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The ACT-R Cognitive Architecture 

Symbolic Level 

ACT-R is a production system theory that models the steps of cognition by a sequence of 

production rules that fire to coordinate retrieval of information from the environment and 

from memory.  It is a cognitive architecture that can be used to model a wide range of 

human cognition.  It has been used to model tasks from memory retrieval (Anderson, 

Bothell, Lebiere & Matessa, 1998) to visual search (Anderson, Matessa & Lebiere, 

1997).  The range of models developed, from those purely concerned with internal 

cognition to those focused on perception and action, makes ACT-R a plausible candidate 

to model a task like the air traffic control simulation described previously because the 

task includes all of these various components.  In all domains, ACT-R is distinguished by 

the detail and fidelity with which it models human cognition.  It makes claims about what 
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happens cognitively every few hundred milliseconds in performance of a task.  ACT-R is 

situated at a level of aggregation considerably above basic brain processes but 

considerably below significant tasks like air-traffic control.  The new version of the 

theory has been designed to be more relevant to tasks which require deploying significant 

bodies of knowledge under conditions of time pressure and high information-processing 

demand.  This is because of the increased concern with the temporal structure of 

cognition and with the coordination of perception, cognition, and action. 

 

Figure 1 displays the information flow in the ACT-R 4.0 architecture (Anderson & 

Lebiere, 1998).  There are essentially three memories -- a goal stack that encodes the 

hierarchy of intentions guiding behavior, a procedural memory containing production 

rules, and a declarative memory containing chunks.  These are all organized through the 

current goal that represents the focus of attention.  The current goal can be temporarily 

suspended when a new goal is pushed on the stack.  The current goal can be popped in 

which case the next goal will be retrieved from the stack.  Productions are selected to fire 

through a conflict resolution process that chooses one production from among the 

productions that match the current goal.  The selected production can cause actions to be 

taken in the outside world, can transform the current goal (possibly resulting in pushes 

and pops to the stack), and can make retrieval requests of declarative memory (such as 

what is the sum of 3 and 4?).  The retrieval result (such as 7) can be returned to the goal.  

The arrows in Figure 1.1 also describe how new declarative chunks and productions are 

acquired.  Chunks can be added to declarative memory either as popped goals reflecting 

the solutions to past problems or as perceptions from the environment.  Productions are 
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created from declarative chunks called dependencies through a process called production 

compilation which takes an encoding of an execution trace resulting from multiple 

production firings and produces a new production that implements a generalization of 

that transformation in a single production cycle. 

 

<Insert Figure 1 here> 

 

Subsymbolic Level 

ACT-R can be described as a purely symbolic system in which discrete chunks and 

productions interact in discrete cycles.  However, ACT-R also has a subsymbolic level in 

which continuously varying quantities are processed, often in parallel, to produce much 

of the qualitative structure of human cognition.  These subsymbolic quantities participate 

in neural-like activation processes that determine the speed and success of access to 

chunks in declarative memory as well as the conflict resolution among production rules.  

ACT-R also has a set of learning processes that can modify these subsymbolic quantities.  

Formally, activation reflects the log posterior odds that a chunk is relevant in a particular 

situation.  The activation Ai of a chunk i is computed as the sum of its base-level 

activation Bi plus its context activation: 

 

Ai = Bi + Wj

j

! Sji      Activation Equation 
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In determining the context activation, Wj designates the attentional weight given the focus 

element j.  An element j is in the focus, or in context, if it is part of the current goal chunk 

(i.e. the value of one of the goal chunk’s slots).  Sji stands for the strength of association 

from element j to a chunk i.  ACT-R assumes that there is a limited capacity of source 

activation and that each goal element emits an equal amount of activation. Source 

activation capacity is typically assumed to be 1, i.e. if there are n source elements in the 

current focus each receives a source activation of 1/n.  The associative strength Sji 

between an activation source j and a chunk i is a measure of how often i was needed (i.e. 

retrieved in a production) when chunk j was in the context.  Associative strengths provide 

an estimate of the log likelihood ratio measure of how much the presence of a cue j in a 

goal slot increases the probability that a particular chunk i is needed for retrieval to 

instantiate a production.  The base level activation of a chunk is learned by an 

architectural mechanism to reflect the past history of use of a chunk i: 

 

Bi = ln tj
!d
" ln

nL!d

1! dj=1

n

#
    

Base-Level Learning Equation 

 

In the above formula tj stands for the time elapsed since the jth reference to chunk i while 

d is the memory decay rate and L denotes the life time of a chunk (i.e. the time since its 

creation). As Anderson and Schooler (1991) have shown, this equation produces the 

Power Law of Forgetting (Rubin & Wenzel, 1996) as well as the Power Law of Learning 

(Newell & Rosenbloom, 1981).  When retrieving a chunk to instantiate a production, 

ACT-R selects the chunk with the highest activation Ai. However, some stochasticity is 
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introduced in the system by adding gaussian noise of mean 0 and standard deviation σ to 

the activation Ai of each chunk. In order to be retrieved, the activation of a chunk needs to 

reach a fixed retrieval threshold τ that limits the accessibility of declarative elements. If 

the gaussian noise is approximated with a sigmoid distribution, the probability P of chunk 

i to be retrieved by a production is: 

 

P =
1

1+ e
!
A
i
!"

s

      Retrieval Probability Equation 

 

where s=√3σ/π. The activation of a chunk i is directly related to the latency of its 

retrieval by a production p. Formally, retrieval time Tip is an exponentially decreasing 

function of the chunk’s activation Ai: 

 

Tip = Fe
! fAi

      Retrieval Time Equation 

 

where F is a time scaling factor. In addition to the latencies for chunk retrieval as given 

by the Retrieval Time Equation, the total time of selecting and applying a production is 

determined by executing the actions of a production’s action part, whereby a value of 50 

ms is typically assumed for elementary internal actions. External actions, such as pressing 

a key, usually have a longer latency determined by the ACT-R/PM perceptual-motor 

module (Byrne & Anderson 1998).  In summary, subsymbolic activation processes in 

ACT-R make a chunk active to the degree that past experience and the present context (as 

given by the current goal) indicates that it is useful at this particular moment. 
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Just as subsymbolic activation processes control which chunk is retrieved from 

declarative memory, the process of selecting which production to fire at each cycle, 

known as conflict resolution, is also determined by subsymbolic quantities called utility 

that are associated with each production.  The utility, or expected gain, E of a production 

is defined as: 

 

E = P •G ! C       Expected Gain Equation 

 

where G  is the value of the goal to which the production applies, and P and C are 

estimates of the goal’s probability of being successfully completed and the expected cost 

in time until that completion, respectively, after this production fires.  Just as for retrieval, 

conflict resolution is a stochastic process through the injection of noise in each 

production’s utility, leading to a probability of selecting a production i given by: 

 

p(i ) =
e

Ei
t

e

Ej

t

j

!

