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This paper describes how behavioral and imaging data can be combined with a Hidden Markov Model
(HMM) to track participants' trajectories through a complex state space. Participants completed a
problem-solving variant of a memory game that involved 625 distinct states, 24 operators, and an astronom-
ical number of paths through the state space. Three sources of information were used for classification pur-

poses. First, an Imperfect Memory Model was used to estimate transition probabilities for the HMM. Second,
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behavioral data provided information about the timing of different events. Third, multivoxel pattern analysis
of the imaging data was used to identify features of the operators. By combining the three sources of infor-
mation, an HMM algorithm was able to efficiently identify the most probable path that participants took
through the state space, achieving over 80% accuracy. These results support the approach as a general meth-
odology for tracking mental states that occur during individual problem-solving episodes.

© 2011 Elsevier Inc. All rights reserved.

Introduction

A characteristic of many complex problem-solving tasks is that no
two episodes are the same. In solving problems, each individual will
take a different path to solution, with each path reflecting a complex
and unobservable train of thought. Newell and Simon (1972), when
faced with the challenge of understanding such problem solving,
tackled it in the most direct way possible by simply asking partici-
pants to tell them what they were thinking. While verbal protocols
have been subject to criticism (Nisbett and Wilson, 1977), this meth-
odology has borne considerable fruit (for a review, see Ericsson and
Simon, 1993). Another method for addressing the challenge is to
monitor eye movements, which offers a less intrusive way of tracking
thought that has also had some success (e.g., Salvucci and Anderson,
2001). However, verbal protocols and eye movements have their
limits and the goal of this paper is to explore a new methodology
for tracking the sequential structure of thought in a complex state
space.

This new methodology uses Hidden Markov Models (HMMs;
e.g., Rabiner, 1989) to impose a sequential structure on the results
of multi-voxel pattern analysis (MVPA) of fMRI data (e.g.,
Davatzikos et al., 2005; Haynes and Rees, 2005; Haynes et al.,
2007; Hutchinson et al., 2009; Mitchell et al., 2008; Norman et al.,
2006). We have already reported some success in using these tech-
niques to track the sequence of steps taken by participants solving
algebra problems (Anderson et al., 2010, in press). However, these
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problems had a linear structure without much branching, whereas
a hallmark of many complex problem-solving tasks is that their
state space can branch widely and no two participants may follow
the same path to solution. In this paper we show how these previ-
ously used techniques can be scaled up to problems that involve
extensive branching.

To test our methodology we chose to study a variation of a chil-
dren's memory game most commonly known as Concentration. In a
typical version of the game there is a deck of cards consisting of
pairs of matching items (e.g., two cards depicting the same animal).
The game begins with all cards placed face down and arranged ran-
domly. On each turn, a player flips over two cards in sequence in an
attempt to find a matching pair. If the selected cards match, then
they are removed; if they mismatch, then they are flipped back
over. The player must remember the locations and identities of previ-
ously selected cards to find matches as the game progresses. In the
single-player version of the game, the goal is to match all pairs of
cards in the fewest number of turns. The memory game has been
studied in previous research for a variety of purposes. Several re-
searchers have used it to explore individual differences (e.g., children
versus adults, Gellatly et al., 1988; women versus men, McBurney et
al,, 1997; deaf versus hearing signers, Arnold and Murray, 1998).
The memory game has also been used to investigate issues such as
the difference between egocentric and allocentric spatial representa-
tions in memory (Lavenex et al., 2011) and the memory advantage of
fitness-relevant stimuli (Wilson et al., 2011). Much of this work has
used single-player versions of the game, as we will.

Our variation of the memory game is illustrated in Fig. 1. Each
game involves an array of 16 memory cards, eight of which contain
algebra equations (math cards) and the other eight of which contain
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(a)

Fig. 1. Sample illustrations of the memory game. The locations and identities of the alge-
bra equations and anagrams are shown in panel a and the corresponding solutions are
shown in panel b. During game play, a problem was not shown until its card was selected
and a solution was not shown until its card was matched. Unselected and unmatched
cards appeared in red with no text. An example of what the game display might look
like for a participant about halfway through a game is shown in panel c. For a full video re-
production of a game played by an actual participant, see http://act-r.psy.cmu.edu/
publications/pubinfo.php?id=993.

anagrams (verbal cards). The cards are arranged randomly and the al-
gebra equations and anagrams are not visible until their cards are se-
lected during a turn. Each turn of the game involves selecting a pair of
cards by clicking on each card using a mouse, with the goal of finding
a pair of matching cards. Math cards are considered to match if their
algebra equations have the same solution for X (see Fig. 1) and verbal
cards are considered to match if their anagrams can be unscrambled
to form words that are semantically related (Fig. 1b shows the match-
ing pairs: CUTE-UGLY, ARMY-NAVY, FLUFF-FUZZ, and NOISE-SOUND).
Thus, participants must solve the algebra equations and unscramble
the anagrams to determine which cards match. When participants se-
lect a pair of matching cards, the algebra equations or anagrams are
replaced by the value of X or the unscrambled words, respectively
(see the blue cards in Fig. 1c). When participants select a pair of non-
matching cards, the selected cards return to their initial blank dis-
plays with no markings indicating that they had been visited (see
the red cards in Fig. 1c). Consequently, participants must remember
the locations of previously visited, nonmatched cards for subsequent
turns when they eventually discover their matching counterparts.
Participants can select cards in any order and the goal is to end up
with all the cards matched in the fewest number of turns.

There are many possible ways to characterize the state space of this
game but we started with a 625-state characterization where each
state characterizes a possible game situation. At any point in time the
state of the game can be characterized by how many math cards have
been visited, how many of the visited math cards have been matched,
how many verbal cards have been visited, and how many of the visited
verbal cards have been matched. Just looking at the 8 math cards or
the 8 verbal cards there are 25 possible states as given in Table 1.
Combining both math and verbal cards, we get 25 x 25 =625 states.
Fig. 2 illustrates a subset (34 states) of that space. The arrows in that
graph connect states to possible successor states if the player
chooses the appropriate cards. These transitions between states
are called operators and there are 24 operators characterized by
whether the first and the second cards of a pair involved first or re-
turn visits to math or verbal cards and whether they resulted in an-
other pair of cards being matched. These 24 operators are given in
Table 2. They can result in staying in the state or changing the
state to one with more cards visited or matched. An average of
14.9 operators are legal in the 625 states. There are loops in the
state space where two visited nonmatching cards are revisited

Table 1
The 25 states of the math cards or the verbal cards.

