performance
(e.g., Glanzer & Cunitz, 1966; Rundus, 1971).

The second prediction is that the cognitive system adapts to
changes in the update rate by varying the decay rate. That is, if the
number of memory updates per unit time varies, then loss of activation
per unit time should also vary. Suppose that the performance demands
of a given task are met with a given d’. That is, this d' lets the system
distinguish the current item accurately enough to perform the task. If
the task’s accuracy demands are relatively constant, then d’ will be rel-
atively constant, and the amount of decay between updates (Fig. 1)
will also be relatively constant. Consequently, if the update rate (mem-
ory updates per unit time) varies, then the decay rate (activation loss
per unit time) should vary as well, if the system indeed seeks a rela-
tively constant d’. This proposal is counterintuitive in that it departs
from traditional conceptions of decay as a passive, fixed-rate process
(but see, e.g., Anderson, Fincham, & Douglass, 1999).

DECAY AND INTERFERENCE IN TASK SWITCHING

We tested the predictions of functional decay theory using a task-
switching paradigm in which stimuli are presented serially and inter-
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Fig. 1. A signal detection formulation of functional decay theory.
First, Item 1 is encoded in memory (top panel). Its activation is noisy,
as shown by the bell-shaped probability density function (PDF). After
being encoded, Item 1 decays (middle panel), as shown by the PDF
shifting to the left. Next, Item 2 is encoded, with the same initial PDF
as Item 1 (bottom panel). Because Item 1 has decayed, there is now a
difference d' between the two items’ activation levels. The greater this
d', the less likely Item 1 is to intrude when the system attempts to re-
trieve Item 2.

spersed with instructional cues (or simply instructions) indicating
what task to perform on each stimulus. To perform correctly, subjects
have to remember the most recent instruction, a memory we call a fask
set. Because performance depends on the current task set, decay of
that set should affect performance and hence affect behavioral mea-
sures like response time and error.

If new instructions appear in close succession (every few seconds,
say), interference among task sets should build up quickly, much as
proactive interference builds up quickly for items from a single cate-
gory (e.g., Keppel & Underwood, 1962). After hundreds of instruc-
tions, this interference will be massive, suggesting the need for a
process that mitigates interference and thereby allows the system to
distinguish the task set that is currently relevant. An important at-
tribute of our task-switching paradigm is that effects of context are not
only controlled within a run, but also minimized. There are no external
cues to the current task or to serial position within a run, placing the
whole burden of performance on the ability to distinguish the current
task set from others in memory.

We propose that the current task set decays gradually while it is
current. Even in small amounts, such decay would produce important
functional benefits. The argument is inductive: If a task set decays
(even a little) while current, then it will be weaker than its successor,
so the successor will be stronger than its predecessors and hence more
likely to be sampled. Conversely, if the current task set fails to decay,
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then interference will build up monotonically, and sustained perfor-
mance (over hundreds of updates, say) will be impossible. Consistent
with our proposal, passive decay reduces the cost of switching tasks,
independently of preparatory control processes (Meiran, Chorev, &
Sapir, 2000).

Functional decay contrasts starkly with other theories that might be
applied to task switching. For example, viewing a trial as practice on
the current task set suggests that performance should improve up to
the next instruction (e.g., Newell & Rosenbloom, 1981). Alternatively,
if only one measure declined from trial to trial (response time, say),
this change might reflect a speed-accuracy trade-off (Wickelgren,
1977b). Decay of the current task set, in contrast, predicts that reaction
time (RT) and error should increase together.

EXPERIMENT

Subjects performed several thousand trials per session, each under
one of two simple instructions. Several hundred instructions were in-
terspersed among trials, updating the current task. To test the gradual-
decay prediction, we tested trends across trials between instructions.
To test the variable-rate prediction, we manipulated the number of tri-
als between instructions.

Method
Participants

Thirty-six undergraduates from George Mason University partici-
pated for credit toward a course requirement. Data from 6 were ex-
cluded because their accuracy overall was below 90%.

Materials

Each stimulus was one of the digits 1 through 9 except 5, and an
instruction was one of the strings “Even Odd” or “High Low.” Stimuli
and instructions were presented in the center of a computer screen.
Under the even/odd instruction, subjects classified digits as even or
odd, and under the high/low instruction, subjects classified digits as
greater or less than 5. The same response keys (“C” and “M”) were
used for both tasks. Stimulus presentation and response recording
were controlled by software (Schneider, 1996).

Design and procedure

Trials were self-paced, and participants were asked to work as
quickly and accurately as possible. A trial began with the appearance
of a stimulus and ended with a key press, at which point the next trial
began immediately. Trials were grouped into runs, with each run pre-
ceded by a 400-ms instruction indicating the task for that run. Two
runs made up a block, after which the participant was given speed and
accuracy feedback and a self-paced rest period. The participant ended
the feedback-rest period by pressing the space bar, and the next block
began immediately.