     Conflict Resolution Equation 

 

where t=√6σ/π.  Just as for the base-level activation, a production’s probability of 

success and cost are learned to reflect the past history of use of that production, 
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specifically the past number of times that that production lead to success or failure of the 

goal to which it applied, and the subsequent cost that resulted, as specified by: 

 

P =
Successes

Successes + Failures
   Probability Learning Equation 

 

C =
Costs!

Successes + Failures
    Cost Learning Equation 

 

Costs are defined in terms of the time to lead to a resolution of the current goal.  Thus the 

more/less successful a production is in leading to a solution to the goal and the more/less 

efficient that solution is, the more/less likely that production is to be selected in the 

future. 
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Experiment I Model 

Modeling Methodology 

If it is to justify its structural costs, a cognitive architecture should facilitate the 

development of a model in several ways.  It should limit the space of possible models to 

those that can be expressed concisely in its language and work well with its built-in 

mechanisms. It should provide for significant transfer from models of similar tasks, either 

directly in the form of code or more generally in the form of design patterns and 

techniques.  Finally, it should provide learning mechanisms that allow the modeler to 

only specify in the model the structure of the task and let the architecture learn the details 

of the task in the same way that human cognition constantly adapts to the structure of its 

environment.  These architectural advantages not only reduce the amount of knowledge 

engineering required and the number of trial-and-error development cycles, providing 

significant savings in time and labor, but also improve the predictiveness of the final 

model.  If the “natural” model derived a priori from the structure of the task, the 

constraints of the architecture and the guidelines from previous models of related tasks 

provide a good fit of the empirical data, one can be more confident that it will generalize 

to unforeseen scenarios and circumstances than if it is the result of post hoc knowledge 

engineering and data analysis.  That is the approach that we have adopted in developing a 

model of this task, and indeed more generally in our use of the ACT-R architecture. 
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When faced with developing a model of this task, we did not try to reverse-engineer from 

their data and protocols which techniques and strategies subjects used when confronted 

with the task, but instead we asked ourselves which ACT-R model would best solve the 

task given the architectural constraints.  An additional emphasis in developing the model 

was on simplicity, both because of the time constraints provided by the fly-off and 

because since the subjects had only had a limited amount of practice with the task it was 

fairly unlikely that they had developed highly elaborate strategies.  Generally, for each 

phase, the total development time, including the time-consuming process of finding the 

best way to interface with the simulation, was less than 6 weeks, and the time to develop 

the model itself was less than a week.  A more time-consuming part of the process is the 

repeated tweaking of the model (both in terms of real-valued parameters as well as 

symbolic knowledge structures) to attempt to improve the fit to the data.  This practice, 

however widespread, can take arbitrarily large amounts of time and often results in very 

little meaningful improvements to the model.  Our experience here confirmed that it 

would best be left to a minimum if tolerated at all.  Indeed, from our perspective this 

project illustrated quite nicely the dual advantage of cognitive architectures.  Because 

they provide considerable constraints upon the mechanisms and parameters to be used for 

building human performance models, they limit the degrees of freedom where other, non-

first-principled methods have to resort to parameter-fitting and further validation.  

Moreover, because of those constraints and the leverage of built-in mechanisms, the 

development of the model is much more efficient, making human performance models 

more affordable for their many potential applications. 
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One common design pattern in ACT-R models of similar tasks (e.g. Lee & Anderson 

2001) is the concept of unit task (Card, Moran & Newell, 1983).  Unit tasks correspond 

to subtasks of more complex tasks that are associated with a specific goal in a given 

context.  That decomposition has been shown to have significant psychological validity 

in the prediction of subject performance (Corbett, Anderson & O’Brien, 1995).  Unit 

tasks further the goal of simplicity because they provide a way to decompose a model of 

a complex task into independent sets of productions applying in specific situations.  

Moreover, unit tasks correspond directly to the concept of goal type in ACT-R, with each 

goal of that type corresponding to a specific instance of that unit task and productions 

that match that goal type corresponding to the knowledge required to solve that unit task.  

The decomposition of ACT-R models is similar to the software engineering concept of 

object-oriented programming, with classes corresponding to goal types, instances of those 

classes corresponding to chunks (goals) of that type, and methods applying to objects of 

that class corresponding to productions that apply to goals of that type. 

 

Of course unit task decomposition is not merely a software engineering principle for 

developing cognitive models, but rather it corresponds to an underlying psychological 

reality as well.  The unit tasks for this simulation are fairly clearly identified.  In both the 

aided and un-aided conditions, processing an aircraft that requires action by the central 

controller is a clearly defined unit task.  In the color (aided) condition, scanning the radar 

screen for an aircraft that turned color, identifying its need for action, is another unit task.  

Similarly, in the text (un-aided) condition, the subtasks of scanning a single text window 

or radar screen area constitute unit tasks as well.  Finally, in the text condition, selecting 
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the next part of the screen to scan is the top-level unit task.  Those five unit tasks define 

the structure of the ACT-R model and the procedural knowledge required to solve them 

will be described in detail in the following subsections. 

 

Another design pattern that appears in countless ACT-R models (e.g. cognitive 

arithmetic, alphabet arithmetic, instance-based problem solving, etc) deals with the trade-

off between trying to retrieve an answer from memory, which tends to be fastest but most 

error-prone, and attempting to re-derive it using backup methods such as computation or 

perceptual scanning.  In this simulation, this problem appears in many instances, such as 

identifying the position of an aircraft from its identifier when scanning a text window, or 

deciding whether an aircraft has been processed when scanning it on the radar screen.  