Number of cards

Visited Matched
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without a resulting change in the state (while such operators
apply to many of the states in Fig. 2, only four loops are illustrated).
Ignoring these loops, there are approximately 1.5x 108 possible se-
quences of operators that traverse the state space from no cards vis-
ited to all cards matched. If one includes such loops, which occur
with some frequency in practice, there would be an infinite number
of possible operator sequences. Thus, this state space provides a
good test of our ability to identify the unique mental sequences of
participants performing a problem-solving task. Indeed, we ob-
served 246 games played by 18 participants and there was no repe-
tition of a complete solution path.

Given that we know the actual cards participants selected, we
have a firm definition of ground truth for this task, thereby allowing
us to accurately evaluate our modeling results. We informed our algo-
rithm of when participants clicked cards in the display but not which
cards were clicked. Thus, the interpretation task in this application is
to determine the identities of these clicks (i.e., whether a math card
or a verbal card was selected, whether it was a first visit or a return
visit, and whether the turn resulted in a match or a nonmatch). This
approach allows us to investigate merging multiple data sources—in
this case, latency data and imaging data. We chose to have math
cards and verbal cards because we wanted to investigate the ability
of this methodology to distinguish periods of mathematical engage-
ment from periods of engagement in non-mathematical activities.
Making this discrimination is critical in the context of mathematical
tutors (Anderson et al., 2010, in press) where one wants to identify
when students are on task and when they are not.

While we reserve a detailed description of our approach to tracking
states in this task until after we describe the experiment and its results,
we outline briefly the approach taken here. For modeling a participant's
trajectory through the state space in a given game, we use the behavioral
data from that participant's other games and from the games of other
participants to parameterize a behavioral model that characterizes the
probability of various operators in various states and the timing of vari-
ous events. While no game was the same, there were definite statistical
regularities that the model captures. The regularities in this behavioral
model are used to parameterize an HMM algorithm to identify the clicks.
However, the classification performance achieved using just the behav-
ioral data is poor. We use MVPA of the imaging data to help identify the
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Fig. 2. An illustration of a fragment of the state space for the memory game. Each circle represents one of the states—34 of the 625 states are represented. The four digits in each state
reflect the number of visited math cards, the number of matched math cards, the number of visited verbal cards, and the number of matched verbal cards. The state space is shown
as beginning with the state of no cards matched, passing through some of the states with cards matched, and ending in a state with all cards matched.

operators and, in so doing, substantially improve classification accuracy.
We show that using either the imaging data without the benefit of the
behavioral data or the behavioral data without the imaging data results
in much worse performance than the combination, thereby illustrating
the benefit of combining the multiple sources of information.

Methods
Participants

Eighteen individuals from the Carnegie Mellon University commu-
nity (6 females, 12 males; ages 18-29 with a mean of 23 years) par-
ticipated in a single fMRI session lasting approximately 70 min for
monetary compensation.
Memory game
Design

The game was played using a mouse-based interface programmed
in Tscope (Stevens et al., 2006). During a turn, the first card was

Table 2
The 24 operators for the memory game.
Card 1 Card 2 Match
Math first Math first No
Math first Math return No
Math first Verbal first No
Math first Verbal return No
Math return Math first No
Math return Math return No
Math return Verbal first No
Math return Verbal return No
Verbal first Math first No
Verbal first Math return No
Verbal first Verbal first No
Verbal first Verbal return No
Verbal return Math first No
Verbal return Math return No
Verbal return Verbal first No
Verbal return Verbal return No
Math first Math first Yes
Math first Math return Yes
Math return Math first Yes
Math return Math return Yes
Verbal first Verbal first Yes
Verbal first Verbal return Yes
Verbal return Verbal first Yes
Verbal return Verbal return Yes

selected by clicking the left mouse button when the mouse cursor
(a white arrow) was on the red back of the card. The card was imme-
diately “flipped over” to reveal a problem (an anagram or an algebra
equation) printed in white 16-point Arial font on a black background.
Participants viewed the problem on the first card for as long as they
desired, then selected a second card in the same manner. Participants
viewed the problem on the second card for as long as they desired
(the problem on the first card remained visible; see Fig. 1c), then
clicked the right mouse button to end the turn. Thus, each turn con-
sisted of three mouse clicks: a left click to select the first card, a left
click to select the second card, and a right click to end the turn.

After the click to end the turn, one of two things would happen. If
the participant had selected a pair of matching cards, the algebra
equations or anagrams were replaced by the value of X or the
unscrambled words, respectively, and the backgrounds of the
matched cards turned blue (see Fig. 1b). If the participant had select-
ed a pair of nonmatching cards, the selected cards were immediately
“flipped back over” to show their red backs. There were no markings
to indicate that nonmatched cards had been visited (see Fig. 1c). Con-
sequently, participants had to remember the locations of previously
visited, nonmatched cards for subsequent turns when they eventually
discovered their matching counterparts. Participants were allowed to
select cards in any order, subject to the constraints that they could not
select the same card twice during the same turn and they could not
select cards that had already been matched. Mouse clicks that either
violated these constraints or were otherwise inappropriate (e.g.,
making a right click when a left click was required, clicking on the
empty space between cards, etc.) were relatively rare and had no ef-
fect on the game display.

Materials

We chose anagrams and algebra equations as problems because
solving both of them requires high-level cognitive operations involving
symbol manipulation. However, the symbols to be manipulated differ
between problem types (viz., letters versus numbers). Thus, anagrams
and algebra equations likely involve similar (but not identical) cognitive
operations that are carried out by partially overlapping brain regions.

Each matching pair of anagrams involved a pair of unscrambled
words that we judged to be related based on semantics, being either
synonyms (e.g., CASH and MONEY), antonyms (e.g., DARK and
LIGHT), or related in some other relatively transparent way (e.g.,
JUDGE and COURT). Words were selected such that each word was
four or five letters in length and its letters could not be rearranged
to form any other English word (verified using the Internet Anagram
Server at http://wordsmith.org/anagram). An anagram of each word
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was constructed by doing two random transpositions of letters that
did not result in a mirror image of the word. For example, GJDUE
was the anagram for JUDGE based on J-G and G-U transpositions.
We restricted the words to four or five letters and the anagrams of
them to two transpositions on the basis of pilot studies in which sep-
arate groups of participants solved various anagrams outside the con-
text of the memory game. These studies revealed that fewer than 50%
of anagrams involving more than five letters or more than two trans-
positions could be solved within a 30-second time limit. In contrast,
participants were able to correctly solve more than 85% of anagrams
involving four or five letters and only two transpositions, often in
less than 10 s. Thus, the anagrams used in the memory game were
solvable by most participants.

