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Abstract

Fatigue has been implicated in an alarming number of motor vehicle accidents, costing billions of dollars and thousands of lives.
Unfortunately, the ability to predict performance impairments in complex task domains like driving is limited by a gap in our under-
standing of the explanatory mechanisms. In this paper, we describe an attempt to generate a priori predictions of degradations in driver
performance due to sleep deprivation. We accomplish this by integrating an existing account of the effects of sleep loss and circadian
rhythms on sustained attention performance with a validated model of driver behavior. The predicted results account for published qual-
itative trends for driving across multiple days of restricted sleep and total sleep deprivation. The quantitative results show that the mod-
el’s performance is worse at baseline and degrades less severely than human driving, and expose some critical areas for future research.
Overall, the results illustrate the potential value of model reuse and integration for improving our understanding of important psycho-
logical phenomena and for making useful predictions of performance in applied, naturalistic task contexts.
Published by Elsevier B.V.
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1. Introduction

Accidents on roadways in the United States account for
a distressingly high number of fatalities and substantial
cost on an annual basis (Horne & Reyner, 1999; Klauer,
Dingus, Neale, Sudweeks, & Ramsey, 2006; NTSB, 1995;
Pack et al., 1995). According to a National Highway
Transportation Safety Board report (NTSB, 1995), many
of these accidents – 100,000 per year – may be wholly or
partially attributable to the effects of drowsiness or fatigue
on driver attention, judgment, and/or performance.

The alarmingly high cost of fatigued driving has been
one motivation for studies to better understand changes

in cognitive performance stemming from extended time
awake (sleep deprivation), insufficient sleep (sleep restric-
tion), and being awake at times of the day when the body
is predisposed to sleep (circadian desynchrony: Dijk, Duffy,
& Czeisler, 1992; Van Dongen & Dinges, 2005a, 2005b).
This research has succeeded in identifying patterns of
decline in cognitive performance related to time awake
and circadian rhythms. However, there remain significant
limitations in the capacity to make valid quantitative pre-
dictions about performance in novel task contexts based
on historical information about sleep and wakefulness
(Dinges, 2004; Van Dongen, 2004). Our computational
modeling research has been targeted at addressing some
of the existing limitations in predictive validity.

In the research presented here, we evaluate the capacity
to make predictions about degradations in driver perfor-
mance associated with an extended period of partial or
total sleep deprivation. We discuss the implications of
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our research in the context of potential applications of a
performance prediction capability in the domain of driving.
In the next section, we present some theoretical and meth-
odological background, as well as a description of the
model and mechanisms being utilized in this research. We
then compare the model’s predictions with data from the
empirical literature, demonstrating that the predicted
results in the model are aligned in crucial ways with those
published results.

2. Requirements for a predictive theory

To make task-specific predictions about changes in
human performance resulting from sleep loss, there are at
least four necessary elements. These include: (1) a theory
of the components of cognitive processing, (2) mechanisms
to link fluctuations in alertness to processing changes in the
various cognitive components, (3) an account of how those
components are deployed in the performance of the task,
and (4) an understanding of how overall alertness is influ-
enced by factors like time awake and circadian rhythms.
Here, we focus on the integration of these components.
To set the stage, we describe how each of these require-
ments is addressed in this research, because they are all
essential elements.

2.1. Components of cognitive processing

To predict how cognitive performance will change under
conditions of fatigue, it is necessary to have a theory
accounting for the cognitive processes are that are being
affected. Abstract verbal theories have been presented in
the literature, making reference to constructs like cognitive
slowing, increased cognitive noise, or cognitive lapsing.
Although such accounts provide useful descriptions of
commonly observed effects, they do not formally specify
the underlying mechanisms that give rise to such changes.
Without a formal account of the underlying processes, it
is impossible to generate quantitative performance predic-
tions. To address this challenge, we utilize the Adaptive
Control of Thought – Rational, or ACT-R, cognitive archi-
tecture (Anderson, 2007; Anderson et al., 2004). Cognitive
architectures are intended as general theories of the foun-
dational mechanisms of human cognition. As an instance
of such a theory, ACT-R provides validated mechanisms
representing many aspects of cognitive functioning. Addi-
tionally, ACT-R is implemented in software, which enables
the development of models that simulate cognitive process-
ing and behavior in particular task contexts and generate
quantitative performance data that can be compared
directly to human data. These features are critical to our
research goals, and the results presented below illustrate
some of the potential afforded by leveraging such existing
theory.