Both of these questions could be answered1 either by attempting to retrieve a related 

memory (respectively of scanning or processing that aircraft) or by searching the proper 

screen area (respectively the radar screen or a text window) for the information. While 

ACT-R provides the capacity for the model to decide between each course of action 

based on their expected cost (in terms of time to perform the action) and probability of 

success (in providing the needed information), this requires learning from experience 

with the system which wasn’t the focus of the phase I modeling effort (but was 

highlighted in the phase II model as will be seen in a later section).  Instead, as is often 

                                                
1 There might be cases when the information is not present on the screen, such as when a 

text message pertaining to an aircraft has scrolled off the top of the window or when an 

aircraft mentioned in a message has exited the radar screen, but the display changes 

slowly enough that those cases are relatively rare. 
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the case, retrieval from memory is preferred over explicit scanning because of its 

relatively low cost.  Only if that retrieval fails, either because the chunk encoding the 

information wasn’t present in memory or because its activation had decayed below the 

retrieval threshold, will the strategy of explicit scanning be selected.  This pattern of 

attempting to retrieve information from memory and only when it fails is a pervasive one 

in ACT-R models, and one that is transparently supported by the architecture.  As the 

information is re-created from the environment or explicit computation, the activation of 

the chunk encoding it will gradually rise with practice until it can retrieved directly.  This 

process of transition from explicit methods to a reliance on memory is a pervasive aspect 

of human cognition that ACT-R can account for in a direct, straightforward manner 

through its activation calculus. 

 

Finally, a key aspect of our methodology that is also pervasive in ACT-R modeling 

(Anderson & Lebiere, 1998) is the use of Monte Carlo simulations to reproduce not only 

the aggregate subject data such as the mean performance or response time but also the 

variation that is a fundamental part of human cognition.  In that view, the model doesn’t 

represent an ideal or even average subject but instead each model run is meant to be 

equivalent to a subject run, in all its variability and unpredictiveness.  For that to happen, 

it is essential that the model not be merely a deterministic symbolic system but be able to 

exhibit meaningful non-determinism.  To that end, randomness is incorporated in every 

part of ACT-R’s subsymbolic level, including chunk activations which control their 

probability and latency of retrieval, production utilities which control their probability of 

selections, and production efforts which control the time that they spent executing.  
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Moreover, as has been found in other ACT-R models (e.g. Lebiere & West, 1999; 

Gonzalez, Lebiere & Lerch, 2003), that randomness is amplified in the interaction of the 

model with a dynamic environment: even small differences in the timing of execution 

might mean missing a critical deadline, which results in an airplane going on hold (with 

the resulting 50-point penalty), which requires immediate attention, which might cause 

another missed deadline and so on.  The magnitude of the sensitivity to random 

fluctuations was brought to our attention when an early, noise-free version of the model 

was run in real-time against the simulation.  Even though both the model and the 

simulation were deterministic and the only source of randomness was small sub-second 

variations in synchronization between the two systems, performance varied by as much 

as 100 points in the same condition. 

 

To model the variations as well as the mean of subject performance, the model was 

always run as many times as there were subject runs.  For that to be a practical strategy of 

model development, it is essential that the model run very fast, ideally significantly faster 

than real-time.  Our model ran up to 5 times real-time, with the speed limitation being 

due entirely to the communication bottleneck between model and simulation rather than 

the computational requirements of ACT-R, which can run at several hundred times real-

time.  This speed made it possible to run a full batch of 48 scenarios in about an hour and 

a half, enabling a relatively quick cycle of model development.  One source of variation 

in subject performance that we could not exploit is individual differences.  ACT-R has 

been able to provide a fine-grained account of individual differences in working memory 

performance through continuous variations in the value of the architectural parameter W 
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controlling spreading activation (Lovett, Reder & Lebiere, 1997).  An obvious way to 

account for individual differences in this task would be to include variations of the effort 

production parameter controlling the speed of execution of the model, in a manner 

consistent with the slow man-fast man distinction of Card, Moran and Newell (1983).  

However, for the sake of simplicity and the avoidance of arbitrary degrees of freedom, 

we left the parameters unchanged.  Generally, all parameters controlling the model were 

left at their default values, established either by the architecture or by existing models.  

The rate of base-level decay d was 0.5 and the level of activation noise was 0.25, both of 

which have been consistently used in many ACT-R models.  The retrieval threshold was 

0.0 and the latency factor was 1.0, both values being architectural defaults.  The effort for 

productions that do not involve any perceptual or motor actions was left at the 

architectural default of 50msec.  Two parameters were roughly estimated: the effort for 

perceptual productions was set at 500 msec and the effort for productions involving 

actions (typically move the mouse to a target and click) was set at 1sec. 

 

Model 

Six chunk types are defined using the chunk-type command.  They consist of the name 

of the chunk type and the associated slots.  One chunk type, rule, holds the basic content 

of the instructions to define each category of event by relating a specific action (e.g. 

contact) to the color used for that event in the aided condition (e.g. yellow) and the 

amount of penalty points associated with failing to act on it in a timely fashion (e.g. 50).  

Five chunks of that type are defined using the add-dm command to encode that 
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information for all five event types.  The initial base-level activation of those chunks is 

set by the command sdp to reflect the level of practice at that point in the simulation, i.e. 

120 references over the last hour (3600 seconds), to reflect the instruction study phase as 

well as the first block of practice.  These history parameters will determine the activation 

of those chunks according to the base-level learning equation, which in turn will 

determine how fast and how reliably they can be retrieved.  These chunks will only be 

used in the aided (color-coded) condition to map color of aircraft to required action.  All 

other chunks defined by the add-dm command are simply symbols used in other chunks 

(which the system would define by default) and the initial goals for the color and text 

condition.  The model tests the type of scenario obtained from the simulation to decide 

which of these two chunks to set as the initial goal.  The other five chunk types that are 

defined correspond to the goals used for the five unit tasks that compose this task.  Those 

goal types are color-goal, text-goal, scan-text, scan-screen and process.  They and their 

associated procedural knowledge will be described in detail in the rest of this section.  

The productions that apply to each goal type will be listed in a table using an informal 

English description that is meant to capture their function without obscure syntactic 

details.  Production names are in bold while words in italics correspond to production 

variables and words in bold within the production text correspond to specific chunks 

(constants).  The order in which the productions are listed correspond to their order of 

priority in the conflict resolution process, with the earlier productions being favored and 

the later productions only allowed to fire if the preceding ones cannot match. 
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Table 2.1 presents the productions for the top-level unit task color-goal.  The production 

color-target-detection detects a colored aircraft on the radar screen and notes the aircraft 

identity in the goal.  The production color-target-acquisition notes the aircraft color in 

the goal and the production color-action retrieves from memory the chunk linking that 

color to the required action and pushes a subgoal to process that action on the aircraft.  If 

none of these productions can apply, the production wait fires, essentially filling the 

50msec of this production cycle before the next cycle of detection can take place.  The 

productions above would provide a perfectly functional treatment of the color-goal unit 

task, but there is one additional production called subgoal-next which has to do with 

onset detection.  If an aircraft turns color while a subgoal to process another aircraft is the 

current goal, the model will detect that aircraft while it processes the subgoal and create a 

prospective subgoal to process that new aircraft.  That subgoal will be returned to the 

parent color-goal when the process subgoal is completed and the production subgoal-

next will immediately push it without having to fire the productions to detect the aircraft, 

map its color to the action and create a new subgoal.  This treatment is consistent with 

subject awareness of event onset and predicts the right slope for the time to handle an 

aircraft as a function of intervening events. 