Each matching pair of algebra equations involved two equations of
the generic form AX+ B=C that had the same solution for X. Equa-
tions were constructed such that A and B were both single-digit num-
bers greater than 1, C was less than 100, X values from 2 to 9 occurred
equally often across all equations, and every equation was unique. We
restricted the algebra equations to the form AX + B= C on the basis of
pilot studies in which separate groups of participants solved algebra
equations outside the context of the memory game. These studies
revealed that participants were able to correctly solve more than
90% of algebra equations of that form, often in less than 10s and
with a latency distribution that was similar to the distribution for an-
agram solutions. Thus, the algebra equations used in the memory
game were solvable by most participants and similar in difficulty (in
terms of latency and accuracy) to the anagrams.

There were a total of 56 anagram pairs and 56 algebra pairs. The
pairs for each problem type were divided into 14 sets of four pairs
for use in 14 separate games (no problems were repeated). For ana-
gram sets, the four pairs were chosen to be unrelated to each other
to limit confusion about which unscrambled words constituted a
matching pair (e.g., anagrams for the word pairs CASH-MONEY and
PENNY-CENT were in different sets). For algebra sets, the four pairs
were chosen to have different values of X as their solutions. Anagram
and algebra sets were randomly assigned to the 14 games.

Procedure

Participants received instructions about how to play the memory
game prior to scanning. These instructions included an overview of
the game interface and an explanation of what constituted anagram
and algebra matches. Participants were told that the goal of the
game was to match all the cards in the fewest number of turns. Two
“strategy tips” were given to help them achieve this goal. First, they
were instructed to solve each anagram or algebra equation when it
was first encountered, then to remember the solution for subsequent
matching. Second, they were instructed not to use a strategy of select-
ing cards randomly without solving the problems because it would
lead to more turns than necessary. Participants were also informed
that they could take as much time as needed on each turn because
their performance goal concerned the number of turns, not the time
per turn.

Following the instructions, participants were placed in the scan-
ner, where they played two demo games during structural image ac-
quisition to become familiar with the game interface. The demo
games involved different sets of problems (with simpler three- or
four-letter anagrams involving one or two transpositions) than
those used in the experimental games, but the games were identical
in all other respects. Participants played a total of 14 experimental
games during functional image acquisition. The games were divided
into seven pairs, with one pair for each scanning block. Each block
started with a prompt indicating the game numbers (e.g., “Games 7
and 8”) and scanning was synchronized with the offset of the prompt.
The two games were then played, with each game preceded and fol-
lowed by a 16-second fixation period consisting of a white cross

presented in the center of a black background. The duration of each
block varied with how long it took participants to finish the games.

The 18 participants each played 14 games, blocked into 7 pairs of
games. Six games are not in the analysis because of failures in record-
ing scanner data. Thus, a total of 246 games were used for classifica-
tion purposes.

FMRI data acquisition and initial analysis

Functional images were acquired using gradient echo-planar im-
aging (EPI) on a Siemens 3T Allegra Scanner using a standard RF
head coil (quadrature birdcage), with 1.5-s repetition time (TR), 30-
ms echo time (TE), 73° flip angle, and 20-cm field of view (FOV).
The EPI sequence was single-shot, and no navigator echo correction
was used. We acquired 26 oblique-axial slices on each full-volume
scan using a 3.2-mm-thick, 64x64 matrix. The anterior commis-
sure-posterior commissure (AC-PC) line was on the 8th slice from
the bottom. EPI scanning blocks ranged in length from a minimum
of 127 scans to a maximum of 441 scans. The mean number of scans
per imaging block was 246 with a standard deviation of 66 scans.
Each participant's EPI images were motion-corrected using their
first EPI image as the reference image (AIR; Woods et al., 1998).
Head-movement was negligible among participants. Maximum cor-
rection for any translation was 1.7 mm and maximum correction for
any rotation was 2.8°. Neither slice-timing correction nor temporal
filtering was applied to these data.

Structural images were acquired immediately prior to functional
images and were obtained using a T2 structural imaging sequence
with 5610-ms TR, 73-ms TE, flip angle of 150° and FOV of 20 cm.
We acquired 34 oblique-axial slices using a 3.2-mm slice thickness
and 256 x 256 matrix yielding 0.78125-mm x 0.78125-mm voxels in
the x-y plane. The AC-PC line was on the 12th slice from the bottom.

Acquired images were processed using the NIS system. Motion-
corrected EPI images were coregistered to our local common refer-
ence structural MRI (a participant in multiple prior experiments) by
means of a 12-parameter 3-D registration (AIR; Woods et al., 1998)
and smoothed with a 6-mm full-width-half-max 3-D Gaussian filter
to accommodate individual differences in anatomy.

Past research (see discussion in Anderson, in press) has found that
we achieve best MVPA classification in these complex tasks using ac-
tivity over the whole brain. To avoid overfitting the data it is neces-
sary to use relatively large regions of activity. Therefore, we
continued our practice of using large regions created by evenly dis-
tributing 4 x4 x 4 voxel cubes over the 26 slices of the 64 x 64 acqui-
sition matrix. To minimize correlation because of smoothing, a
between-region spacing of 1 voxel was used in the x- and y-directions
in the axial plane and one slice in the z-direction. The final set of re-
gions was acquired by applying a mask of the structural reference
brain and excluding regions where less than 70% of the region's orig-
inal 64 voxels survived. This resulted in 345 regions.!

Results

Our general approach to interpreting a given game from a partic-
ipant is to combine three sources of information from that partici-
pant's other games and from the games of other participants. The
first two sources are behavioral: information about what actions a
participant is likely to take at different states in the game and the
time they spend taking these actions. The third source is the brain im-
aging patterns associated with these actions. We discuss each of these
sources separately, then how they are combined, and finally the

! To confirm the validity of this practice we performed an exploratory analysis using
2x2x2 voxel regions (resulting in 2749 regions) and confirmed overfitting. The “over-
fitting” problem takes the form of a better fit to the training data but a worse fit to the
test data.
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Fig. 3. Distributions of the number of turns. See discussion in text.

performance of the algorithm that uses these three sources of
information.