ACT-R comprises a set of distinct processing modules
(e.g., vision, declarative knowledge, motor), which are inte-
grated through a production system that represents central

cognition. The mechanisms of central cognition are of par-
ticular relevance in the research described here. Central
cognition in ACT-R operates through a series of conflict
resolution cycles to produce cognitive processing and
behavior. During each cycle the subset of actions, or pro-
ductions, whose conditions match the current system state
is identified. In this case, the “system state” is represented
by the contents of a set of buffers that provide limited-
bandwidth communication between central cognition and
the various information processing modules (e.g., a retrie-
val buffer for declarative memory and a visual object buffer
for vision).

Once the applicable productions are identified, a “util-
ity” value is computed for each. The utility computation
is based upon reinforcement learning, and reflects the
learned usefulness of the production for achieving the cur-
rent goal. The production with the highest utility is selected
and its actions are executed, unless its utility does not
exceed a threshold for action (referred to as the “utility
threshold” in ACT-R). The execution of a production typ-
ically leads to changes in the contents of one or more of
ACT-R’s buffers, creating a new system state. This state
then serves as the starting point for the next cognitive cycle.
The default duration for the completion of a single cogni-
tive cycle in ACT-R is 50 ms. The utility value and the
threshold for action play a critical role in our account of
changes in cognitive processing stemming from fatigue,
which is described next.

2.2. Impact of fatigue on cognitive components

The cognitive cycle in central cognition is foundational
to all ACT-R models. Thus, changes to the functioning
of this component of ACT-R stemming from variations
in alertness would have general impacts on performance.
Our explanatory mechanisms are based on the theoretical
perspective that fluctuations in overall alertness or arousal
can be associated with changes in utility values involved in
selecting and executing actions in ACT-R’s central produc-
tion system. This is instantiated as proportional decreases
in utility values as alertness declines. The primary impact
of this mechanism is to decrease the likelihood that produc-
tion utility values will exceed the threshold for action, lead-
ing to cognitive cycles where no actions are taken. We refer
to these brief gaps in cognitive processing as microlapses

(see Gunzelmann, Gross, Gluck, & Dinges, 2009).
While sleep loss results in degradations to performance,

there is some evidence in the literature that people can
stave off the negative effects of fatigue by increasing the
effort they are putting into a task (e.g., Chua, Venkatr-
aman, Dinges, & Chee, 2006; Portas et al., 1998). To
account for the potential impacts of increased effort, a sec-
ond parameter is manipulated – the threshold for action –
which sets the minimum utility value required for a produc-
tion to fire. Decreasing this threshold simulates greater
effort by making it more likely that a production will suc-
cessfully fire. However, this manipulation also increases
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the probability that, under fatigue, a suboptimal action (a
production with a low utility) will be executed instead
(Gunzelmann et al., 2009). This is because proportional
decreases in utility values lead to greater reductions for
high-utility (i.e., better) alternatives. In contrast, Gaussian
noise, which is added to utility values before selection, is
not scaled. The resulting dynamics increase the likelihood
that lower-utility options will be selected on a particular
cycle under fatigued conditions.

The mechanisms just described instantiate a computa-
tional account of cognitive changes associated with sleep
loss. We have validated the mechanisms using empirical
data from a simple sustained attention task performed by
participants every 2 h during 88 h of total sleep depriva-
tion. The declines in performance of our model on this
task, which result from the mechanisms described here,
are closely aligned with the empirical results (Gunzelmann
et al., 2009).

Note that to generate quantitative performance data, it
was necessary to add task knowledge to ACT-R to enable
it to perform the task. For the sustained attention task this
was quite straightforward – the model needed only to wait
for the stimulus, attend to it when it appeared, and then
press a response button. Each of these actions can be rep-
resented by a production in ACT-R. Executing the appro-
priate action at the appropriate time is the major
processing component of this model, aligning it nicely with
central cognition in ACT-R. Understanding how cognitive
resources are utilized in more complex tasks – like driving –
can be much more challenging. Yet it is exactly these kinds
of tasks that we are targeting as application contexts for
this research. Fortunately, other research has addressed
the challenge of modeling cognitive processes in driving,
providing a well-validated model of human behavior in this
context.