 

Subgoal-next 

 IF the goal is of type color-goal 

      and a subgoal to process a colored aircraft was formulated previously 

 THEN push that subgoal 

Color-target-detection 
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 IF the goal is of type color-goal 

      and a colored aircraft is present on the screen 

 THEN note that aircraft 

Color-target-acquisition 

 IF the goal is of type color-goal and a colored aircraft has been detected 

 THEN note its color 

Color-action 

 IF the goal is of type color-goal and an aircraft and its color have been identified 

      and a rule chunk can be retrieved linking color to action 

 THEN push subgoal to process action on aircraft at current position 

Wait 

 IF the goal is of type color-goal 

 THEN do nothing 

 

Table 2.1: Productions applicable to the unit task color-goal 

 

Table 2.2 presents the productions for the top-level unit task text-goal.  The text 

condition is more complex than the color condition because relevant events are much 

harder to detect and that is reflected in its unit task structure.  Unlike color-goal, the text-

goal unit task does not directly detect aircraft that require action and subgoal any process 

goal but instead directs attention to specific areas of the screen in which to perform that 

detection.  There are four screen areas to be scanned, the three text message windows, 

left for incoming aircraft, right for exiting aircraft and low for speed changes, which are 

scanned by the unit task scan-text, and the radar screen area between the green and 



Constrained Functionality: ACT-R Model 

 18 

yellow lines for exiting aircraft, which are scanned by the unit task scan-screen.  The 

latter is necessary because the central controller has to initiate the transfer of exiting 

aircraft to other controllers, whereas all other actions are taken in response to a text 

message.  There are four productions that implement a sequential scan of the four areas 

by pushing a subgoal to scan each area given the previous one.  This solution was chosen 

for its simplicity and systematicity2, but other are possible such as a random scan or a 

scan based on the probabilities of finding a new event in each of the four areas, a strategy 

that might be optimal and for which ACT-R’s utility learning mechanism would be well 

suited.  However, the data available was inconclusive on that aspect of subject behavior 

and finer-grained data such as eye movements would be needed to precisely determine 

subjects’ strategies in that regard.  Note that this systematic scan only happens when no 

event onset was detected in another window when scanning the present window. 

 

Between-left 

 IF the goal is of type text-goal and the last area scanned was between 

 THEN push a subgoal to scan the text area left starting at the bottom 

Left-right 

 IF the goal is of type text-goal and the last area scanned was left 

 THEN push a subgoal to scan the text area right starting at the bottom 

Right-low 

 IF the goal is of type text-goal and the last area scanned was right 

                                                
2 Indeed, the author significantly improved his personal performance by adopting that 

method. 
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 THEN push a subgoal to scan the text area low starting at the bottom 

Low-between 

 IF the goal is of type text-goal and the last area scanned was low 

 THEN push a subgoal to scan the screen area between 

 

Table 2.2: Productions applicable to the unit task text-goal 

 

Table 2.3 presents the productions for the unit task scan-text responsible for scanning a 

text window.  As initialized by the text-goal productions described previously, scan-text 

goals start scanning at the bottom of the screen.  This is contrary to the usual top-down 

scanning pattern, but new messages appear at the bottom of the screen and it is therefore 

the best place to look for them.  Subjects probably took some time to learn this scanning 

pattern but they are expected by that time in the simulation to have adopted the more 

efficient strategy.  Again, more detailed data such as eye movements, and data from 

earlier trials would be needed to conclusively answer the questions regarding the subjects 

scanning strategies.  The production find-flush-message scans upward from the current 

position (initially bottom) to find the next message that is flush against the left side of the 

window, indicating a message from an aircraft or another controller requesting action.  If 

no such message can be found, the production no-flush-message pops the goal, which 

returns control to the text-goal unit-task.  If a message is found requesting action, the 

model then tries to determine whether that action has already been completed.  The 

production memory-for-message searches declarative memory for a chunk recording the 

completion of a process goal for the task and aircraft indicated by the message.  Recall 
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that when completed goals are popped they become permanent declarative memory 

chunks that can be retrieved later.  However, retrieval of a chunk is subject to its 

activation reaching threshold, and failure to retrieving a trace of past execution is no 

guarantee that it didn’t happen.  Therefore if memory retrieval fails the production 

message-reply will scan down the text window from the current message for an indented 

message containing the acknowledgment message that would have resulted from taking 

that action.  If either a memory or a message indicating completion of the action is found, 

the goal is popped, because under the bottom up scanning strategy finding a message that 

had been attended to suggests that no unattended message older than the current message 

will be found.  As we will discuss shortly, this is not an ironclad guarantee and it may be 

a natural source of skipped messages that result in violations.  If no indication that the 

action requested by the message has taken place, the production subgoal-message-task 

pushes a subgoal to perform that action and clears the goal to allow further scanning to 

take place when that unit task is completed.  Note that the strategy of first trying to 

retrieve a piece of information from memory and then resorting to an explicit strategy to 

reconstruct that information if the retrieval fails is a very general design pattern in ACT-

R (e.g. Lebiere, 1998) that is very naturally supported by the architecture’s conflict 

resolution mechanism.  Since memory retrieval usually takes much less effort than 

implementing a complicated strategy, the utility learning mechanism will tend to assign a 

higher priority to the retrieval strategy which will then be attempted first.  Again, since 

learning was not the focus of this model and training data was not available, this learning 

mechanism was not activated and instead the production ordering was relied upon to 

indicate priority. 
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Again, this production set would provide a perfectly adequate implementation of the 

scan-text unit task.  But it would result in a very systematic pattern of execution by 

exhaustively scanning a text window to find and process all unattended events then move 

on to the next area and so on.  While it might result in the right aggregate performance 