To test the variable-rate prediction, we manipulated run length (av-
erage number of trials per run) within participants. The two levels,
short and long, were blocked, with each level assigned to one half of
an experimental session (counterbalanced across participants). Short
runs varied randomly from 7 to 13 trials, constrained to sum to 20 tri-
als per block, for a total of 256 instructions interspersed among 2,560
trials. Long runs varied randomly from 17 to 23 trials, constrained to
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Fig. 2. Response time (RT) data from Table 1 showing within-run performance decline for short (left) and long (right) runs. The dashed lines
are least-squares regression lines. Data for Position 1 are excluded to remove variance due to preparatory processing (see Fig. 3).

sum to 40 trials per block, for a total of 128 instructions interspersed
among 2,560 trials. The transition between conditions was marked by
a message indicating that, for the duration of the session, instructions
would occur half or twice as often as in the first half of the session.

Half of all blocks were switch blocks, in which the first and second
instructions were different, and half were no-switch blocks, in which
the first and second instructions were the same (cf. Gopher, Armony,
& Greenshpan, 2000; Kramer, Hahn, & Gopher, 1999). The order of
switch and no-switch blocks was randomized, subject to the constraint
that successive groups of eight consecutive blocks contained an equal
number of all configurations of switch and no-switch blocks. We refer
to these eight-block groups as subsessions.

The first subsession in each condition was excluded from analysis
to eliminate the period of most rapid learning. To control for effects of
resting or processing the feedback at the ends of blocks, we took all
measures on the second run. RT data are means of participants’ medians
on correct trials from blocks on which accuracy was at least 90%. Error
data are means of participants’ means. The data are shown in Table 1.

RT Results

RTs relevant to our two predictions are shown in Figure 2. To test
for performance decline on short runs, we conducted a 6 X 2 X 2 re-
peated measures analysis of variance (ANOVA) on position (P2-P7),
task (even/odd, high/low), and continuity (no switch, switch). P2
through P7 are the second through seventh trials of the second run of a
block. The RT cost of a switch is typically borne on the first trial after
the switch (De Jong, Berendsen, & Cools, 1999; Gopher et al., 2000;
Rogers & Monsell, 1995), so P1 was excluded from analysis to re-
move switch cost as a source of variance.

The main effect of position was significant, F(5, 145) = 5.6, p <
.001, MSE = 1,779. A contrast by the method of orthogonal polynomi-
als showed a significant linear trend, F(1, 145) = 21.1, p < .001, which
accounted for 75% of the variance attributed to position. No higher-or-
der trends were significant. The main effect of task was also significant,
F(1,29) =549, p <.001, MSE = 4,154. The main effect of continuity
was not significant, p > .1, and neither were any interactions.

30

To test for performance decline in the long condition, we conducted
a similar analysis with 16 levels of position (P2-P17) instead of 6. The
main effect of position was significant, F(15, 435) = 3.8, p < .001,
MSE = 3,387. The linear trend was significant, F(1, 435) = 45.6,p <
.001, and accounted for 81% of the variance attributed to position. No
higher-order trends were significant." The main effect of task was sig-
nificant, F(1, 29) = 59.6, p < .001, MSE = 9,326. The main effect of
continuity was not significant, F' < 1, and neither were any interactions.

To test the variable-rate prediction, we compared the slopes of the
RT curves. The slope from P2 through P7 for the short condition (4.2
ms/trial) and the slope from P2 through P17 for the long condition
(1.9 msf/trial) differed by a factor of 2, #28) = 2.2, p < .04, corre-
sponding neatly to the twofold difference in the update rate. These
slopes were computed across the full minimum length of the runs in
each condition, making them the best measure of rate of decline given
our assumption that d’ at run’s end should be constant. However, this
test did confound run length and position, so we also compared the
slopes for the long and short conditions on P2 through P7. The slope
for the long condition (1.7 ms/trial) again differed from the slope for
the short condition (4.2 ms/trial), #(28) = 2.0, p = .058. We conclude
that run length affected the rate of performance decline, with slower
decline on long runs than on short runs.

For completeness, we analyzed P1 as well, with a 2 X 2 X 2
ANOVA on run length (short, long), continuity (switch, no switch),
and task (even/odd, high/low). Figure 3 shows the P1 data by run
length and continuity, with P2 as a baseline. RT was substantially
slower for P1 than P2 regardless of continuity (a point we return to in
the Discussion). P1 was 83 ms slower in the long condition than in the
short condition, F(1, 29) = 5.5, p < .03, MSE = 76,506. The switch
cost on P1 (switch — no switch) was 44 ms, F(1, 29) = 3.4, p = .08,
MSE = 34,639. Task had an effect, F(1,29) = 11.7, p < .003, MSE =
81,715, but no interactions were significant.