2.3. Cognitive processing in driving

There is an art to developing computational process
models for specific tasks, which has led to criticism regard-
ing the increased degrees of freedom that result when the
implementation of the knowledge for performing the task
is under the control of the modeler (e.g., Roberts & Pash-
ler, 2000). To avoid this possible concern in the context of
making predictions about the consequences of fatigue, we
have opted to use a model that has already been developed,
validated, and described in the literature to account for the
cognitive processing required in driving (Salvucci, 2006).
This model was developed using ACT-R, and was focused
on modeling the cognitive requirements for lane keeping,
lane changing, and passing other vehicles. The driver
model is based on a control law of steering behavior (Salv-
ucci & Gray, 2004) that visually encodes two salient points
on the roadway: a near point in the lane center immediately
in front of the vehicle; and a far point such as the vanishing
point on a straight road, the tangent point on a curved
road, or the lead vehicle when present. The control law

describes how steering can be realized by keeping the far
point stable while keeping the near point both stable and
centered in the current lane.

The driver model that uses this control law relies on the
production system that represents central cognition. This
establishes an important link between the fatigue mecha-
nisms described above and the driver model. The driver
model uses successive iterations of four ACT-R produc-
tions to represent the control law of steering behavior. Spe-
cifically, these four rules compose a control update cycle

during which the model: (1) encodes the near point, (2)
encodes the far point, (3) updates steering and acceleration
according to the control law, and (4) checks the vehicle’s
current stability as measured by the lateral velocity and
position of the near and far points. If the vehicle is not
yet stable, the model immediately initiates another control
update; otherwise, the model waits approximately 500 ms
to initiate the next control update.

The driver model has been shown to account well for
driver behavior with respect to curve negotiation and lane
changing (Salvucci, 2006). The most critical aspect of the
model for our purposes is the execution time for a control
update cycle: One of these cycles requires approximately
250 ms, including 50 ms for each of four production-rule
firings plus some additional time for attention shifts and
visual encoding. The update cycle time can increase, how-
ever, when attention is divided between driving and a sec-
ondary task, thus resulting in degradations in driver
performance. For example, recent work has shown how
dialing a phone (Salvucci, 2001; Salvucci & Taatgen,
2008) and rehearsing a memorized list of numbers (Salvucci
& Beltowska, 2008) affects the driver model’s performance;
in both cases, concurrent execution of the secondary task
interferes with processing of the driving task, thereby
increasing the update cycle time and degrading perfor-
mance (measured by, e.g., lateral deviation from lane cen-
ter or brake response time to an external event). As we will
describe, microlapses stemming from degraded alertness in
ACT-R also can prolong or delay the update cycle, leading
to similar degradations in driver performance.

2.4. Dynamics of alertness

With an account of how fatigue impacts particular com-
ponents of cognition, and a model that accounts for how
cognitive resources are utilized in a specific task context,
it is possible to account for change in human performance
as alertness declines. However, one critical aspect is still
missing: How can we estimate the changes in parameter
values over time to fit human empirical data as perfor-
mance fluctuates with variations in alertness? For this
aspect of our research, we draw, in part, upon extensive
research on sleep, where understanding the dynamic fluctu-
ations in alertness as a function of such factors as time
awake, circadian rhythms, and even light exposure has
been a central focus. Research in this area has led to the
development of formal, mathematical accounts, which
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quantify the influence of these factors on overall cognitive
performance (e.g., Jewett & Kronauer, 1999; McCauley
et al., 2009; Neri, 2004).

There are a variety of mathematical models that quan-
tify the dynamics of alertness related to sleep loss and cir-
cadian rhythms, and a detailed description is beyond the
scope of this paper. Neri (2004) contains an extensive
review and evaluation of a number of particular examples.
They are all based on a “two-process” model of alertness,
emphasizing the roles of time awake and circadian rhythms
on cognitive performance. In general, these models incor-
porate monotonic declines in alertness with time awake,
combined with sinusoidal fluctuations in alertness associ-
ated with circadian rhythms. They differ in the details
regarding the particular functions representing these pro-
cesses (e.g., linear vs. sigmoidal declines in alertness with
time awake), but they all tend to make qualitatively similar
predictions about performance levels across extended peri-
ods of total sleep deprivation (Mallis, Mejdal, Nguyen, &
Dinges, 2004; Van Dongen, 2004).