(and indeed did in the first version of the model, as will be elaborated in the discussion 

section), its deliberate character would prevent it to display the subjects ability to 

promptly respond to a new event as indicated by the sharply decreasing curve of number 

and average time of responses as a function of intervening events.  The model needs to be 

able to focus on newly occurring events.  The production detect-onset-text provides that 

capacity by detecting the onset of a new message in other text windows and record in the 

current goal to focus attention to that window as soon as the current message has been 

processed.  The production focus-onset-text accomplishes that by focusing on a new goal 

to scan the text window in which the new message has appeared.  This onset detection 

mechanism has a number of interesting attributes.  First of all, the ability to detect the 

onset of a new event is very time-limited (fixed at 1 second in our model).  While the 

onset detection productions have the highest priority in their unit task, if the model is 

otherwise busy during that limited time window (such as by an event-processing 

subgoal), it might miss the event onset and fail to record it.  Second, only one event onset 

can be stored in the current goal and subsequent ones will not be recorded.  An 

alternative would be to have the most recent onset overwrite the older ones, but again 

finer-grained data would be needed to shed light on that question.  Third, the new goal to 

scan the text window in which the event onset appeared replaces the current goal rather 
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than being a subgoal.  This is consistent with viewing the goal stack as a limited memory 

and not relying on it to provide a perfect memory of past situations.  However, it also 

means that messages further up in the current window might not be processed because of 

the distraction of shifting to a new text window, constituting a very natural source of 

errors.  Indeed, it suggests a rational analysis (Anderson, 1990) of onset detections: while 

they provide the ability to opportunistically respond to newly occurring events and 

emergency situations, they distract from the task at hand and might be detrimental to its 

performance.  An onset detection mechanism along the lines of the one described here 

was subsequently added to ACT-R/PM (Byrne & Anderson, 2001), but much remains to 

be done to determine the proper treatment of onset detection in an integrated architecture 

such as ACT-R. 

 

Detect-onset-text 

 IF the goal is of type scan-text and the area scanned is window 

     and a message onset is detected in area next which is not window 

 THEN make a note to scan text area next 

Focus-onset-text 

 IF the goal is of type scan-text, no aircraft is selected and onset was detected in area next 

 THEN focus on a subgoal to scan text area next starting at bottom 

Find-flush-message 

 IF the goal is of type scan-text of area window and no aircraft is currently selected 

     and message is the next flush message in window going up from current position 

 THEN note the task, aircraft and controller in message 
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No-flush-message 

 IF the goal is of type scan-text and no aircraft is currently selected 

 THEN pop the current goal 

Memory-for-message 

 IF the goal is of type scan-text with current task task and aircraft aircraft 

      and there is a chunk for processing task task on aircraft aircraft 

 THEN pop goal 

Message-reply 

 IF the goal is of type scan-text of area window with current aircraft aircraft 

      and message is the next indented message in window containg aircraft going down 

            from current position 

 THEN pop goal 

Subgoal-message-task 

 IF the goal is of type scan-text with task task, aircraft aircraft and controller controller 

THEN clear goal and 

            push subgoal to process task task on aircraft aircraft with controller controller 

 

Table 2.3: Productions applicable to the unit task scan-text 

 

Table 2.4 presents the productions for the unit task scan-screen responsible for scanning 

the radar screen, more specifically the area between the green and yellow lines in which 

exiting aircraft that need to be transferred can be detected.  Because of the similarity 

between the two unit tasks, both of which consists in scanning a screen area to detect 

events that require actions, the set of productions for the unit task scan-screen is quite 
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similar to those for the unit task scan-text.  Scan-for-transfer scans the radar area for 

exiting aircraft, memory-for-transfer and trace-of-transfer search in declarative 

memory and the top right text window respectively if the aircraft has already been 

transferred.  If not, subgoal-transfer pushes a subgoal to transfer the aircraft.  If no more 

exiting aircraft can be detected, scan-done pops the goal.  The message onset detection 

productions detect-onset-screen and focus-onset-screen are similar to their counterpart 

in unit task scan-text.  

 

Detect-onset-screen 

IF the goal is of type scan-screen and no onset has been detected 

     and a message onset is detected in area next 

 THEN make a note to scan text area next 

Focus-onset-screen 

 IF the goal is of type scan-screen, no aircraft selected and onset was detected in area next 

 THEN focus on a subgoal to scan text area next starting at bottom 

Detect-red 

 IF the goal is of type scan-screen and no aircraft is selected 

     and a colored aircraft is present 

 THEN note position and controller associated with aircraft 

      and push subgoals to process both tasks for aircraft in position with controller 

Scan-for-transfer 

 IF the goal is of type scan-screen and no aircraft is currently selected 

      and aircraft is outgoing in the between area 

 THEN note aircraft with its position and associated controller 
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Scan-done 

 IF the goal is of type scan-screen and no aircraft is currently selected 

 THEN pop goal 

Memory-for-transfer 

 IF the goal is of type scan-screen with current aircraft and controller 

     and there is a chunk for processing aircraft with controller 

 THEN clear the goal 

Trace-of-transfer 

 IF the goal is of type scan-screen with current aircraft and controller 

     and there is an indented message for aircraft in text area right 

 THEN clear the goal 

Subgoal-transfer 

 IF the goal is of type scan-screen with current aircraft in position with controller 

 THEN clear goal 

             and push subgoal to process transfer on aircraft in position with controller 

 

Table 2.4: Productions applicable to the unit task scan-screen 

 

There are noteworthy differences as well.  First, the model does not assume any specific 

scan ordering but instead detects exiting aircraft in an arbitrary order.  Unlike the text 

window scanning for which a natural ordering existed, any order in scanning the between 

radar screen area (e.g. clockwise, counterclockwise, starting at any corner, etc) seems 

equally valid and indeed subject protocols indicating widely different strategies.  Again, 

more precise data such as eye movements would be needed to determine the answer.  



Constrained Functionality: ACT-R Model 

 26 

Second, the model avoided focusing on the same aircraft twice in the same unit task by 

using an attended feature similar to the one existing in ACT-R/PM.  This application 

actually suggests a possible answer to a longstanding question in ACT-R/PM regarding 

the duration of the attended feature tag: unit tasks provide natural boundaries to reset 

attended tags.  Third, there is an additional detection production detect-red that detects a 

red aircraft indicating holding violation in a manner similar to the color detection 

productions in the unit-task color-goal.  When a holding aircraft is detected, detect-red 

pushes two subgoals for that aircraft corresponding to the two actions that can be 

performed depending on the direction of the aircraft: accept and welcome for incoming 

aircraft and transfer and contact for outgoing aircraft.  That pipelining of actions certainly 

leads to more duplicated or incorrect messages than necessary, but a more precise 

treatment would require a complex reasoning process that would best be implemented as 

a separate unit task.  Subjects caught in a holding violation might not want to spend the 

time on such a process and might resort to this shotgun approach, and this would have 

significantly increased the model complexity as well.  Nonetheless, further analysis of 

subjects’ strategy choice in the case of holding infractions would be needed to sort out 

the matter, and too little data was available because of the relative rarity of that condition. 