1. The peak at P11 (see Fig. 2) hints that subjects expected an instruction
by then, an expectation they could have held over from the short condition.
However, on separating the data, we found that long-short sessions, and not
short-long sessions, drove the effect.
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Fig. 3. Response time (RT) data from Table 1 showing the abrupt
slowdown on the first trial after an instruction (P1) for short (left) and
long (right) runs. Data for the second trial after the instruction (P2) are
included as a baseline.

Error Results

Error rates are given in Table 1 and plotted in Figure 4. The analy-
sis parallels that for RT, except that P1 was included, on both empiri-
cal and theoretical grounds. Empirically, the effect of task switching
on error is not systematic; indeed, error sometimes declines immedi-
ately after a switch (e.g., Allport & Wylie, 1999). Theoretically, switch
cost has been attributed to preparatory processes that affect P1 RT but
not P1 error (De Jong et al., 1999).

In the short condition, the main effect of position was significant, F(6,
174) = 3.9, p < .002, MSE = 14.5. The linear trend was significant, F(1,
174) = 14.5, p < .001, and accounted for 54% of the variance due to po-
sition. The quadratic trend was also significant, F(1, 174) = 8.8, p < .004,

and accounted for 38% of the variance due to position. Task had an effect,
F(1,29) = 10.3, p < .004, MSE = 27.3, as did continuity, F(1, 29) = 5.7,
p < .03, MSE = 19.0, but no interactions were significant. The continuity
effect is a novel switch cost in the task-switching literature, reflected in
terms of error rate but not RT, and prolonged for the duration of the entire
switch run rather than localized to the vicinity of the switch trial.

In the long condition, the main effect of position was significant,
F(16, 464) = 3.6, p < .001, MSE = 27.3. The linear contrast was sig-
nificant, F(1, 464) = 16.7, p < .001, and accounted for 29% of the
variance due to position. The quadratic trend was also significant, F(1,
464) = 19.3, p < .001, accounting for 33% of the variance, as was the
cubic trend, F(1,464) = 7.0, p < .01, which accounted for 12% of the
variance. The main effect of task was significant, F(1, 29) = 4.3, p <
.05, MSE = 93.3, and though errors trended higher for switch than for
no-switch runs, the main effect of continuity was not significant, p >
1. The only significant interaction was among task, continuity, and po-
sition, F(16, 464) = 2.0, p < .02, MSE = 29.8.

To test the variable-rate prediction, we compared the slopes of the
error curves. The slope from P1 through P7 for the short condition
(0.23 errors/trial) and the slope from P1 through P17 for the long con-
dition (0.10 errors/trial) again differed by a factor of 2, #28) = 1.8, p =
.06. These are the slopes relevant to our assumption of a constant d" at
run’s end. However, we also compared the slopes for the long and
short conditions on P2 through P7. Unexpectedly, the slope for the
long condition (0.42 errors/trial) was twice (and not half) the slope for
the short condition (0.23 errors/trial), #(28) = 2.1, p < .05. Thus, run
length again affected rate of decline independently of position, though
in a more complex way for errors than for RTs. More research will be
needed to determine what strategic or other factors might cause the
rate of decline itself to fluctuate within a run.

DISCUSSION

Performance decline across trials between instructions was robust.
It appeared in RTs and error rates, ruling out a speed-accuracy trade-
off (Wickelgren, 1977b), and was not an artifact of position, task, or
continuity. The effect of update rate was also apparent, with slower de-
cline on long runs than short. These findings are strong initial support
for functional decay theory.

Percent error

1 T T T T T T 1 T T

—a—Short ——Long
79 ___y=023x+33 ---y=0.10x+3.9
2=.54 r2=.29

1 23 4567 1 2 3

Trial position within a run

4 5

6 7 8 9 101112 13 14 15 16 17

Fig. 4. Error data from Table 1 showing within-run performance decline for short (left) and long (right) runs. The dashed lines are least-squares

regression lines.
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Fig. 5. Response times (RT) as a function of subsession and position (P) for short (left) and long (right) runs. The curves demonstrate both

within-run performance decline and practice effects across subsessions.

Historically, a central question about forgetting has been whether
interference can explain effects otherwise attributed to decay (e.g.,
Keppel & Underwood, 1962). Could interference explain within-run
performance decline? In our paradigm, one source of proactive inter-
ference (PI) is the collection of old task sets in memory. Indeed, PI of
this kind is what implies the need for functional decay. However, such
PI cannot directly cause within-run performance decline. The number
of old task sets in memory changes only between runs, not within a
run, so the effects of PI cannot change within a run. Note that we de-
fine interference firmly in terms of number of distractors, not in terms
of time in any sense. To index interference by time would simply rein-
troduce the notion of decay and render interference meaningless as a
competing hypothesis.

