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Abstract

Inadequate sleep affects cognitive functioning, with often subtle and occasionally catastrophic personal and societal consequences.
Unfortunately, this topic has received little attention in the cognitive modeling literature, despite the potential payoff. In this paper,
we provide evidence regarding the impact of sleep deprivation on a particular component of cognitive performance, the ability to access
and use declarative knowledge. Every 2 h throughout an extended period of sleep deprivation, participants completed 50 trials of a serial
addition/subtraction task requiring knowledge of single-digit arithmetic facts. Over the course of 88 h awake, response times increased
while accuracy declined. A computational model accounts for the degradation in performance through a reduction in the activation of
declarative knowledge. This knowledge is required for successful completion of the serial addition/subtraction task, but access to the
declarative knowledge is impaired as sleep deprivation increases and alertness declines. Importantly, the mechanism provides a general-
izable quantitative account relevant to other tasks and contexts. It also provides a process-level understanding of how cognitive perfor-

mance declines with increasing levels of sleep loss.
Published by Elsevier B.V.
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1. Introduction

Significant progress has been made in modeling the cog-
nitive processes involved in complex human cognition,
such as human-computer interaction (Kieras, Wood, &
Meyer, 1997), planning and problem solving (e.g., Gunzel-
mann & Anderson, 2003; Newell & Simon, 1972), memory
for lists and paired associates (e.g., Altmann, 2000; Ander-
son, Bothell, Lebiere, & Matessa, 1998), expertise (e.g.,
Koedinger & Anderson, 1990), and process control (Sun,
2002). These areas reflect major themes of cognitive psy-
chology and the laboratory studies that have dominated
the field throughout its history. While crucial for our
understanding of human cognition, this research typically
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ignores a variety of factors — ranging from emotions, stress,
and fatigue to caffeine, drugs, and even temperature —
which all-too-often impact cognitive processing both inside
and outside the laboratory. Collectively, these factors have
been referred to as cognitive moderators (Ritter, Reifers,
Klein, Quigley, & Schoelles, 2004).

Cognitive moderators can have profound impacts on the
efficiency and effectiveness of cognitive processing. Despite
this, until recently cognitive moderators have received lim-
ited attention in the cognitive modeling community. As
psychology has come to appreciate the central and poten-
tially adaptive role of emotions in decision making and
other aspects of cognitive functioning, increasing attention
has shifted in that direction within the cognitive modeling
community (e.g., Gratch, Marsella, & Petta, 2009; Mari-
nier, Laird, & Lewis, 2009). The same is true of stress
(e.g., Ritter et al., 2004) and other factors like extended
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time on task (e.g., Gonzalez, Fu, Healy, Kole, & Bourne,
2006) and sleep loss (e.g., Gunzelmann, Gross, Gluck, &
Dinges, 2009). Moreover, an appreciation of the ubiquity
of external moderators, like alcohol, caffeine, and other
drugs has led to some efforts to understand their impact
on cognitive processing (e.g., Kase, Ritter, & Schoelles,
2009).

In this paper, we report research on one moderator of
human cognitive performance — fatigue related to sleep loss
and circadian rhythms. All too often we cope with the
demands of contemporary life by sacrificing sleep time in
favor of work, family, community, or entertainment. This
undesirable and consequential trade is widely acknowl-
edged and begrudgingly accepted (or at least tolerated)
despite accumulated evidence of the negative effects it has
on our functioning. For instance, it is well established that
sleep deprivation results in impaired performance across a
broad range of task domains and cognitive functions (e.g.,
Goel, Rao, Durmer, & Dinges, 2009). Researchers have
documented declines in performance in tasks ranging from
sustained attention (e.g.,Doran, Van Dongen, & Dinges,
2001; Lim & Dinges, 2008) and dual-tasking (e.g., Bratzke,
Rolke, Ulrich, & Peters, 2007), to verbal learning (e.g.,
Drummond et al., 2000) and arithmetic (e.g., Drummond
& Brown, 2001), to complex dynamic tasks like piloting
(e.g., Caldwell, Caldwell, Brown, & Smith, 2004) and driv-
ing (Klauer, Dingus, Neale, Sudweeks, & Ramsey, 2006;
Pack et al., 1995).

In laboratory tasks, the impact of sleep loss and circa-
dian rhythms, like deficits in sustained attention perfor-
mance (Doran et al, 2001; Lim & Dinges, 2008) or
increased errors in an arithmetic task (Drummond &
Brown, 2001), seem relatively innocuous. However, in
applied contexts like driving and flying, similar break-
downs in cognitive performance can have disastrous conse-
quences (e.g., Caldwell, 2003; Dinges, 1995). Thus, a major
focus of the field has been on developing tools that can be
used to minimize the risk of such errors and accidents in
applied settings and to better understand how and why
they occur. To address some of these issues, researchers
have developed mathematical models to track the dynam-
ics of cognitive performance, accounting for the impact
of sleep loss and circadian rhythms (e.g., Jewett & Kro-
nauer, 1999; Hursh et al., 2004). These models produce
an estimate of cognitive functioning, which may be referred
to as “effectiveness” (Hursh et al.,, 2004) or “cognitive
throughput” (Jewett & Kronauer, 1999) in particular mod-
els. In this article, we refer generically to these estimates as
“alertness.”