 

Table 2.5 presents the productions for the unit task process responsible for actually 

processing an action request through a sequence of button clicks and mouse selections.  

This unit task is common to the color and text condition because although the information 

available will vary between conditions the basic logic of the unit task remains unchanged.  

The first action to perform is to click the button on the right side of the screen 
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corresponding to the requested action.  The production answer-speed-request 

determines if the aircraft is blocked and pushes the corresponding button.  The production 

answer-other-requests pushes the corresponding button for all other actions because no 

action-specific decision is necessary.  The next action is to select the aircraft.  However, 

in some conditions (e.g. responding to a text message) the location of the aircraft is not 

yet known and the aircraft will have to be located first.  The production memory-for-

position attempts to extract the aircraft position from an existing process chunk.  If that 

fails, the productions find-position-inner, find-position-between and find-position-

outer scan the radar screen area corresponding to the action requested (e.g. the outer area 

for accepting incoming aircraft) to find the aircraft position.  This is another instance of 

the retrieve-vs-compute design pattern encountered in the two previous unit tasks.  Once 

its position is determined the target can then be selecting by production click-target.  The 

production click-controller then selects the external controller associated to the aircraft, 

unless preempted by productions skip-speed-change-controller and skip-welcome-

controller that explicitly skip that step for the speed change and welcome actions 

respectively.  The click-send production then clicks the send button and pops the goal, 

which becomes a memory chunk encoding the processing of this task.  As in previous 

unit tasks, there is an additional production to detect the onset of an event, in this case the 

appearance of a colored aircraft on the radar screen, and creates a subgoal to process that 

aircraft when the current goal is completed.  That subgoal is then returned to the parent 

goal and pushed by the production subgoal-next in the color-goal unit task. 
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Next-target 

 IF the goal is of type process and the display condition is color 

      and a aircraft of color is detected 

      and there is a rule associating color with action 

 THEN note position of aircraft and 

            create a subgoal to process action on aircraft in position 

Answer-speed-request 

 IF the goal is of type process with action speed-change for aircraft in position 

     and step select 

 THEN determine if aircraft is blocked 

             and push button corresponding to accept-reject decision 

             and note that the step is now target 

Answer-other-requests 

 IF the goal is of type process with action and step select 

 THEN push button corresponding to action and note that the step is now target 

Memory-for-position 

 IF the goal is of type process with aircraft and no known position 

      and there is a chunk for processing aircraft in position 

 THEN note position 

Find-position-inner 

 IF the goal is of type process with action speed-change for aircraft and no position 

      and the location of aircraft in screen area inner is found to be position 

 THEN note position 

Find-position-between 

 IF the goal is of type process with action contact for aircraft with controller 
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      and no known position 

      and the location of aircraft in screen area between on controller side is position 

 THEN note position 

Find-position-outer 

 IF the goal is of type process with aircraft and no known position 

      and the location of aircraft in screen area outer is found to be position 

 THEN note position 

Click-target 

 IF the goal is of type process with aircraft in position and step target 

 THEN select aircraft in position and update step to controller 

Skip-speed-change-controller 

 IF the goal is of type process with action speed-change and step controller 

 THEN update step to send 

Skip-welcome-controller 

 IF the goal is of type process with action welcome and step controller 

 THEN update step to send 

Click-controller 

 IF the goal is of type process with aircraft step controller 

 THEN select controller associated with aircraft and update step to send 

Click-send 

 IF the goal is of type process with step send 

 THEN push button send and pop goal 

 

Table 2.5: Productions applicable to the unit task process 
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The final part of the model concerns the code at the top of the model that is used to 

compute the workload estimates.  While ACT-R has traditionally shied away from such 

meta-awareness measures and concentrated on matching directly measurable data such as 

external actions, response times and eye movements, it is by no means incapable of doing 

so.  For the purpose of this model, we proposed a measure of cognitive workload in ACT-

R grounded in the central concept of unit task.  Workload is defined as the ratio of time 

spent in critical unit tasks to the total time spent on task.  Critical unit tasks are defined as 

tasks that involve actions, such as the process goal that involves handling an event with 3 

or 4 mouse clicks, or tasks that involve some type of pressure, such as the scanning goal 

described above that results from an onset detection i.e. carries an expectation of a new 

event that needs to be handled promptly.  The ratio is scaled to fit the particular 

measurement scale used in the self-assessment report. 

 

Finally, two specific considerations need to be discussed.  First is the decision not to use 

ACT-R/PM.  That decision was primarily driven by practical considerations, including 

the tight development schedule for phase I and the fact that ACT-R/PM at the time only 

ran on the Macintosh while the D-OMAR simulation only ran on Windows.  While the 

model is at a slightly higher degree of abstraction than ACT-R/PM (for example, it 

performs a search of a list of messages in a single production), it operates in substantially 

similar ways and an ACT-R/PM version could be developed fairly straightforwardly by 

expanding those specific productions that currently call the interface code directly.  This 

would allow us to replace the only two parameters that we estimated, the average 

perception and action times, with more accurate ACT-R/PM predictions.  However, it is 
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an open question whether a higher degree of fidelity at the perceptual and motor level 

would necessarily lead to a better model of the relatively higher-level data (e.g. total 

penalty points) presented here.  But that question of the right level of analysis is a 

fundamental one that an ACT-R/PM version of this model would allow us to pursue. 