Mathematical models have been used to make perfor-
mance predictions by scaling the generic output to existing
empirical data, but are fundamentally limited in their
capacity to make a priori performance predictions in novel
task contexts. The reason is that they do not address the
other required components of a predictive theory. Specifi-
cally, they do not represent the components of cognition
nor how they are utilized in particular task contexts. Thus,
they cannot anticipate the task-specific decrements that will
be observed, although they tend to characterize effectively
the qualitative trends associated with total sleep depriva-
tion. Our research is focused on understanding the impact
of fatigue on cognitive processing, while leveraging existing
cognitive and mathematical theories and models to create
an integrated account. Evaluating our integration
approach is the focus of the remainder of this paper.

3. Integration

Our proposed mechanisms for fatigue instantiate a the-
ory of changes in central cognitive processing resulting
from fluctuations in alertness attributable to sleep loss
and circadian rhythms (see Gunzelmann et al., 2009).
Importantly, the foundation of the ACT-R driver model
is procedural knowledge in central cognition that allows
it to successfully keep the vehicle in its lane. As a result,
an opportunity exists to bring together an existing model
of driver behavior with an existing account of fatigue to
explore the implications of fatigue on driving behavior.
This opportunity represents an important step in the evolu-
tion of computational architectural accounts of cognitive
phenomena, and illustrates the potential utility of unified
theories that integrate theoretical insights from various
domains of psychological research.

The integration of the driver model and fatigue mecha-
nisms was a straightforward process because both were
already implemented within ACT-R. The implementation

of the driver model was altered to run on a high perfor-
mance computing (HPC) cluster but was not changed with
respect to its behavioral performance. The driver model is
similar to the sustained attention model in that neither
makes extensive use of declarative memory, simplifying
the account by minimizing the need to consider potential
influences of fatigue on other components of cognitive
functioning, like declarative knowledge access (e.g., Gun-
zelmann, Gluck, Kershner, Van Dongen, & Dinges,
2007). The fatigue mechanisms were taken directly from
Gunzelmann et al. (2009) and applied to the driver model.1

Thus, our procedural fatigue mechanisms alone provide the
moderating effects in the driving model.

The actual effects of the fatigue mechanisms center on
the production selection and execution phases of the pro-
duction cycle in ACT-R. Proportional scaling of utility val-
ues for the production selection phase in the driver model
creates situations in which the matching production with
the highest utility fails to exceed the utility threshold, even
with a reduced threshold reflecting effort or compensation.
In those instances, no production is executed, which pro-
duces a microlapse as described above in the context of sus-
tained attention. Parameter changes associated with
fluctuations in alertness influence the frequency of micro-
lapses, and microlapses lead to the performance changes
exhibited by “tired” models.

We have demonstrated that this single computational
consequence can explain phenomena in the sleep research
community that have been associated with the combined
influence of both cognitive slowing and cognitive lapses
(e.g., Dinges & Kribbs, 1991). Cognitive slowing is pro-
duced when a relatively small number of microlapses inter-
rupt the timely execution of task actions. As microlapses
become more likely, they can also produce cognitive lapses
lasting on the order of seconds, when many microlapses
occur in a sequence.

The latter phenomenon – long sequences of microlapses
producing more dramatic breakdowns in cognitive process-
ing – is made more likely by a final mechanism in our
account. Specifically, we further attenuate utility values
as a consequence of a microlapse. From an implementation
perspective, the microlapse condition is detected when
there are no ACT-R events remaining to execute. When
this happens, a follow-up conflict resolution is scheduled,
while utility values are reduced progressively by 1.5% on
each occasion. The noise component of the utility values
allows the subsequent conflict resolution to potentially
match a production and continue model execution. When

1 A detail in this process is that Gunzelmann et al. (2009) discuss fatigue
mechanisms in the context of procedural selection mechanism based upon
expected utility, while the current model uses a reinforcement learning
algorithm. The parameter values used in this model were established
through a translation of the parameters from Gunzelmann et al. (2009) to
the same model based in the reinforcement learning equation. Thus, while
the parameter impacting utility is different (in name and value), it has been
validated to produce the same results in the sustained-attention task as the
published model.
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the model successfully completes a control update cycle
and updates its steering of the car, utility values are
returned to the value prescribed by the current level of
alertness (see below). However, this may not happen, and
since each successive decline in alertness further reduces
the possibility of utilities rising above the threshold, a
model can quickly spiral into a state analogous to sleep.
In the model described in Gunzelmann et al. (2009), this
mechanism was critical in capturing the most substantial
breakdowns in cognitive processing (i.e., sleep attacks).