Estimates of alertness are assumed to correspond to
important aspects of cognitive functioning, and reflect con-
sistent patterns of performance in humans across tasks
over extended periods of wakefulness (e.g., Van Dongen,
2004). While predictions of alertness are generic, they can
be scaled to particular dependent measures to produce
quantitative estimates of performance. This can be useful
in understanding the dynamics of performance in response

to sleep loss (e.g., McCauley et al., 2009; Van Dongen,
2004), including accidents and errors in applied contexts.
In fact, these models have been used effectively in a number
of circumstances to inform policy and decision making
regarding sleep and fatigue related issues, especially in
the context of optimizing rest-work schedules to ensure
maximal alertness given operational requirements and con-
straints (e.g., Dean, Fletcher, Hursh, & Klerman, 2007).

One reason for the success of mathematical models of
alertness is that the likelihood of accidents or errors follows
the same general trend across contexts — a trend captured
by the models. Indeed, numerous empirical investigations
have established similar patterns of decline in performance
across a wide array of tasks and domains (e.g., Van Don-
gen, Maislin, Mullington, & Dinges, 2003). Thus, there
appears to be ample evidence to suggest that these models
are successful in capturing important influences on overall
cognitive performance stemming from time awake and cir-
cadian rhythms.

An example of how mathematical models can be used in
understanding the consequences of fatigue was described in
Dean et al. (2007), where a mathematical model of alert-
ness from Hursh et al. (2004) was used in assessing the role
of fatigue in a data set of approximately 1400 accidents
compiled by the Federal Railroad Administration. The
dynamics of alertness predicted by the model correlated
closely with the likelihood of “human factors” accidents.
In other words, lower levels of alertness were associated
with greater risk of human error.

Critically, in discussing this research, Dean et al. (2007)
reported that, “A useful model needs to be calibrated to the
demands of a particular job so that the outputs from the
model can be related to the risk of meaningful failures of
human performance” (p. 248). Calibration to the task con-
text is required because the standard outputs of mathemat-
ical models (effectiveness, throughput, or alertness) do not
correspond to behavioral measures of human performance
(e.g., completion time, percent correct, errors). The mecha-
nisms in the models track the dynamics of performance
over time, but fitting the particular performance variable
of interest requires a scaling step to bring measures of alert-
ness in line with meaningful measures in the task, such as
accident risk (e.g., Van Dongen, 2004). As described in
Dinges (2004), “Most current models of fatigue and its
effects on cognitive performance appear to be more
descriptive curve-fitting, than theoretically driven, hypoth-
esis-generating, data-organizing mathematical approaches”
(p. A182).

The impact of requiring a calibration step can be seen by
considering possible extensions of the research reported in
Dean et al. (2007). Some relevant questions for decision
makers in the railroad industry concern modifications to
the task environment encountered by railroad crews. For
instance, how would the likelihood of an accident change
if the controls or interfaces were modified by human fac-
tors engineers to improve usability and performance?
Alternatively, which of a number of possible modifications
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would result in the greatest reduction in accident risk dur-
ing fatigued operations? Unfortunately, to address ques-
tions of this sort, mathematical models of alertness would
require empirical data from crews interacting with the
new system variations — a costly and time consuming pro-
cess that limits the utility of such models for this kind of
application.

Another reasonable extension of the research reported
in Dean et al. (2007) could be to apply it to understanding
accident risk in a different context, like driving. For
instance, given estimates of accident risk derived from data
for locomotive crews, what can one infer with regard to the
risk of accidents among long-haul truckers? Once again,
mathematical models of alertness cannot be used to
address this issue. To “generalize” to this task, these mod-
els require independent data on accidents in truck driving
to calibrate the model and determine an appropriate
threshold of risk of meaningful failures in that context.
Even more problematic is the role of the environment in
driving. Road curvature, lane width, speed limit, and traffic
all may have important influences on the likelihood of a
meaningful failure. A policy maker may want to know,
for example, the estimated decrease in accident rates along
a stretch of highway as a function of several different
options, like a reduced speed limit, an increase in the num-
ber of lanes, or a 6-in. increase in lane width. Existing
mathematical models of alertness simply cannot be used
to provide answers to these questions.