 

The second consideration is the inclusion on the web site and CD-ROM of the complete 

text of the model.  The first thing to point out is that the entire code of the model of a 

relatively complex task can indeed be included in a dozen fairly sparse pages.  This is a 

reflection of the architecture’s ability to generate complex behavior from a comparatively 

simple model.  More fundamentally, providing the running code of our models has been 

an increasingly important practice in the ACT-R community.  For example, the code 

from all the models described in our book (Anderson & Lebiere, 1998) is available on our 

web site (http://act.psy.cmu.edu) and can even be run directly on the web without having 

to download and install ACT-R.  A point-and-click web interface enables visitors to 

easily change the model parameters and re-run the model to determine if its predictions 

are overly sensitive to the values of the parameters.  Moreover, modelers are encouraged 

to adopt, if not pieces of models directly (which has been done, e.g. Byrne & Anderson, 

2001), certainly the design patterns used in other models, as we have attempted to do in 

this case.  The goal of this openness is both to facilitate model development and to 

increase the constraints on the resulting models in order to increase their predictiveness 

and generality. 
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Experiment I Results 

Because the variability in performance between runs, even of the same subject, is a 

fundamental characteristic of this task, we ran as many model runs as there were subject 

runs.  Figure 2 compares the mean performance in terms of penalty points for subjects 

and model for color (left three bars) and text (right three bars) condition by increasing 

workload level.  The model matches the data quite well, including the strong effects of 

color-vs-text condition and of workload for the unaided (text) condition. 

 

<Insert Figure 2 here> 

 

 Because ACT-R includes stochasticity in chunk retrieval, production selection and 

perceptual/motor actions, and because that stochasticity is amplified by the interaction 

with a highly dynamic simulation, it can reproduce a large part of the variability in 

human performance, as indicated by Figure 3 which plots the individual subject and 

model runs for the two conditions that generated a significant percentage of errors (text 

condition in medium and high workload).  The range of performance in the medium 

workload condition is almost perfectly reproduced other than for two outliers and a 

significant portion of the range in the high condition is also reproduced, albeit shifted 

slightly too upward.  It should be noted that each model run is the result of an identical 

model that only differs from another in its runtime stochasticity.  The model neither 

learns from trial to trial nor is modified to take into account individual differences. 
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<Insert Figure 3 here> 

 

The model reproduces not only the subject performance in terms of total penalty points, 

but also matches well to the detailed subject profile in terms of penalties accumulated 

under eight different error categories, as plotted in Figure 4. 

 

<Insert Figure 4 here> 

 

The model also fits the mean response times (RT) for each condition, as reported in 

Chapter 8.  The differences in RT between conditions are primarily a function of the time 

taken by the perceptual processes of scanning radar screen and text windows.  A more 

detailed analysis is presented in Figure 5, which plots the detailed pattern of latencies to 

perform a required action for each condition and number of intervening events (i.e. 

number of planes requiring action between the time of a given plane requiring action and 

the time the action is actually performed).  The model predicts very accurately the 

degradation of RT as more events compete for attention, including the somewhat 

counterintuitive exponential (note that RT is plotted on a log scale) increase in RT as a 

function of number of events rather than a more straightforwardly linear increase. 

 

<Insert Figure 5 here> 

 

In a crucial test of the model’s multi-tasking abilities, it also closely reproduces the 

probability of response to a required action in terms of number of intervening events 
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(plotted in Figure 6) before the action can be performed, a very sensitive measure of the 

ability to detect and process events immediately after they occur. 

 

<Insert Figure 6 here> 

 

That multi-tasking capacity results from the model’s ability to detect event onsets and set 

the next goal to process those events.  Thus, despite ACT-R’s strong goal-directed 

behavior, as indicated by its structure pictured in Figure 1, it can exhibit the proper level 

of multi-tasking abilities without requiring any alteration to its basic control structure.  

Interestingly, a version of the model that ignores event onsets and stays with a very 

systematic scanning strategy actually performs quite well but provides a very different 

multi-tasking profile. 

 

Finally, the model reproduces the subjects’ answers to the self-reporting workload test 

administered after each trial.  Since ACT-R doesn’t have any built-in concept of 

workload, we simply defined the workload of an ACT-R model as the scaled ratio 

between the time spent in critical unit tasks to the total time on task.  The critical unit 

tasks in which the model feels “pressured” or “busy” are defined as the Process goals, in 

which the model is busy performing a stream of actions, and the Scan-Text goals that are 

the result of an onset detection, in which the model feels “pressured” to find and process 

a new event requiring action.  As shown in Figure 7, that simple definition captures the 

main workload effects, specifically effects of display condition and of schedule speed.  

The latter effect results from reducing the total time to execute the task (i.e. the 
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denominator) while keeping the total number of events (roughly corresponding to the 

numerator) constant, thereby increasing the ratio. The former effect results from adding 

to the process tasks the message scanning tasks resulting from onset detection in the text 

condition, thus increasing the numerator while keeping the denominator constant thereby 

increasing the ratio as well.  Another quantitative effect that is reproduced is the higher 

rate of impact of schedule speed in the text condition (and the related fact that workload 

in the slowest text condition is higher than workload in the fastest color condition).  This 

is primarily a result of task embedding, i.e. the fact that a process task can be (and often 

is) a subgoal of another critical unit task (scanning a message window following the 

detection of an onset in that window), thus making the time spent in the inner critical task 

count twice. 

 

<Insert Figure 7 here> 

 

In summary, the advantages of this model are that it is relatively simple, required almost 

no parameter tuning or knowledge engineering, provides a close fit to both the mean and 

variance of a wide range of subject performance measures as well as workload estimates, 

and suggests a straightforward account of multi-tasking behavior within the existing 

constraints of the ACT-R architecture. 
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Experiment II Model 

Initial model 

The methodology adopted in creating the experiment I model was to not try to reverse-

engineer subjects’ procedures through a cognitive task analysis or similar methods but 

instead to simply develop a model that was simple and arose naturally from the 

architecture.  At the basic cognitive level, it meant relying on architectural mechanisms 

like chunk creation to seamlessly accomplish functions like episodic memory for past 

actions and aircraft positions.  At the higher, structural level, it meant leveraging the 

close relation between the architectural concept of goal and the HCI concept of unit task 

to structure the model around a modular set of goals and the knowledge needed to solve 

them.  We will follow this methodology again in the development of the experiment II 

model. 

 

At the structural level, this new model involved the removal of three unit tasks from the 

original model and the addition of one.  The unit tasks removed were related to the text 

condition, which was not used in this model.  They were the high-level unit task that 

handles the allocation of attention to various screen areas, and the specialized unit tasks 

to scan text windows and the radar screen.  Because of unit task modularity, they didn’t 

need to be removed and could simply have been ignored, never being called upon, but we 

took them out for reasons of simplicity.  The two remaining unit tasks are the high-level 

unit task for scanning the radar screen and identifying color-coded aircraft and the low-
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level unit task responsible for producing the sequence of actions needed to process an 

aircraft.  The new unit task being added is inserted between the two.  It involves a 

decision goal that is called by the high-level goal when a magenta aircraft is identified as 

requesting an altitude change.  This goal involves deciding which action needs to be 

performed on the aircraft, then calls the process goal to perform it.  This new unit task 

involves eight new productions that can apply to goals of the decision type, one of which 

being the crux of the decision engine while the others handle relatively straightforward 

stimuli input and feedback processing.  The new model has a total of 19 production rules 

distributed over the three goal types of color, decision and process. 