In the next section, we evaluate the impact of our fatigue
mechanisms on the driver model. Recall that the driver
model realizes the continuous control law through four
key productions. It is in this control update cycle that the
fatigue mechanisms are most influential, since microlapses
increase the overall update cycle time. As will be shown,
even brief delays in cognitive activity can amount to signif-
icant and occasionally devastating impacts on driver
performance.

4. Model evaluation

To evaluate the model, its behavior was assessed using
the driving scenario described in Salvucci and Taatgen
(2008). In the task, the driver steered down a single-lane
highway, keeping the vehicle as centered as possible in
the roadway. The vehicle moved at a constant speed that
was not controlled by the driver, thus focusing the task
particularly on lateral control. One key measure of perfor-
mance in the task is lateral deviation: the root-mean-
squared error between the lane center and the vehicle’s lat-
eral position within the lane. The baseline driver model
navigating this environment exhibited an average lateral
deviation of approximately 15 cm across a 10-min driving
scenario (see Salvucci & Taatgen, 2008).

To produce predictions of driver behavior and perfor-
mance, we used parameter values for the fatigue mecha-
nisms that were estimated based upon our research on
sustained attention (e.g., see Gunzelmann et al., 2009). Spe-
cifically, the model for that research was able to account
for human sustained attention performance at 2 h intervals
across 88 h of total sleep deprivation. This was accom-
plished by fitting a linear regression to map biomathemat-
ical model predictions of alertness to utility and threshold
parameters in ACT-R. Using the same linear function,
we generated predicted ACT-R parameter values for an
experimental protocol described in Peters, Kloeppel, and
Alicandri (1999). In that experiment, participants com-
pleted a 40-min driving scenario in a driving simulator once
a day between 2:00 and 4:00 PM on four consecutive days.
On the first day participants were well-rested. That night,
however, they were restricted to 4 h of sleep, and were then
completely deprived of sleep for the next two nights.

An additional detail that is important in our simulation
results is that we modified the default cognitive cycle time
in ACT-R to be 40 ms. This was done to completely paral-
lel the parameter values we used in the sustained attention

model, since there are interdependencies among our fatigue
mechanisms and cognitive cycle time. This adjustment was
made in transitioning the mechanism the reinforcement
learning algorithm. While adjusting this parameter is gen-
erally discouraged, it is potentially relevant that Stewart,
Choo, and Eliasmith (2010) found evidence that cycle times
in this range may be appropriate for “simple” cognitive
actions.

We generated estimated levels of alertness for each driv-
ing scenario using the Circadian Neurobehavioral Perfor-
mance and Alertness (CNPA) model developed by Jewett
and Kronauer (1999). This model is one of the biomathe-
matical models of alertness mentioned above, and one of
those that was used in Gunzelmann et al. (2009). The pre-
dicted alertness values were used to generate predicted
parameter values for our ACT-R model, using the linear
function estimated for the sustained attention task. Table 1
shows the results of this estimation process. CNPA pro-
duces numerical estimates of “cognitive throughput,”
which ranges from 0 to 1. These estimates were used to gen-
erate values for a production utility scaling parameter and
the threshold for action. Those values, then, were used in
the driver model to produce estimates of driving perfor-
mance with 0 free parameters available for adjusting the
model’s behavior to fit the human data.

The model was run through 400, 40-min driving sessions
using each of those parameter sets, leading to reliable mea-
sures of central tendency in the performance measures as
well as evidence regarding the variability in fatigue effects.
Importantly, on some of these runs, the model’s perfor-
mance degraded into an unrecoverable state where it
swerved dramatically back and forth across the lane. This
situation became more common for the later days of the
study, illustrating the important role of the fatigue mecha-
nisms in producing this situation. In cases where a lane vio-
lation duration was greater than 10 min, the model run was
removed from the analyses presented below. The propor-
tion of model runs removed were 0.075, 0.10, 0.19, and
0.25 for the Baseline day and 3 days of partial or total sleep
loss respectively.

The number of runs removed clearly indicates that there
are important limitations with regard to both the driver
model and the fatigue mechanisms. We discuss this further
in Section 5. They were removed for the analyses presented
below because they represent degenerate model behavior

Table 1
CNPA predicted alertness values and the resulting ACT-R predicted
parameter values for each day of total sleep deprivation (TSD). ACT-R
parameters include utility scaling, which attenuates production utilities,
and the utility threshold, which is a lower limit required for a production
to fire.