The purpose of pointing out these limitations is not to
challenge the value of mathematical models of alertness,
but rather to appropriately situate their capabilities within
the broad goal of predicting behavior. In our research, we
are focused on a different set of questions about the role of
fatigue in cognitive performance that mathematical models
cannot address in isolation. Specifically, why does fatigue
lead to a particular pattern of declines in specific task con-
texts? And, is it possible to predict how performance will
decline in a novel task or domain, without the benefit of
data to calibrate a model? The answers to these questions
depend on an understanding of alertness, but they also rely
on both the characteristics of the task and on the nature of
the information processing mechanisms of the cognitive
system that are brought to bear in performing the task.
Thus, while mathematical models of alertness are an
important piece of a complete explanation, they do not
provide the entire answer.

In the remainder of this paper, we present research that
makes progress toward a predictive account of fatigue. The
mathematical models of alertness capture the dynamics of
performance across periods of total sleep deprivation,
and provide an important foundation for the research.
The other foundation is a cognitive architecture — Adaptive
Control of Thought — Rational, or ACT-R — that repre-
sents mechanisms of human information processing
(Anderson, 2007). The cognitive architecture provides a
means of situating the mathematical dynamics of the alert-
ness models in specific task contexts, where perceptual,

cognitive, and motor processes are simulated to produce
observable behavior that can be measured in the same
way as human behavior on the same task.

In previous research, we have explored the potential role
of fatigue in a sustained attention task (Gunzelmann,
Gross, et al., 2009), which illustrated some of the potential
value of the approach. The task — responding to the
appearance of a stimulus with a button press — allowed
us to focus on a crucial aspect of the ACT-R architecture:
the production system representing central cognition. In
follow-on research, we demonstrated that the mechanism
could be generalized to account for changes in dual-task
performance (Gunzelmann, Byrne, Gluck, & Moore,
2009), and to predict changes in lane-keeping performance
in driving as alertness fluctuates (Gunzelmann, Moore,
Salvucci, & Gluck, in press). Below we present research
to address another crucial component of cognitive process-
ing in ACT-R: declarative knowledge. This component of
cognitive functioning is critical in a variety of tasks and
comprises a core set of mechanisms around which ACT-
R was developed. At the same time, there is no research
linking the dynamic mechanisms of declarative knowledge
access to fluctuations associated with sleep loss and circa-
dian rhythms. This research begins to fill in that gap.

Our strategy in this research is to develop models for
tasks that allow us to focus on specific components of cog-
nitive functioning. There is neuropsychological evidence
that sleep loss and circadian rhythms have broad impacts
on processing across cortical and subcortical regions
(e.g., Chee et al., 2008; Drummond & Brown, 2001). How-
ever, research has shown that an individual’s relative sus-
ceptibility to the negative consequences of fatigue varies
depending on the task (e.g., Van Dongen, Baynard, Mais-
lin, & Dinges, 2004). This suggests that sleep loss and cir-
cadian rhythms may have specific effects on different
components of cognitive functioning, rather than being
identifiable as a single negative impact on cognitive perfor-
mance. In this paper, we focus on a particular component
of cognitive functioning, specifically the ability to access
and use declarative knowledge efficiently in the perfor-
mance of a task.

2. Experiment and human performance data

We investigated changes in performance on a serial
addition/subtraction task, given to participants every 2 h
as they were kept awake continuously for more than three
days (88 h awake). This task was selected to allow us to
focus our investigation on the impact of fatigue on the
retrieval of declarative knowledge. The task involves add-
ing and subtracting single-digit numbers. Research on chil-
dren learning to add and subtract indicates that they
transition from computing the answer (e.g., counting) to
retrieving the answer from memory (e.g., Siegler & Shrager,
1984). That is, with practice children come to know the
answer to these simple arithmetic problems without having
to recalculate it each time the problem is presented. Models
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of arithmetic have represented this transition as a process
of acquiring and strengthening factual elements of declara-
tive knowledge (chunks) through rehearsal and repetition
(e.g., Lebiere, 1999). Once learned, this knowledge is then
available for use in cognitive processing. Since this knowl-
edge is typically acquired in childhood and practiced fre-
quently in everyday life in a variety of circumstances, it
should be well-rehearsed and highly active knowledge for
most normal adults.

This account of the acquisition of “math facts” forms a
foundation for multiple ACT-R models related to simple
arithmetic in similar domains. It is central to Lebiere’s sim-
ulation of lifetime learning of arithmetic facts (Lebiere,
1999). Also, it is the representation utilized in a simulation
comparing strategy alternatives for complex multiplication
(Rosenberg-Lee, Lovett, & Anderson, 2009). This
approach to representing arithmetic knowledge in ACT-R
is further reinforced by the use of arithmetic facts as proto-
typic instances of declarative knowledge in multiple
detailed descriptions of the architecture (e.g., Anderson,
2007, p. 109; Anderson & Lebiere, 1998, p. 6; Anderson
et al., 2004, p. 1042).