Information source 1: transition probabilities

While the number of turns it takes to finish a game depends in
part on exactly where the cards are (e.g., there are lucky sequences
that get all 8 matches right away), it depends more on the choice of
the right operators in a state. The “246 Games” line in Fig. 3 shows
the distribution of the number of turns taken by participants to finish
the individual games. The mean number of turns is 16.9 and the stan-
dard deviation is 4.8, comparable to past results involving a 16-card
version of the memory game (e.g., Lavenex et al., 2011). The “Ideal”
line in Fig. 3 shows the ideal distribution of number of turns (based
on one million simulated games), assuming perfect memory, which
has a mean of 12.24. Depending on the random placement of cards,
the minimum number of turns could vary from 8 to 15, although
8 was never observed in the million simulations and 9 and 15 only
had a frequencies of about 1 in 10,000. The “18 Participants” line in
Fig. 3 shows the distribution of mean turns per game for participants,
rounded to the nearest integer. Individual participants ranged from a
mean of 12.7 turns to 22.6 turns. It appears that at least a couple of
participants approached ideal behavior but many of them took
many more turns than the minimum. These results suggest that
most participants were not always able to remember the locations
of past cards, thereby leading to more return visits and, by extension,
more turns, than necessary.

We developed a simple Imperfect Memory Model that reflects these
memory failures. The model forgets the location of a matching card with
probability pr. However, even if the card is forgotten the model remem-
bers that there was a matching card. If the model forgets the location of
a card it tries one guess among the visited cards.> We determined the
value of py that matched the performance of individual participants in
terms of mean number of turns. Individuals had estimated probabilities
of forgetting the location that varied from .07 to .92 (reflecting the wide
range of mean number of games for participants in Fig. 3). The “Imper-
fect Memory Model” line in Fig. 3 shows the expected distribution of
turns taken in individual games for the 18 participants with their esti-
mated probabilities of forgetting.

Fig. 4 provides a revealing analysis of what is happening during
the course of the game and indicates that the simple Imperfect Mem-
ory Model is capturing some significant features. The figure organizes

2 This is only an approximation to the behavior of participants. When there is a
matching card, the model always revisits some card even if it is not a matching card.
Participants revisit a card 85.4% of the time in this circumstance and 14.6% of the time
they turn over a new card. If there is not a matching card, the model never revisits a
card, whereas participants revisit cards 20.5% of the time in this circumstance.
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Fig. 4. (a) Number of times different types of cards are viewed as a function of how
many cards have been matched and whether it is the first or second card. (b) Predic-
tions of the Imperfect Memory Model.

the game along the x-axis according to how many pairs of cards have
been matched. Within each number of pairs matched, the x-axis dis-
tinguishes between the first and second cards in a pair. Minimally,
one pair of cards has to be turned over before another match is
achieved (and that is the only option for the 8th match) but on aver-
age more cards are turned over for earlier matches. The figure plots
the number of cards turned over in four categories determined by
whether it is the first visit or a return visit to the card and whether
the card results in a match or not. We plotted the observed data in
part (a) of the figure and the performance of the Imperfect Memory
Model in part (b). The two patterns show a striking correspondence
both in absolute values and pattern (r=.986):

1. Of logical necessity there is one successful visit per card per match
count. The two cards in a match were either visited for the first
time or on a return visit. Number of first-visit successes and
return-visit successes display a sawtooth pattern such that the
first card in a match is more likely to be a first visit. This reflects
the common pattern of visiting a new first card and then recalling
and choosing a matching card as the second card.

2. Ideally, there should be no return visits that do not result in matches,
but in fact participants and the model averaged more than 6.4 such
visits over a game. These reflect memory failures in the model,
where it is making a wrong guess about the location of a matching
card.

3. As the game progresses, there is a decline in the number of failed
first visits. This reflects both exhausting the unvisited cards on
the board and the increased chances that a newly visited card
will match a visited card. The total number of visits in this category
(11.5 for participants and 11.3 for model) is more than ideal be-
havior (8.8). This reflects failures to remember the location of a
visited card that matches a first visit to a new card.
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We conclude this analysis of choice behavior by noting two other
factors, one of which turns out not to be important and one of which
is important. First, one might have expected there to be a different
pattern of choices for math versus verbal cards. For instance, a partic-
ipant might have tried to match all the verbal cards before turning to
the math cards (contrary to instructions). This would show up in re-
turn visits because a participant has no control over the cards they
turn over for first visits. However, the patterns in Fig. 4a are basically
identical if plotted separately for verbal and math cards.

On the other hand, there is a consideration that expands the state
space in our HMM beyond the 625 states laid out in the Introduction:
The outcome of the previous turn has an impact on the outcome of the
current turn. Specifically, if the second card turned over on the previous
turn did not match the first card, participants have a strong tendency to
make a return visit to a card of the same type (math or verbal) on the
current turn. For instance, when the last card turned over was a non-
matching math card, 39% of the time the next card visited was a return
visit to a math card but only 14% of the time it was a return visit to a ver-
bal card. Conversely, if the last card turned over was a nonmatching ver-
bal card, 41% of the time the next card turned over was a return visit to a
verbal card and only 12% of the time it was a return visit to a math card.
The model also shows this trend because it is trying to find the matching
card: 34% of the time it returns to a card of the same kind and 17% to a
different card. Also, participants tend to visit a new card after a successful
turn that resulted in a match: 53% of the time they visit a new card after
successful turns and 28% of the time after unsuccessful turns. The model
shows this same tendency: the corresponding numbers are 51% and 26%.

The consequence of this dependency on past action is that if we
work with only a 625-state model, we violate the Markov property
that future behavior only depends on the current state. To capture this
dependency, we had to complicate the state space in the HMM to reflect
whether the last card on the previous turn was a matching card on that
turn, a nonmatching math card, or a nonmatching verbal card. This in-
creases the size of the HMM's state space to 625 x 3 =1875 states. We
could not find any violations of the Markov property using this larger
state space, but given the complexity of that space we cannot be sure
that there is not some hidden violation.

The Imperfect Memory Model plays a critical role in predicting par-
ticipant behavior and serves as our first source of information. It gener-
ates predictions about the probabilities for each operator in each of the
1875 states for each participant for each game, given an estimate of py
for that participant based on his or her performance on other games.