Another possible source of interference is retroactive interference
(RI) from trials within the current run. The number of such trials, unlike
the number of old task sets, does correlate with performance decline.
However, RI cannot be the sole cause of decline because the rate of de-
cline, measured at a given position, would be a function of that position
alone. We found, instead, that the rate of decline was affected by run
length as well as position: The slopes of the error and RT curves, on
identical positions, depended on whether runs were long or short.

Another question is whether variable decay is realistic theoreti-
cally, distinct as it is from traditional conceptions of passive fixed-rate
decay. In response, we suggest that decay—defined as loss of activa-
tion—is a function of sampling as well as time. For example, in the
function activation = In(mVT), adapted from Anderson and Lebiere
(1998), activation depends on the total number of samples (n) as well
as time since encoding (7). If the sampling rate fluctuates over time,
activation will rise and fall, making the sampling rate (or rehearsal
rate, in familiar terms) a mechanism by which the cognitive system
might vary the decay rate. According to this analysis, passive fixed-
rate decay is a special case: If sampling stops altogether, activation
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will decay as a power function of time. Formal models based on the
assumption that the system manipulates activation via the sampling
rate provide close quantitative fits to within-run performance decline
and to components of task-switching cost.”

Empirically, within-run performance decline may seem unusual,
but there is converging evidence in the task-switching literature. For
example, in the widely cited work of Rogers and Monsell (1995), Ex-
periment 6 contained runs of four trials, and, indeed, RT showed a
monotonic slowing trend starting with P2.* Similarly, in switching be-
tween languages, “RTs unexpectedly increased (slightly but consis-
tently) with increasing number of ‘same language’ responses” (Meuter
& Allport, 1999, p. 32; original emphasis). Visual inspection of data
from Kramer et al. (1999, Figs. 2-4) suggests a slight slowing from
“l-after” to “3-after” trials (P2 to P4, in our terms). Finally, where
speedups have been reported (Allport & Wylie, 2000, Experiment 2;
Meiran et al., 2000, Experiment 1), they were measured between and
not within runs (a distinction we revisit shortly).

Within-run performance decline is a challenge to models of task
switching, suggesting that a systems view of executive control should
replace the traditional focus on the temporal locus of the switch. Task-

2. Activation = In(nNT) predicts that sampling the current task set (once
per trial, say) causes activation to increase, rather than decrease, because sam-
pling increments n. However, the equation also predicts that this increase can
be counteracted by an abrupt decrease in the sampling rate. Thus, decay within
a run will follow massed sampling of the current task set at the start of the run
(Altmann & Gray, 1999). This massed sampling explains the response slow-
down on P1 (Fig. 3).

3. Pair-wise comparisons on trials were not significant, but were not in our
data, either. Within-run performance decline is gradual enough to require test-
ing the trend across the run.
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switching models should explain how performance on the actual task
unfolds over time. We also suggest that switch cost per se is less inter-
esting an effect of executive control than the much larger slowing on
P1 that occurs regardless of continuity (Fig. 3). This “restart cost” has
been found by other researchers (Allport & Wylie, 2000; Gopher et
al., 2000; Kramer et al., 1999), but to date there is no compelling func-
tional account that integrates it with other task-switching effects. It
seems likely that a more complete model of executive control will link
both switch cost and restart cost to downstream effects like within-run
performance decline.

The data presented here have implications beyond functional decay
theory, in that they contribute a boundary condition on practice ef-
fects. In organisms from rats to humans, and in human task domains
ranging from accounting (Ericsson & Lehmann, 1996) to novel writ-
ing (Ohlsson, 1992), practice makes perfect—yet in our paradigm,
practice on the current task set seems to hurt. Figure 5 indicates how
this conflict is reconciled. The ordinate shows RT (as in Fig. 2), but the
abscissa shows eight-block subsessions (see Design and Procedure)
instead of trial position. Performance decline is evident in the vertical
distance between P2 (the lower, dashed curves) and P7 and P17 (the
upper, solid curves) after the first few subsessions.* Practice effects are
evident at a coarser temporal grain, in the negative slope of RT across
subsessions (for all curves). Thus, performance decline and practice
effects appear in the same data but at different levels—the former
across a few seconds of performance, the latter over 10s of minutes or
longer.

In conclusion, we propose that decay and interference are function-
ally related: If a target decays, it will interfere less with future targets.
Consistent with this proposal, our data show a performance decline
between task-set updates that we attribute to decay of the current task
set. This decline, which is more gradual with less frequent task-set up-
dates, is easily reconciled with the universal law of practice: At a fine
temporal grain, practice effects give way to low-level mechanisms for
managing interference. This performance decline is also an important
empirical constraint on models of executive control—one that seems
critical to address as researchers develop such models into more com-
plete and functional systems (Newell, 1990).
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