Based on developmental theories of learning arithmetic
facts and the history of using arithmetic tasks and declara-
tive representations in ACT-R, we believe there is a strong
case for using such a task to evaluate the impact of sleep
loss on the accessibility of well-learned declarative knowl-
edge. The experiment, described in this section, provides
critical data for validating the capacity of our theoretical
mechanisms to account for changes in human performance
stemming from fatigue, including both response times and
accuracy.

2.1. Method

The participants in this study were eight healthy males,
ranging in age from 22 to 37. Participants were screened to
exclude regular users of caffeine or other drugs, and those
with unusual sleep—wake patterns. For one week prior to
arriving at the laboratory, activity was monitored using
sleep diaries, actigraphy, and time-stamped phone calls to
ensure adherence to a schedule involving 8 h in bed per
night. Following this period, participants spent 10 continu-
ous days in the laboratory for the study, with three nights
preceding the sleep deprivation (with 8 h in bed per night),
and three nights following the sleep deprivation period (for
recovery). Participants were paid minimum wage for the
duration of their time in the laboratory.

Throughout periods of wakefulness during the study,
participants completed a battery of tests every 2 h. The full
battery required about 30 min to complete. Here we report
data from one of the tasks, the Walter Reed Serial Addi-
tion/Subtraction Task, or SAST (Thorne, Genser, Sing,
& Hegge, 1985). In the SAST, participants are presented
with two single-digit numbers in succession, followed by
an operator (“+” or “—”). Each item is presented for
200 ms with a 200 ms delay between items. The task is to
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Fig. 1. Human data, including average response time (s) and average
percent correct, from the Walter Reed Serial Addition/Subtraction Task,
performed by participants undergoing 88 h of total sleep deprivation
(TSD). Error bars show standard error.

perform the operation and respond with the ones digit of
the result, unless the result of the operation is negative.
In these cases, participants are asked to add 10, and then
respond with the resulting positive, one-digit number. Each
session consisted of 50 trials. In this paper, we report the
data from the extended period of wakefulness (44 sessions).
Participants awoke at 7:30 AM (0730) after three nights in
the lab, and were kept awake until 11:30 PM (2330) after
three missed nights of sleep (88 h awake). Testing sessions
commenced at approximately 8:00 AM (0800) on the initial
day.

2.2. Results

Average response time and accuracy were recorded for
each participant at every SAST session throughout the
study. The response time and accuracy data both clearly
show the impact of sleep loss and circadian rhythms on
performance. Response times increased along with error
rates as time awake increased, with a cyclical component
that is attributable to circadian rhythms in overall alertness
(Fig. 1). Average response times increased from a minimum
of 1.00 s (at 2:00 PM on the Baseline Day) to a maximum
of 2.72 s (at 4:00 AM on Day 2 of Total Sleep Deprivation)
during the experiment. For accuracy, the best performance
was 92% correct on the Baseline Day (4:00 PM), while the
worst performance was only 62% correct at 6:00 AM on
the last day of the study. Using a repeated measures
ANOVA, these differences over the course of the experi-
ment provided evidence for significant changes in both
dependent measures,’ F(43,301)=8.56, p<.001
[MSE = 0.623; 11]23 =0.55] and F(43,301) =4.46, p<.0l
[MSE = 214.49; nf) =0.39] for response times and accu-

! In this analysis, lost data for one session (at 0600 on the final day of the
study) for one participant was replaced through statistical estimation.
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racy, respectively. These analyses included contributions
from both time awake and circadian rhythms.

To explore the contributions of time awake and circa-
dian rhythms in more detail, a follow-up analysis was con-
ducted using the data from the three days of total sleep
deprivation, where 12 sessions were completed each day.
In this analysis, there were effects of both day and time
of day for response times, F(2,14)=17.97, p<.001
[MSE = 0.347; #?>=0.72] and F(11,77)=9.09, p <.001
[MSE = 0.291; 7’15 = 0.57] respectively. Similarly, for the
accuracy data the impact of day was significant,
F(2,14)=8.04, p<.01 [MSE=101.391; nf, =0.53], as
was the impact of time of day, (11, 77) =7.92, p <.001
[MSE = 179.919; nf) = 0.53]. Overall, the results illustrate
the influence of the two processes of sleep homeostasis
and circadian rhythms on cognitive performance (e.g.,
Borbély, 1982).

2.3. Discussion

The results demonstrate that extended time awake can
lead to significant performance declines, even in a task that
is procedurally straightforward and relies on well-learned
knowledge. The pattern of results, with worsening perfor-
mance across days and a strong cyclical (circadian) compo-
nent within days, is a frequently-observed pattern in studies
of sleep and human performance. This empirical demon-
stration is merely the beginning of our investigation, how-
ever. The critical next step in our scientific methodology is
to implement a computational cognitive process model as a
mechanistic explanation of the behavior dynamics. A key
component of this process lies in linking dynamic fluctua-
tions in alertness with cognitive processes that are engaged
for performing the task.