Information source 2: click timing

Every turn involves 3 clicks: a click to turn over the first card, a click
to turn over the second card, and a click to move on to the next turn. The
duration between the first and the second clicks reflects the time spent
viewing the first card and we will refer to this as Card 1 Time (t;). The
duration between the second and the third clicks will be referred to as
Card 2 Time (t;). The time between the third click and the first click of
the next turn will be referred to as the InterTurn Time (t3). Fig. 5
shows the mean times as a function of whether the turn was a failure,
a success, or the last turn (logically, the last turn is a success and it is
not followed by an InterTurn Time). Within these categories, the figure
indicates whether the card was inspected for the first time or whether
it was a return visit (a distinction only meaningful for Card 1 and 2
Times). The InterTurn times and the times for the last card are particu-
larly short. Excluding these times, we performed an analysis of variance
on the times for the two cards, varying four within-participant factors:
All 4 main effects were significant:

1. Match: Failures (5.18s) were slower than successes (3.20s),
F(1,17) =62.59, p<.0001. This probably reflects the fact that pro-
cessing a matching card is primed by having seen its matching
counterpart earlier.
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Fig. 5. Mean times for various events, classified by whether they involve viewing Card
1, viewing Card 2, or are the subsequent InterTurn. Data are also divided according to
whether it was a failed turn versus a successful turn and whether it was a first visit
or a return visit. Data for the last turn of the game are plotted separately.

2. Position: Card 1 Time (4.66s) was longer than Card 2 Time
(3.725), F(1,17) = 4.91, p<.05, reflecting some acceleration during
a turn.

3. Visit: First visits (6.33 s) took longer than return visits (2.05 s),
F(1,17)=107.79, p<.0001. This reflects the fact that on return
visits subjects have already solved the problem. There is an inter-
action between card position and visit (F(1,17)=7.03, p<.05)
such that the advantage for a return visit is particularly strong for
the second card.

4. Type: Math cards (4.85 s) were viewed for a longer time than verbal
cards (3.53 s), F(1,17)=17.51, p<.001.

While there are large differences among the conditions in Fig. 5 it
is also the case that the distribution of latencies is quite variable with-
in each condition. The standard deviation of individual latencies in
each condition is approximately equal to the mean. To illustrate,
Fig. 6 shows a pair of such latency distributions, for InterTurns that
followed failed turns and for those that followed successful turns.
Even though the means are close (1.12 s versus 1.42 s), as are the
standard deviations (1.30 s versus 1.31 s), the distributions are distin-
guishable. The figure displays fitted empirical densities (using the
MATLAB function ksdensity). The line labeled “Ratio” is the ratio of
the two densities and shows the amount of the evidence for a suc-
cessful turn. As can be seen, long InterTurns provide almost 2:1 evi-
dence for success, whereas very short InterTurns provide even
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Fig. 6. An illustration of how the exact latencies provide evidence about an event, even
in a case like this where the mean failure and success times for InterTurns are similar
(see Fig. 5). The “Ratio” line is the ratio between the empirical densities for failures
and successes.
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stronger evidence for failure. Relative ratios like these enable us to
use the times to predict what is happening on a turn.

Information source 3: imaging data

The other source of information is the imaging data. As we have
shown elsewhere (Anderson et al., 2010), the best identification
comes from using a scan that comes after the event of interest at a
delay that corresponds to the lag of the hemodynamic function. In
the case of this experiment, with a TR of 1.5 s, that is 3 scans later.
Our fMRI measure was the percent difference between the activity
in a voxel for that scan and the average activity of that voxel for
that game.

We trained a linear discriminant classifier (McLachlan, 2004) to
categorize the scans as coming from one of six categories: (1) first
visit to a math card, (2) return visit to a math card, (3) first visit to
a verbal card, (4) return visit to a verbal card, (5) InterTurn after a
failed match, and (6) InterTurn after a successful match. We excluded
the data from 9 of the 345 regions (leaving 336) because they had
more than 1% outliers, defined as percent changes of 10% or more of
baseline. As noted above, we used the response that occurred 3
scans (4.5s) later to classify the scan. Sometimes multiple events
(first card, second card, InterTurn) occurred within a scan and in
these situations we created separate cases, one for each event with
the same set of 336 BOLD values. There were 29,892 scans from the
cases from the 246 games across the 18 participants. To classify
scans from a game we used the data from all other participants and
from all other games for that participant. We duplicated the partici-
pant's data from the other games 17 times so that it would count as
much as the data from the other participants. This meant that there
were nearly 60,000 training cases for each game. On average, a
game consisted of 122 scans (which were not included with the train-
ing cases for that game).

The linear discriminant analysis (LDA) provided estimates of the
conditional probabilities that the fMRI pattern in a scan came from
each of the 6 categories. Classifying each scan as coming from the cat-
egory with the highest conditional probability, Fig. 7 shows the pro-
portion of scans from each category assigned to the various
categories. The overall accuracy is 53.2% of scans correctly classified
while chance would be 20.7%.3 In every case, scans are assigned to
the correct category more often than to any incorrect category.
Thus, the classifier is able to predict the data with much better than
chance accuracy even though its ability to discriminate among cate-
gories is somewhat short of what one might like. In the next section
we achieve better performance by combining the output of the classi-
fier with the behavioral data.

The above 53.2% accuracy reflects what can be obtained by com-
bining data from other participants and other games from the current
participant. Using only data from other participants we achieve 46.3%
accuracy. This reflects the degree to which activation patterns gener-
alize across participants. Using only other games of the current partic-
ipant we do somewhat better, achieving 49.1% accuracy. The
additional benefit of the other participants (raising accuracy to
53.2%) reflects the benefit of more training data.

We followed this classification with further analyses” to identify
the regions that were predicting specific types of activity. In these an-
alyses we did not use the hold-one-out methodology, which is critical
for our prediction purposes in Fig. 7 and in later sections, but rather
used all the relevant scans. First, we focused on the scans where the

3 If the assignments were at chance, the number of scans from category i assigned to
category j would be the product of the number of scans from category i to be classified
times the proportion of all scans assigned to j.