Day CNPA Utility scaling Utility threshold

Baseline (0 Days TSD) 0.95 1.00 2.01
Day 1 TSD 0.89 0.99 2.00
Day 2 TSD 0.51 0.90 1.91
Day 3 TSD 0.32 0.85 1.86
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that significantly impacts the performance predictions.
Interestingly, there were cases in Peters et al. (1999) where
participants had accidents caused by straying from their
lane. Unfortunately, the description of the results does
not provide a specific definition of how crashes could
occur, not does it indicate how the simulation recovered
from such occurrences. So we are unable to recreate those
details in our simulation. We do, however, perform a qual-
itative evaluation below.

To assess model performance, the lateral deviation of
the model was recorded for each second during each model
run. Fig. 1 shows the distribution of these deviation values
for the model for each day of the study. Perhaps surpris-
ingly, the distributions are not radically different. Note,
however, that the proportion of time that the model spends
near the middle of the lane (the left side of the distribution)
decreases with more sleep loss. The overall trend is toward
an increasingly skewed distribution: although performance
remains normal most of the time, it diverges more often
and to a greater extent as sleep deprivation increases. This
pattern of results matches the data from the sustained
attention task that we have used in developing the mecha-
nisms applied to the driver model in this paper (see Gunzel-
mann et al., 2009).

While the distributions in the larger deviations (21–
83 cm) are not very different, clear differences emerge in
the categories representing the largest deviations. A lane
violation (“LV” in the figure) represents a situation where
some portion of the vehicle had crossed the lane line (i.e.,
the vehicle was partially outside its lane). Lane violations
comprise deviations between 83 cm and 366 cm. The pro-
portions of lane violations more than double for Days 2
and 3 of sleep deprivation as compared to the baseline
day or a single night with inadequate sleep. Even more
severe are lane shifts (“LS” in the figure), which represent
cases where the vehicle has moved an entire lane’s width

laterally (a lane deviation greater than 366 cm) – a substan-
tial and potentially catastrophic degree of driver perfor-
mance error. Whereas the Baseline condition predicts
about 2% lane shifts,2 by Day 3 the model predicts a sub-
stantial increase to around 6%. This means that close to
6% of the time, the model is driving completely out of its
intended lane (possibly off the road or possibly into oncom-
ing traffic).

To better understand the nature of this performance in
terms of the underlying processing, Fig. 2 shows the distri-
bution of update times for the driver model in each condi-
tion — that is, the amount of time needed for the model to
complete its four-production control update cycle. As was
the case for lateral deviation, the distributions shift with
increasing sleep deprivation such that update times reflect-
ing cycles that are not interrupted (less than �250 ms)
become less frequent and longer update times become more
prevalent. The increase in update times arises because pro-
duction rules are more likely to fall below threshold under
the influence of fatigue mechanisms, thus missing an
opportunity to fire during a particular cognitive cycle.
Once again, the shift is relatively small, but the proportion
of update cycles falling in the tail of the distribution
increases noticeably. This shift illustrates greater inatten-
tion of the model to steering control, which is what leads
to the performance changes shown in Fig. 1.

4.1. Comparison to human performance

There are interesting changes in the performance of the
driver model with more severe sleep loss. To evaluate the
model predictions in the context of actual human driver
performance, we used data presented in Peters et al.

2 Using default ACT-R parameters, the model does not produce any
lane shifts under normal driving circumstances (Salvucci, 2006). This
highlights the influence of the fatigue mechanisms even for baseline
conditions, and exposes an aspect of the integration where additional
research is required.

Fig. 2. Distribution of model update times as a function of number of
days of total sleep deprivation (TSD).

Fig. 1. Proportion of 1-s samples of lateral deviation falling into each of
the specified bins. The last two categories represent instances where (1) the
vehicle is partway out of the proper lane (a lane violation, “LV”), and (2)
the vehicle’s deviation is more than a full lane width off (a lane switch,
“LS”). Separate lines represent 0, 24, 48, and 72 h of total sleep
deprivation (TSD).
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(1999) from the study briefly described above. The paper
presented average frequency counts of lane violations
observed in the participants in each of the four driving ses-
sions in their study. Fig. 3 compares the reported lane vio-
lations from the Peters study to the lane violations
produced by the model. The model captures the overall
trend well (r = .96), although it does not degrade as
severely as the human drivers. In addition, its performance
is somewhat worse at baseline than human performance,
owing to the influence of the fatigue mechanisms on a
model that was fit to human data without those mecha-
nisms in place.