Our claim is that an important cognitive process in per-
forming the SAST is the retrieval of appropriate numerical
and arithmetic knowledge. This hypothesis reflects conclu-
sions from research that has explored the acquisition of
such knowledge in children (e.g., Siegler & Shrager,
1984), and previous models of arithmetic developed using
ACT-R (e.g., Lebiere, 1999). In the next section, we present
a model that shows how reduced declarative memory acti-
vation impairs access to that knowledge in a manner that
leads to performance changes consistent with the empirical
results presented above.

3. Computational cognitive model

We are using the Adaptive Control of Thought —
Rational (ACT-R) cognitive architecture as a foundation
for model development. ACT-R instantiates a general the-
ory of human information processing. It is driven by pro-
cedural knowledge in central cognition, and contains
various modules representing different components of cog-
nitive functioning (see Anderson (2007) for a detailed
description). ACT-R contains mechanisms for perception,
cognition, and action, with continuous-valued, quantitative

parameters influencing the speed and effectiveness of those
processes. Of particular interest for the current research is
ACT-R’s declarative module, which is described in more
detail below. Because performance on mathematics tasks
has informed the development of this component of
ACT-R (e.g., Anderson, 2005; Lebiere, 1999), the SAST
provides a useful context for exploring an understanding
of how sleep loss may impact declarative mechanisms in
the architecture.

To do the SAST, the ACT-R model first encodes each
number and the operator as they are presented. ACT-R’s
vision module produces a visual representation when atten-
tion is directed to each item, which is used to retrieve the
symbolic meaning from declarative knowledge. When the
entire problem has been encoded, it is used as the basis
for retrieving an arithmetic fact from memory. If the result
of the retrieved problem is non-negative, the model
responds with the value from the ones digit. If the result
is negative, the model probes memory again, this time for
the solution to the problem 10 minus |answer|.”> The model
responds by eliciting a virtual key press. The perceptual
and motor actions within ACT-R are governed by empiri-
cally-derived parameters that produce latencies consistent
with psychophysical research (see Byrne & Anderson,
1998).

Mechanisms in declarative knowledge influence the
speed and likelihood of retrieving a particular chunk, based
upon its activation. Each chunk’s activation is determined
by a number of factors, reflecting its history of use (recency
and frequency), contextual priming (spreading activation),
and similarity-based partial matching. These influences on
activation are reflected in Eq. (1a):

Al:Bl+ZW1Sﬂ*D1p+U (1a)

The base-level activation, B;, reflects how recently and how
frequently chunk i has been accessed. The summation rep-
resents the influence of context, with spreading activation,
W, increasing the activation of chunk i as a function of its
strength of association, Sj;, to element j of the current con-
text. The next term, —D,, reflects partial matching. Activa-
tion is decremented as a function of the dissimilarity, D,
between the chunk i and the requested item p. Finally,
noise, o, is added to the equation to represent stochastic
subsymbolic processes.

In the model, declarative knowledge is used to represent
symbolic information about numbers and operators, as
well as arithmetic facts presented in the task. The base-level

2 This solution strategy is one of many alternatives for performing the
task. Unfortunately, the data available do not allow for a detailed
assessment of participants’ strategies, and no specific instructions were
given to use any particular approach. Thus, this should be viewed as a
plausible implementation, rather than a definitive statement regarding
solution strategy. It was selected based upon evidence in the literature for
a transition to retrieval-based strategies in performance on arithmetic
tasks observed as children develop greater expertise and familiarity (e.g.,
Siegler, 1987). All of the participants in this study were adults.
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activation, B;, of these chunks was set to approximate the
activation of this knowledge developed over a lifetime of
experience with simple arithmetic problems, similar to
Lebiere (1999). Also following Lebiere (1999), similarity
values between numbers in our model are proportional to
the ratio between them, meaning that numbers similar in
value are more easily confused. Thus, when the entire prob-
lem is encoded properly by the model, errors typically
involve responding with numbers that are close to the cor-
rect response, as seen in empirical research (e.g., Siegler &
Shrager, 1984). The similarity values impact the confusabil-
ity of numbers in declarative chunks through the partial
matching mechanism (the —D,, term in Eq. (1a)). The noise
(o) added to the activation is selected from a Gaussian dis-
tribution with a mean of 0 and a variance of approximately
0.206 (s), using a typical parameter value for ACT-R mod-
els.? This noise creates the possibility for errors of commis-
sion (i.e. retrieving the wrong information).

3.1. Consequences of reduced alertness in declarative
knowledge

To account for behavioral changes resulting from sleep
deprivation and circadian rhythms, we implemented a
mechanism in ACT-R that serves to decrement the
activation, A;, of chunks as alertness levels decline. To
accomplish this, a scaling parameter, F, (for fatigue-declar-
ative), was added, which can range from 0 to 1 and serves
as a multiplicative moderator of base-level activation:

A =FaB)+Y W;Si—Dy+o (Ib)
J

In this model the declarative knowledge is mostly well-
practiced and highly available, yet it is still subject to the
effects of sleep deprivation. The main impact of degraded
alertness in this model is to increase retrieval times for
declarative knowledge. The time to retrieve a chunk is re-
lated to its activation through Eq. (2):

Ti = e_Ai (2)

In Eq. (2), T;is the time it takes to retrieve chunk 7, and A4,
is the activation of the chunk from Eq. (1b). Thus, as acti-
vation levels decline in the model, retrieval times increase.