4 Using Laurens van der Maaten's Matlab Toolbox for Dimensionality Reduction
available at http://homepage.tudelft.nl/19j49/Matlab_Toolbox_for_Dimensionality_
Reduction.html.
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Fig. 7. Ability of the linear discriminant function to distinguish among categories. The
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bars for each category show the proportion of scans in each category assigned to
each of the six possible categories. Information sufficient to recreate this analysis is
available in the files available at http://act-r.psy.cmu.edu/publications/pubinfo.php?
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participant was viewing a card and we did a LDA of these into four
categories: (1) first visit to a math card, (2) return visit to a math
card, (3) first visit to a verbal card, and (4) return visit to a verbal
card. Fig. 8a shows the projection of the LDA onto two dimensions
that account for 98.9% of the variance in the LDA (66.9% for the first
dimension and 32.0% for the second). The x and y coordinates for
points in Fig. 8a are linear combinations of the normalized activations
for each of the regions (z-scores, z;):

X =20z Y= bz
= =

Fig. 8a shows both the average values for the 18 subjects plus the
placement of most of the scans (86.2% of scans have values in the
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Fig. 8. (a) Representation of the two dimensions in the projection of the LDA for the
four categories: first visit to a math card (blue), return visit to a math card (green),
first visit to a verbal card (orange), and return visit to a verbal card (brown). Large
dots represent mean participant values and small dots individual scans. (b) Regions
with strong weightings on the first dimension that reflects the math versus verbal
dimension. (c) Regions with strong weightings on the second dimension that reflects
the first versus return visit dimension. (d) Regions with strong weightings in the LDA
for discriminating between InterTurns after matching a pair and InterTurns after
mismatching. See text for further discussion.
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Fig. 9. An example of classification performance for a single game. The brown line indicates whether the participant was viewing Card 1, Card 2, or InterTurn (value 0). The other
lines show the relative evidence from the classifier for the 6 interpretations of a turn. The symbols in the boxes indicate the true identity of the event: V1 = first visit to a verbal card,
V2 = return visit to a verbal card, A1 = first visit to a math (algebra) card, A2 = return visit to a math card, N = nonmatch, and M = Match. Symbols in red are cases that the

algorithm failed to classify correctly.

space shown). The mean values for the subjects are linearly separable
with the first dimension (x-axis) going from math to verbal card
while the second dimension (y-axis) goes from return to first visit.
Given that there is no logical requirement that the two dimensions
be so interpretable, it seems clear that these dimensions are account-
ing for systematic trends in the brain-wide activation.

Fig. 8b shows the mapping of the first dimension back onto the
brain regions, representing regions with weightings (q; in the equa-
tion for x;) having absolute values greater than .1 (range is from
—.42 to .33 for the weights for this dimension). Among the regions
that indicate a math card are left parietal, premotor, and prefrontal re-
gions that have been implicated in other studies of arithmetic and rou-
tine algebraic problem solving (e.g., Anderson, 2005; Anderson et al.,
2011; Dehaene et al., 2003; Fehr et al., 2007; Kesler et al., 2006).
Among the regions that indicate a verbal card are left prefrontal re-
gions close to Broca's area and left visual/temporal regions close to
the “word form area” (Cohen and Dehaene, 2004). We would expect
to see these areas active as participants unscramble an anagram.
Fig. 8c shows the mapping of the second dimension back onto the
brain regions, representing regions with weightings (b; in the equa-
tion for y;) having absolute values greater than .1 (range is from
—.23 to.23 for this dimension). Unlike Fig. 8b, the interpretation of re-
gions in Fig. 8c is not clear.

Fig. 8d reports the results of a separate LDA of the InterTurns
scans, looking at regions that separated scans following a match ver-
sus a mismatch. It displays regions with weightings having absolute
values greater than .1 (range is from —.29 to .22). Many of the regions
identified can be interpreted. With respect to mismatch, the figure
highlights regions of the anterior cingulate, which have been associ-
ated with error and conflict (e.g., Botvinick et al., 2001; Falkenstein
et al., 1995) and anterior prefrontal regions, which have been associ-
ated with post-task processing (e.g., Reynolds et al., 2006). With re-
spect to match, there is a range of areas highlighted in the vicinity
of the left and right fusiform. This probably reflects participants
inspecting the solutions that have been revealed.

Fig. 8d shows regions where the InterTurn activation predicts suc-
cess of the just completed turn. InterTurn activity also predicts prop-
erties of the next turn but it does not do so as strongly as it predicts
success of the previous turn. For instance, in a binary discrimination
one can achieve 66% accuracy in using InterTurn activity to predict

whether the next turn will be a match, but 75% accuracy in predicting
whether the just completed turn was a match.

Combining the Three Sources with a Hidden Markov Model

Fig. 7 shows success at classifying a single scan in isolation. The
challenge is to sew these single-scan classifications into a coherent in-
terpretation of an entire game. Fig. 9 shows a typical case of the data
we have to work with.> This is a record of a 16-turn game that
spanned 138 scans or 207 s. The brown line tracks whether the par-
ticipant is viewing Card 1, Card 2, or is in an InterTurn. The other
lines in the figure give the conditional probabilities of the various in-
terpretations, normed to sum to 1. The goal is to label the various
turns as to whether they involved verbal or math cards, first or return
visits, and matches or nonmatches. Some turns can be classified rela-
tively easily. For example, the first turn appears to involve selection of
a verbal card for Card 1 and then a math card for Card 2, resulting in a
mismatch. This classification would be correct. However, the brief
third turn is quite hard to decipher and the fourth turn seems to in-
volve two first visits to math cards, but Card 1 was actually a return
visit to a math card (perhaps the participant was solving it again).

Our classification algorithm assigns an interpretation to a game,
where an interpretation implies one of the 24 possible operators
(see Table 2) for each turn, where an operator implies a category
for each card and the InterTurn. For the example, there would be
24'6 possible interpretations for the 16 turn game in Fig. 9. There
are various sorts of constraints we can bring to bear in finding the in-
terpretation. First, there is the logical constraint that by the end of the
game, the participant must have matched all the cards; thus, there
must be exactly 8 first visits to math cards, 8 first visits to verbal
cards, and 8 matches in the sequence. Such constraints rule out
many interpretations but still leave a very large number of possible
legal interpretations (we estimate more than 10'7 interpretations).
The probability of any interpretation is determined by the probability
of the transitions between states, the card and InterTurn times, and
the fMRI data. If we designate an interpretation as a sequence of r

5 Go to http://act-r.psy.cmu.edu/publications/pubinfo.php?id=993 to see a video
reproduction of the game for this example and the classification illustrated in real time.
The video is accompanied on the website by a document that describes its content.
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operators oy that generate a path through the state space, then the
probability of any legal interpretation can be given as:

.
p(010;...0,|times, fMRI)o< kljlp(ok|5k71)p(tkl s tias a0k ) D(FMRI |0y ). (1)

The terms p(oy|sk 1) are the probabilities of particular operators,
given the various states. The terms p(t1,ti2.tk3| 0x) are the probabili-
ties of the times associated with the two cards and the subsequent
InterTurn, given the operator. The final term p(fMRI|o,) denotes the
probability of the fMRI patterns obtained for the scans associated
with the kth operator. We discussed the basis for each of the terms
in this expression in the earlier sections describing the three sources
of information used for classification. Below we explain in more detail
how they were calculated for use in the HMM.