Another measure reported by Peters et al. (1999) was
accidents. In the paper, these are described simply as
“off-road crashes” and presented as “crash rates” (p. 3).
The measure appears to present a measure of the mean
number of crashes per participant in a 40 min driving ses-
sion, though it is not explicitly stated in the paper. This
crash rate increases from 0 on the baseline day to nearly
8 on the last day of the study. While the lack of details
on the crash measure make it impossible to compare the
model directly, we can compare qualitatively the changes
in crash likelihood to the proportion of model runs that
were removed from our analysis because of it ending up
in an unrecoverable state. This comparison is shown in
Fig. 4. The correlation between these measures is .94. While
this comparison is tenuous, it appears to reinforce the
results presented in Fig. 3.

5. Discussion

Importantly, the model’s behavior is produced with zero
free parameters, providing an encouraging approximation
of human performance in this complex task. Moreover,
there are several known factors that may be contributing
to the observed differences between model performance
and those reported by Peters et al. First, there are a variety
of potential differences in the experimental context such as
lane width, road curvature, steering wheel gain, and lane
violation threshold, all of which can play a significant role

in the reported metrics. In addition, the road varied to a
greater extent in Peters et al., including multiple speed lim-
its (35 and 55 MPH), and different numbers of lanes (2 or
4) in different parts of the course. Participants in Peters
et al. also controlled their own speed, and the duration of
lane violations were not reported in that study. These
task-related factors have unknown influences on driving
performance, particularly under conditions of restricted
or deprived sleep.

In addition to task-related issues, there is also a poten-
tial contribution of individual differences to the perfor-
mance differences observed. Inter-individual differences in
driving ability, as well as systematic differences in the
impact of fatigue (e.g., Van Dongen, Baynard, Maislin, &
Dinges, 2004), could play a substantial role in this case.
Finally, the model’s alertness levels do not change over
the course of the 40-min driving sessions, either upon rec-
ognition of a lane violation, or as time on task increases.
These dynamics are certainly at play in human driving,
and expose important areas for future research, some of
which we have begun to explore (Gunzelmann, Moore,
Gluck, Van Dongen, & Dinges, 2010).

Future research is needed to validate our approach with
participants that perform both the sustained attention task
and the driving scenario, under conditions where all of the
relevant task-related characteristics can be made equivalent
for the humans and the model. Even with the discrepancies
in the data shown in Figs. 3 and 4, however, we feel that the
model performs quite reasonably under the constraints of a
zero free parameter prediction.

6. Conclusions and future directions

The model described in this paper exhibits declines in
performance when mechanisms are implemented to repre-
sent the deleterious effects of sleep loss on central cognitive
functioning. The foundation is a validated model of
skilled driver behavior (Salvucci, 2006), implemented in a
validated theory of the human cognitive architecture

Fig. 3. Lane violations from Peters et al. (1999) compared to the lane
violations in the model. Fig. 4. Accidents from Peters et al. (1999) compared to the proportion of

model runs that resulted in an unrecoverable state.
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(Anderson, 2007). The model is augmented with a set of
mechanisms that account for fatigue-related changes in
central cognitive processing (Gunzelmann et al., 2009).
The dynamics of those changes, in turn, are constrained
by a biomathematical model capturing fluctuations in
alertness associated with time awake and circadian
rhythms (Jewett & Kronauer, 1999).

The primary contribution of this research is the demon-
stration that it is possible to make a priori predictions
regarding the effects of extended wakefulness on perfor-
mance in complex, dynamic tasks. The qualitative changes
in the model’s performance are similar to the performance
changes observed in human participants attempting to
drive after extended periods of partial or total sleep depri-
vation. The results go beyond intuitive notions regarding
degradations in cognitive processing and performance as
time awake increases. The scientific methodology described
here produces quantitative estimates about the actual
impact of those changes on performance in the driving
task.