Interestingly, longer retrieval times in the model impact
both response times and accuracy. This is because the stim-
uli in the SAST are presented for only a brief time (200 ms
each). Thus, if the model “falls behind” as it is encoding the
components of the problem, it may fail to direct attention
to the second number or the operator before they are
removed from the screen. In these cases, the model is left

3 In ACT-R, the variance of the distribution of the noise is defined by
the equation:

22
s
0'2—7—

3

where s is the parameter set by the modeler. In this model, s = 0.25.

to respond with a partial representation of the problem,
which leads to guessing and increases the error rate. Thus,
the retrieval of symbolic representations of visually-pre-
sented numbers and operators is an influential component
of the model.

Of course, increased retrieval times translate directly
into longer response times by impacting the latency of
the retrieval of the math fact from declarative memory
once the problem has been encoded. As demonstrated
below, decreased activation of declarative knowledge is
sufficient in the context of the ACT-R model to account
for the observed changes in human performance on the
SAST.

3.2. Integration of mathematical estimates of alertness

It is possible to directly manipulate F,;in Eq. (1b), which
produces changes in model performance that approximate
the observed changes in human behavior. While the ability
to fit the data provides encouraging evidence to support the
theoretical mechanism, unconstrained manipulation of F,
allows a degree of freedom for each session in the empirical
study (44 total, or one for every pair of data points in
Fig. 1). To add theoretical constraint to the process of
assigning parameter values, we constrained the dynamics
of F;using a mathematical model of alertness. As described
in the introduction, these models capture a commonly
observed trend in empirical research on the impact of sleep
loss. That pattern — a generalized decline modulated by a
circadian cycle — was found in our empirical results. This
created an opportunity to constrain the parameters in
our model by using an empirically-derived theory of how
those factors impact overall cognitive performance.

In this research, we utilized predictions from the Circa-
dian Neurobehavioral and Alertness model, or CNPA
(Jewett & Kronauer, 1999). The model generates a predic-
tion of cognitive throughput, which we characterize more
generally as alertness. In CNPA, alertness falls according
to a sigmoidal function with time awake, rises according
to a saturating exponential function during sleep, and fluc-
tuates in a sinusoidal manner representing circadian
rhythms. Though not influential in the current context,
the model also incorporates a mechanism for sleep inertia,
which dissipates asymptotically as time awake increases.
The predictions of the model for the protocol used in the
experiment are shown in Fig. 2. These predictions are
derived from the sleep/wake schedule of participants in
the empirical study, and are produced with zero free
parameters.

A more detailed description of the mechanisms in
CNPA is beyond the scope of this paper, but excellent
descriptions of this model and other models of alertness
are available elsewhere (e.g., Jewett & Kronauer, 1999;
McCauley et al., 2009; Neri, 2004). A critical feature that
is shared by all of these models is that they characterize
the fluctuations in task performance and physiological
measures across periods of total sleep deprivation (see
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Fig. 2. Cognitive throughput predictions from the Circadian Neurobe-
havioral Performance and Alertness (CNPA) model across 88 h of total
sleep deprivation (TSD).

Van Dongen (2004) for a review and evaluation of seven
such models, including CNPA). The correlations of the
empirical data to the cognitive throughput predictions of
CNPA were —.77 for response time and .54 for accuracy.

Importantly while the qualitative trends are captured
relatively well by CNPA, specific estimates for response
time and accuracy are not made. To get such estimates, it
would be necessary to scale alertness values to fit each of
those dependent measures. In contrast, our approach was
to use CNPA to constrain changes in F,; We then ran
the ACT-R model to produce predictions of task perfor-
mance, including response times and accuracies.

To identify constrained estimates of F, for our model,
we followed a two-step process. Initially, we manipulated
the activation scaling parameter (F,;) across a wide range
of values to assess the ability of the mechanism to account
for the full variability in human performance data from the
empirical study (44 degrees of freedom). This was neces-
sary, as there are no existing data or models using this
mechanism that can be leveraged to constrain parameter
values in an a priori manner. However, to add theoretical
constraint to the changes in F,;, we pursued an important
second step indicated above, where we linked the dynamics
of the proportional scaling to predictions of alertness from
the CNPA model described above (Jewett & Kronauer,
1999).