1. Operator probabilities, p(ols): As we discussed under transition prob-
abilities, there are 1875 states when we take into account the prior
action. Not all of the 24 operators are possible in particular states.
For instance, if there is only one verbal card that has been visited, it
is not possible to revisit two verbal cards. Nonetheless, there are
over 25,000 legal state-operator combinations and we used the Im-
perfect Memory Model to estimate their probabilities.® The behavior
of the model is determined by a probability py of forgetting the loca-
tion of a visited card. For a given game, we estimated a value of py
to match the number of turns taken by that participant on other
games. We then simulated 100,000 games to get estimated predic-
tions for that game for that participant. To counter effects of overfit-
ting, these predictions were combined (weighted .75) with an
equal representation of all legal moves (weighted .25).

2. Operator times, p(ty,t,t3l0): As we discussed under click timing,
the time spent viewing a card varied with whether it was the
first or the second card, a first visit or a return visit to that card, a
math or a verbal card, and whether the turn was a failure or a suc-
cess. The combination of these four variables yields 16 conditions
for the two card times, t; and t,. The InterTurn time, ts, varied
with whether the turn was a failure or a success, adding two
more conditions. We estimated the empirical distributions for
these 18 conditions from the other games for a participant using
the MATLAB ksdensity function (Fig. 6 shows the estimated empir-
ical distributions for the InterTurn times, although for illustration
purposes it has all the data from all participants). We made our es-
timates participant-specific because of large individual differences.
For instance, participants varied by a factor of more than 3:1 in the
length of time they spent on first visits (the range is from 3.2 to
10.4 s) and in the relative ratio of time on math and verbal cards
(the math/verbal ratio varies from 0.8 to 2.3). The probability den-
sities from these empirical distributions were combined to get the
probability of the 3 times associated with an operator:

p(ty,ty, t3]o) = p(t1]0) * p(t;]0) * p(ts]o). 2)

3. Image probabilities, p(fMRI|o): The final term involves the condi-
tional probability of the fMRI images for that turn, given an inter-
pretation of the turn as an operator o. An interpretation involves
assigning the first and the second cards to one of four categories
(math first visit, math return visit, verbal first visit, and verbal re-
turn visit) and the InterTurn to one of two categories (match or
nonmatch). Fig. 7 illustrated the calculation of the probabilities
that various scans came from these categories. This was based on
the conditional probabilities p(fMRIj| category) of the 336 region
values associated with a particular scan j if the scan came from a
specific category. Denoting the interpretation of three steps (Card
1, Card 2, and InterTurn) as sy, S, and s3, and the number of

5 The information to run the Imperfect Memory Model is given in the files at http://
act-r.psy.cmu.edu/publications/pubinfo.php?id=993 .

scans in each step as ny, n,, and ns, the probability of the image
data for an operator is:

3 n
PUMRI,.53.55) = [T TT p(FMRIs). 3)
i=1j=

Note that this probability is calculated as a product of a large num-
ber of conditional probabilities. This reflects the naive Bayes assump-
tion that the probability of each image depends only on the category
and is independent of the other images. While this assumption is
probably inaccurate, it results in a reduction of parameters and so
minimizes the problems of overfitting.

We used the standard Viterbi algorithm for hidden Markov
models to efficiently identify the most probable interpretation
(Rabiner, 1989). We were able to correctly classify 80.4% of the
12,495 steps, which is far above chance. Chance is 25% for each of
the cards and 50% for the InterTurn, for an overall value of 33.3%.
This classification accuracy reflects the combined contributions of
the three sources of information. We can explore the relative contri-
butions of these sources by eliminating their informativeness: making
all legal transformations equally probable, making all times equally
probable for an operator, or making the imaging data equally proba-
ble for all categories. Fig. 10 shows the results for all possible combi-
nations, including “HMM,” which is simply letting an uninformed
HMM find a path in the state space from start to end in the observed
number of turns. Its performance is 40.9%, still better than chance. In
terms of the contribution of different information sources, fMRI pro-
vides the most, latency data next, and transition probabilities the
least. The combination of the two behavioral sources (latency data
and transition probabilities) is approximately equal to the imaging
data.

Fig. 11 shows how accuracy of classification for the full model (in-
volving all three sources of information) varies as a function of the in-
terval type (Card 1, Card 2, or InterTurn) and the number of pairs of
cards matched. Accuracy is generally higher for the InterTurn because
there are only two possibilities (match or nonmatch). Accuracy at
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Fig. 10. An illustration of the contributions of different sources of information to the
success of classification. Information sufficient to recreate this analysis is available in
the files available at http://act-r.psy.cmu.edu/publications/pubinfo.php?id=993.
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Fig. 11. Accuracy in classification as a function of number of matches.

classifying the InterTurn rises sharply at the end when few cards are left
and most turns are matches. In contrast, the classification of the cards
tends to drop off with number of matches. This reflects the fact that
later turns tend to be return visits which offer fewer scans for classifica-
tion and for which accuracy of scan classification is lower (see Fig. 7).