The discrepancies between the model and human per-
formance are informative in that they expose some critical
limitations of the model. Some of these have already been
mentioned. For instance, our fatigue mechanisms do not
represent finer-grained dynamics of alertness that are at
play within a 40-min driving session. It is well established
that extended time on task leads to degradations in per-
formance (e.g., Davies & Parasuraman, 1982; Van der
Hulst, Meijman, & Rothengatter, 2001). There is also evi-
dence for systematic oscillations in alertness over rela-
tively short periods of a couple of minutes (Arruda,
Zhang, Amoss, Coburn, & Aue, 2009). In addition, when
people note that they have drifted well off the road, it is
likely that they experience a transient spike in alertness,
which would allow them to reestablish control. Our model
currently does not incorporate these dynamics, which
surely impacts its performance relative to human
participants.

It is likely that modifications to the steering control cycle
would improve the model as well. The mechanism lacks the
anticipation that is necessary to recover from very large
lane deviations, which contributes to situations where the
model swerves wildly back and forth across the lanes.
Lastly, there is a real question regarding how to set param-
eter values for baseline performance. The values we used –
taken directly from a model of sustained attention perfor-
mance – lead to a level of performance that is misaligned
on a quantitative level with the data from the human par-
ticipants. The interaction of task characteristics, motiva-
tion, and alertness is a challenging issue that remains to
be addressed in models of fatigue.

The current research effort represents a critical step in
the process of using computational cognitive modeling to
make predictions about human cognition and behavior in
naturalistic task contexts. The modular design of ACT-R
facilitates this convergence of research efforts by providing
an infrastructure that allows new theoretical components

(like the account of fatigue) to be added seamlessly to the
architecture. Once added, these new components, or mod-
ules, influence model behavior to the extent that the proper
conditions arise to activate the mechanisms. In this case,
the mechanisms for fatigue have a substantial impact on
the model at more extreme levels of fatigue. Importantly,
the impact appears to be appropriate based on human data
from a similar task in the research literature.

An important question regarding this research effort
relates to the generalizability of our findings to other tasks
and domains. Our strategy of using a cognitive architecture
is targeted explicitly at ensuring that the mechanisms we
identify can be applied in other tasks and contexts to
explain and predict human behavior. In the case of the
mechanisms at play in the research described here, our
expectation is that they will be influential in explaining
the impact of fatigue across tasks and domains. This is
because, as noted above, the cognitive cycle is a founda-
tional component of all ACT-R models. At the same time,
we have proposed mechanisms within other components of
ACT-R, like declarative knowledge (Gunzelmann et al.,
2007; Halverson, Gunzelmann, Moore, & Van Dongen,
2010) to explain effects of fatigue. These mechanisms
should be influential in predicting performance changes
stemming from fluctuations of alertness to the extent that
those cognitive capacities are involved in performance on
the particular task.

In other words, we believe that there are decrements
with fatigue across components of cognitive functioning.
To understand and predict how performance will change
in a particular task, it will be necessary to understand both
the interaction of fatigue with those components of cogni-
tion, as well as how, and to what extent, the information
processing mechanisms are utilized in performing the task.
Thus far, our research has focused primarily on tasks
where we can effectively isolate the cognitive requirements
to understand how they are impacted by fatigue. However,
as our research progresses, it will become increasingly
important to consider the interactions among various com-
ponents of cognition to develop a more general and com-
prehensive account.

Finally, the integration achieved in this paper demon-
strates both the scientific value of model reuse and the
potential utility of cognitive architectures as vehicles for
the integration and synthesis of scientific theories to pro-
duce cumulative scientific progress. Not only do these fea-
tures reduce degrees of freedom in our model, but they will
also be essential for making real predictions in naturalistic
task contexts where data for model fitting is generally
unavailable. This brings us back to a major goal of
research on fatigue: To develop an understanding of the
impact of sleep loss that is useful in making predictions
regarding the consequences for performance in applied set-
tings. At the outset, we cited the enormous cost of fatigue –
both in dollars and lives – on highways in the United
States. A better understanding of the relationship between
fluctuations in alertness and changes in observable human
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behavior has the potential to greatly reduce this cost,
potentially saving thousands of lives. Moreover, driving
is not the only area for which such potential benefits exist.
In many applied settings – including military operations,
commercial airline piloting, and nuclear power plant mon-
itoring – lack of sleep and circadian desynchrony may lead
to disastrous consequences (e.g., Caldwell, Caldwell,
Brown, & Smith, 2004; Dinges, 1995). Accurate predictions
of the consequences of fatigue could help to avert some of
these potential tragedies.
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