Our model was constrained using a linear function
that mapped the cognitive throughput predictions of
CNPA to the proportional scaling of activation in
ACT-R (F,). This process used the best-fitting values of
Fq4 from the initial step to identify the best-fitting slope
(0.632) and intercept (0.291) to map cognitive throughput
predictions from CNPA into values for F, (2 degrees of
freedom). This process is illustrated in Fig. 3. The corre-
lation between the unconstrained values of F; and the
cognitive throughput predictions of CNPA is .882, sup-
porting the use of CNPA to constrain the dynamics of
this parameter in the model.

1
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0.9

0.8 —Constrained Using CNPA

0.7
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F, = 0.632(CT) +0.291

o +b——"—r—
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Fig. 3. Best-fitting values of F,; and derived values estimated using a linear
mapping between cognitive throughput (CT) estimates from the Circadian
Neurobehavioral Performance and Alertness (CNPA) model and F,.

It is important to note the novel theoretical claims that
are embodied by this integration of mathematical models
of alertness with our computational cognitive model in
ACT-R. We are not proposing a novel theory to explain
the dynamics of performance resulting from fatigue. That
is the specific strength of CNPA that we are leveraging in
this research. Rather, we are proposing a specific, quantita-
tive mechanism to explain one way in which fluctuations in
alertness affect information processing in the human cogni-
tive system, and how those changes in information process-
ing translate into variations in task performance. The
results are presented in the next section.

4. Model evaluation

Using the estimated values of F,, for each of the 88 ses-
sions in the empirical data the model was run through 200
iterations of the SAST (50 trials per iteration). Many model
iterations are needed to get a fair assessment of the central
tendency of the model at that F; value, due to the impact of
stochasticity on individual model runs created by random
variation in problem selection (e.g., addition vs. subtrac-
tion), and noise in the activation calculation (see Eq.
(1b)). The model’s performance is shown in Fig. 4, along
with the original human performance data. The correlation
to human performance was 0.64 for performance accuracy
(Fig. 4a), and 0.79 for response times (Fig. 4b). These
results derive from the correspondence of the empirical
data from humans to the typical pattern of decline associ-
ated with extended time awake. They are similar to the cor-
relations reported above that compared human
performance directly to CNPA. Note that the somewhat
lower correlation for accuracy most likely stems from
greater variability across sessions in the human data in con-
junction with a relatively restricted performance range on
this measure.

The addition of ACT-R and the ability to simulate
human cognitive processing and behavior leads to the
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Fig. 4. Average percent correct (Panel A) and response times (s; Panel B)
for human participants and the ACT-R model performing the SAST
across 88 h of total sleep deprivation. Error bars show standard error for
the human data. Parameters used in generating model performance data
were constrained using a linear function to map estimates of alertness
from the CNPA mathematical model into the activation scaling parameter
(see Fig. 3).

quantitative estimates of performance in Fig. 4. The model
captures the trends in the human data, although it misses
the unusually high circadian deflections on Day 2 of total
sleep deprivation. The Root Mean Squared Deviation
(RMSD) between the model and the data is 7.1% for accu-
racy and 235 ms for response times. These results arise
from the interactions among activation values, retrieval
times, and the environmentally paced presentation of the
stimuli in the task. Overall, they provide encouraging sup-
port for the theoretical account. We conclude by address-
ing a number of implications of this research.

5. Conclusions

The research and results presented here speak to issues
that are theoretical, methodological, and practical. The
theoretical account embodied in our computational model
— that one impact of sleep loss is to diminish the accessibil-

ity of declarative knowledge — is a novel, more detailed per-
spective on changes in cognitive processing stemming from
fluctuations in alertness than has been discussed in the lit-
erature previously. The model shows the explanatory
power of this account in the context of the SAST. Our
account may be viewed as a specific instantiation of cogni-
tive slowing, a pervasive idea in research on sleep and per-
formance (e.g., Dinges & Kribbs, 1991). Slowing in this
model is a consequence of decreases in activation, which
increase the time required to access declarative knowledge
for use in ongoing cognitive processing.

With less well-learned knowledge, decreased activation
may lead to retrieval failures. These would produce sub-
stantially longer delays and qualitative changes in task per-
formance that could be viewed as lapses, which is another
common construct in theoretical accounts of fatigue stem-
ming from sleep loss (e.g., Dinges & Kribbs, 1991; Doran
et al., 2001). Our model represents a new perspective on
the underlying causes, and the quantitative nature of our
mechanism allows for a more detailed evaluation of the
theoretical claims than has been achieved previously. In
this task, dynamic changes in activation lead to longer
retrieval times in the model, which increases both reaction
times and error rates in ways that are similar to changes
observed in human participants.

There is little that limits this mechanism to ACT-R. Any
cognitive architecture that posits a declarative memory sys-
tem with a corresponding activation calculus should sup-
port a mechanism to degrade access to that knowledge to
represent the negative consequences of fatigue. In addition,
our account is not tied directly to CNPA. There are several
mathematical models of alertness (see Neri, 2004), and
extending these models remains an important area of
research (e.g., McCauley et al., 2009). As improvements
are made to the ability to represent the overall dynamics
of alertness as a function of time awake and circadian
rhythms, other models can be used in the modeling process
as well.