Discussion

This research establishes that the earlier HMM methodology
(Anderson et al., 2010, in press) can be scaled up to track thought in
a complex state space with a high branching factor. In part, this suc-
cess reflects a general approach of combining a number of weak clas-
sifiers to obtain better classification (e.g., Polikar, 2007). Fig. 10 shows
that combining three sources of information (fMRI data, timing data,
and transition probabilities) with an HMM yields better than 80% ac-
curacy, whereas using less information produces lower accuracy. The
fMRI data and the timing data could have been combined without the
use of an HMM: One could simply identify the most probable opera-
tor for each turn given these two sources of information without ref-
erence to position in the state space. In this case the accuracy is 74.2%,
while adding the HMM and its transition probabilities increases accu-
racy to 80.4%. Moreover, use of an HMM does more than just boost
performance on individual turns—it provides a coherent interpreta-
tion of the game. If we look at the classifications produced by combin-
ing the fMRI and the timing data without an HMM, none of the 246
games was classified in a logically consistent sequence. Some games
had too many or too few math cards or verbal cards visited, or too
many or too few matches; others had cards revisited before they
could have been visited, etc.

There are some features of our approach that warrant discussion.
The decision to use LDA might not seem obvious given the many
other classification approaches available (Pereira et al., 2009). Examina-
tion of our imaging data suggests that voxel activity is distributed as a
multivariate normal. If it were a perfect multivariate normal, LDA
would deliver the optimal classification. It also delivers the conditional
probabilities required by the logic of an HMM approach. We have exam-
ined a number of alternative methods sometimes associated with im-
proved performance in the literature, such as support vector machines
(SVMs) with radial basis functions and other kernels. However, we
get the best results with LDA. Hsu et al. (2009) noted that LDA is
much more efficient and does not have accuracy disadvantages relative
to SVMs when the numbers of features and instances are large.

A critical decision in our approach was to find some abstraction of
the state space that resulted in a small number of categories for clas-
sification. It would not be possible to train classifiers for all the states
in that space. Rather than trying to recognize the 625 (or 1875) states
we focused on classifying the 24 operators. We decomposed these op-
erators into 3 steps (Card 1, Card 2, InterTurn) and used 6 categories

of steps (see Fig. 7) to characterize these operators. Note that we used
the same categories for the first and second cards. We explored using
more categories (such as different categories for each card) but this
resulted in overfitting and worse performance.

Another distinctive feature of our approach was the use of large,
coarse-grained regions. We have looked at using finer-grained re-
gions but this results in overfitting. While it is possible that a judi-
cious selection of a subset of smaller regions might result in better
performance, this does not seem to be what is limiting performance.
Consider the six misclassifications of cards in Fig. 9:

Four of these misclassifications (in the last row of Fig. 9) are for
brief visits that take less than a scan. Thus, there is little imaging
data to guide their classification. Given just imaging data, only
72% of cards are correctly identified as to whether they are math
or verbal when they are visited for less than 2 s. In contrast, accura-
cy is 90% for longer visits.

The card misclassification in the first row of Fig. 9 involves misclas-
sifying a return visit to a math card as a first visit. This illustrates an-
other problem. Both the imaging and timing data in this case are
much more like what is observed on a first visit to a math card
than on a return visit. We suspect that this is an instance of the par-
ticipant actually solving the equation again, effectively treating it as
a first visit to a math card. If so, this is really not a misclassification
but a problem with our definition of ground truth.

The card misclassification in the second row of Fig. 9 involves the
converse error of classifying a first visit to a math card as a return
visit. This reflects an interesting consequence of the logic of the
Viterbi algorithm. The combined imaging and timing data are actu-
ally consistent with the correct classification of this card. However,
the system is looking for an overall coherent interpretation and
there can only be 8 first visits to math cards. It has stronger evi-
dence for classifying the card in the first row as a first visit than
for the card in the second row.

In none of these cases does the misclassification problem reflect
the absence of finer spatial information.

The focus of this paper has been on the classification of events in a
complex state space and the memory game has been chosen as a para-
digm for creating a challenging space with a strong definition of ground
truth. However, as reviewed in the Introduction, the primary interest in
this task in past research has been as a tool to study memory. The Imper-
fect Memory Model described in this paper, which involved estimating
each participant's probability of forgetting, was used simply to obtain
transition probabilities for the HMM. The only other effort we know of
to model individual memory performance in this task is by Lavenex et
al. (2011), who proposed a buffer model to estimate participants' work-
ing memory capacities. Their model assumes that participants have per-
fect memory for the last n locations that they have visited and not
matched, where n is an estimate of working memory capacity. Accord-
ing to this model, if a participant fails to revisit a card that would yield
a match, it is because that card is no longer in the working memory buff-
er. If so, the participant should move on to visit a new card. In contrast,
our Imperfect Memory Model predicts that memory failures would in-
volve revisits but to the wrong card. This is because our model has per-
fect memory for which cards it has visited, but it sometimes forgets
which visited locations go with which visited cards. This aspect of our
model is consistent with past work on the memory game showing that
participants are very good at recognizing the identities of the cards
they have seen, but less accurate at remembering the locations of the
cards (Eskritt et al., 2001). In our experiment, when participants failed
to revisit a matching card, they revisited some other card 72% of the
time.” On average, at these points of memory failures, 71% of all
unmatched cards have been visited. Thus, participants are not returning

7 This reflects an analysis of the 38% of failures to revisit a matching card. Most of
time (62%) participants revisit the matching card, as both models would imply.
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to visited locations any more that one would predict if one assumed they
were just randomly choosing among the unmatched cards. Thus, it
seems that they are neither under-sampling visited locations in this cir-
cumstance, as the Lavenex model would imply, nor over-sampling
them, as our model would predict. This suggests that actual memory is
a more complex mixture of memory for the identities and the locations
of items than what is represented in either model. Perhaps a more accu-
rate memory model would provide a basis for better identification of
participants' trajectories in the state space.

By focusing on classification in a complex state space, this paper pro-
vides a stronger foundation for subsequent applications of the method-
ology we have described. For example, as discussed in Anderson et al.
(2010, 2011), one application is to improve the design of tutoring sys-
tems. Indeed, one of the original motivations of the present task was
to establish that this methodology could distinguish between different
kinds of problem solving—in this case, solving anagrams versus algebra
problems—to identify when participants were engaged in mathematical
thinking and when they were not. Another application would be to col-
lect data on trial-by-trial measures of internal states. For example, we
hope to use such data to identify when participants use retrieval versus
computation during the course of skill acquisition (e.g., Delaney et al.,
1998). In addition, as discussed in Anderson (in press), we can use
model evaluation methods associated with HMMs to evaluate alterna-
tive models or discover new models. All these examples highlight the
potential of using the extremely rich data that come from fMRI in con-
junction with behavioral data and modeling techniques to reach a
new level of discrimination in tracking problem solving.
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