It is also important to acknowledge that some alternative
accounts cannot be dismissed entirely based upon the results
from this study. Other mechanisms in ACT-R influence the
speed of processing, the likelihood of retrieving the correct
information in a particular context, and the efficient process-
ing of environmental information in the service of task
performance. We have considered some of these, such as
the impact of noise (¢) in Eq. (la)., mechanisms in
ACT-R’s perceptual module (e.g., saccade time), and the
procedural mechanism we proposed in our work using a sus-
tained attention task. All of these represent mechanisms that
could be considered as influences on cognitive processing.
However, in our model of this task, none of them were able
to account simultaneously for changes in accuracy and
response time as time awake increased.

Both activation noise and saccade time impact accuracy,
but have no consistent effect on response times. Thus, if
these mechanisms were proposed, additional mechanisms
would still be needed to account for changes in response
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latencies. The procedural mechanism we have proposed in
previous research (Gunzelmann, Gross, et al., 2009) is sim-
ilarly limited as an explanatory mechanisms in the current
context. This latter finding is not particularly surprising,
since the information processing requirements of a sus-
tained attention task are quite different from those of the
SAST, which is part of the motivation for using the SAST
in this research. In contrast to these alternatives, however,
decreased activation provides a straightforward account
for why response times increase, and also parsimoniously
explains why errors increase as well.

In addition to presenting a novel mechanism to explain
the impact of fatigue, we have illustrated the value to be
gained by combining theories and models from multiple
levels of abstraction to arrive at more comprehensive
accounts of important phenomena. Our proposal — that
declarative knowledge activation declines with sleep loss
— helps to extend psychological theory in this area. At the
same time, we draw upon existing biomathematical models
that characterize the dynamics of human alertness stem-
ming from time awake and circadian rhythms. This helps
to connect our mechanism with an extensive literature that
has documented the way in which cognitive performance
declines in general when individuals are kept awake for
extended periods of time.

Importantly, the theoretical elements of our account are
combined within a cognitive architecture, which serves as a
framework for integration across diverse areas of psycho-
logical study. ACT-R provides a validated set of mecha-
nisms to represent the dynamics of human memory and
other components of cognition, providing a theory of
human information processing that is essential to the
research goals. The qualitative fit to the human data (cor-
relation) derives substantially from the dynamics of alert-
ness that are predicted by the mathematical model.
Meanwhile, the quantitative fit (RMSD) is a function of
the theoretical mechanism we have proposed, operating
through the information processing components of ACT-
R to generate behavioral data as a product of simulating
human performance on the task.

Beyond the combined scientific contribution of the
experimental results and the evaluation of the explanatory
model, there are practical implications of this research in
the long term. In psychological research, degradations in
the activation of declarative knowledge resulting from
inadequate sleep could have a significant influence on the
results of empirical studies that psychologists routinely
conduct in the laboratory. Minimally, our results raise
some issues to be aware of in conducting such studies
and interpreting the results, particularly given evidence
suggesting that a majority of undergraduates function on
inadequate sleep (Hicks, Fernandez, & Pellegrini, 2001).

Of course, a great deal of additional research will be nec-
essary to arrive at a comprehensive understanding of how
fatigue impacts other components of cognitive functioning
to lead to degradations in task performance. Our research
strategy so far has been to identify tasks that allow us to

effectively isolate components, like retrieving declarative
knowledge in the SAST, to identify the relationships
between fluctuations in alertness and those particular infor-
mation processing mechanisms. To be of use in circum-
stances like those outlined in the introduction, the critical
step of integrating those elements into a comprehensive
and generalizable theory is necessary. This remains an
important objective. However, we also feel that it is impor-
tant to get the details right by validating our proposed
mechanisms using carefully controlled laboratory studies
of human performance. This is essential if models are to
make accurate predictions in more complex, naturalistic
task contexts.

Making accurate predictions outside the laboratory is an
important long-term goal. Fatigue has been implicated in a
variety of catastrophic events (e.g., Caldwell, 2003; Dinges,
1995), and is a causal factor in a distressingly high propor-
tion of traffic accidents (e.g., Klauer et al., 2006; Pack et al.,
1995). Understanding the precise cognitive effects of sleep
deprivation may allow for the development of tools or
the identification of policies that effectively reduce the like-
lihood of such unfortunate events. As noted in the intro-
duction, process accounts of how and why performance
declines may inform issues and decisions that are outside
the scope of current mathematical accounts (see Gunzel-
mann and Gluck (2009) for an illustration). By using com-
putational modeling to explore potential mechanisms and
understand the impact of fluctuations in alertness on differ-
ent components of cognition, a more complete theory can
emerge and more robust predictions about performance
on particular tasks can be made.
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