 

At the cognitive level, categorization is handled by relying on basic architectural 

mechanisms.  While the concept of categorization evokes the idea of production rules, the 

basic mechanism on which the initial model relies is memory.  Before rules can be 

formulated, the knowledge must reside in the system on which to base those rules.  Thus 

this model will rely on the same basic mechanism as the experiment I model, that is 

ACT-R’s automatic creation of memory chunks encoding past goals, in this case goals of 

the new decision type.  When a decision is made and the feedback processed, the decision 

goal is popped and becomes a long-term memory chunk.  Future decisions can then be 

made from retrieving past decision chunks. 

 

This model can be characterized as an instance-based model (e.g. Logan, 1988).  Those 

models are characterized by an initial reliance on a general-purpose strategy (e.g. relying 

on external aids, performing a computation procedure, or, as in this case, simply 
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guessing).  As that strategy is exercised, knowledge from past decision-making instances 

builds into long-term memory and can gradually be used as the basis for making 

decisions.  This gradual switch from general procedures to specific expertise is a 

hallmark of human cognition.  In ACT-R, that approach has been applied with great 

success to a broad array of domains including control problems, i.e. the Sugar Factory 

(Lebiere, Wallach & Taatgen, 1998; Wallach & Lebiere, 2002) and the Transportation 

Task (Wallach & Lebiere, 2002), game playing, i.e. Paper Rock Scissors (Lebiere & 

West, 1999; West & Lebiere, 2001), Backgammon (Sanner, Anderson, Lebiere & Lovett, 

2000) and 2x2 Games (Bracht, Lebiere & Wallach, 1998; Lebiere, Wallach & West, 

2000) and decision making, i.e. real-time dynamic decision making (Lerch, Gonzalez & 

Lebiere, 1999; Gonzalez, Lerch & Lebiere, 2003) and multi-person decision-making 

tasks (Lebiere & Shang, 2002).  One argument often raised about the general instance-

based approach is that it has so many degrees of freedom in representation and 

parameters that it can be applied to produce anything.  While such objections are often 

disingenuous (and are often leveled at the practice of cognitive modeling in general, e.g. 

see (Roberts and Pashler, 2001)), the ACT-R models listed above model a significant 

number of tasks over a broad range of domains while adopting consistent representations 

and parameter values.  The ability to apply the same mechanisms across a wide range of 

tasks illustrates the major integrative advantage of cognitive architectures. 

 

We will now examine the model in detail.  As previously mentioned, the production rules 

in the two remaining unit tasks from the experiment I model are essentially unchanged.  

Exceptions involve a single production in each task that interacts with the new decision 
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goal.  In the top-level color goal, a new production color-magenta-action detects the 

magenta color associated with a plane requesting an altitude change, then pushes a goal 

to make a decision on whether to accept or reject the request (instead of directly 

processing the plane).  In the low-level process goal, a new production answer-altitude-

requests detects that the request is for an altitude change and presses the button (accept 

or reject altitude change) corresponding to the decision.  Since this is the only request for 

which the button to select is not uniquely determined by the request but is instead a 

function of a decision made, a different production is thus required. 

 

All other productions apply to the decision goal.  The order in which the productions are 

listed represent their utility ranking, and thus usually the order in which they fire to solve 

a given goal.  The first three productions, target-fuel, target-turbulence and target-size, 

encode the characteristics of the aircraft, i.e. its fuel, turbulence and size respectively, by 

moving attention to the various pieces of information near the aircraft.  The production 

remember-decision is the key production for this goal because it is primarily responsible 

for the decision-making.  It attempts to make a decision by retrieving a past decision for 

an aircraft sharing the characteristics of the current one.  If it is successful in retrieving 

such a chunk, it simply makes the decision that was correct for that chunk.  If no chunk 

can be retrieved, however, then a backup production called guess-decision will make a 

decision by simply guessing randomly.  Once a decision has been made, the production 

subgoal-process pushes a subgoal to process the aircraft with that decision.  After the 

process subgoal has been completed, the decision goal is resumed.  The production wait-

for-feedback will wait for the feedback to appear.  Once a feedback is available, 
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indicating either a correct or incorrect decision, the production feedback can fire.  If the 

feedback indicates an incorrect decision, the decision is changed to the correct one.  In 

either case, the goal is then popped, creating a declarative memory chunk (or reinforcing 

an identical one) holding the correct decision for an aircraft with these characteristics.  

That chunk can then potentially be retrieved as a basis for future decisions. 

 

Color-Magenta-Action (color unit task) 

    IF the goal is to detect a color aircraft at position and its color is magenta 

    THEN push a goal to make a decision for aircraft at position 

Target-fuel/turbulence/size (3 separate productions) 

    IF the goal is to make a decision for aircraft and no fuel/turbulence/size is known 

    THEN encode the fuel/turbulence/size of aircraft in the goal 

Remember-decision 

    IF the goal is to make a decision for aircraft of fuel, turbulence and size 

         AND there is a memory of a decision for an aircraft of fuel, turbulence and size 

    THEN select decision 

Guess-decision 

    IF the goal is to make a decision for aircraft of fuel, turbulence and size  

    THEN randomly decide between accept-altitude and reject-altitude 

Subgoal-process 

    IF the goal is to make a decision for aircraft at position 

    THEN push the goal to process decision for aircraft at position 
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Feedback 

    IF the goal is to make a decision and feedback is available 

    THEN update decision according to feedback and pop the goal 

Wait-for-feedback 

    IF the goal is to make a decision and a decision has been made 

    THEN wait for feedback 

Answer-altitude-requests (process unit task) 

    IF the goal is to process an altitude-request action and the step is select 

    THEN push the button corresponding to the action and change the step to target 

 

Table 4.1: Production Rules for Decision Goal and Related Goals 

 

The effort parameters for these productions were set in accordance with the parameters 

for productions in the experiment I model and with similar parameters in other ACT-R 

models.  By default, all productions took 50 msec to fire.  The three encoding productions 

(target-fuel, target-turbulence and target-size) were assigned a latency of 200 msec.  

Because those items are in direct proximity to the aircraft and in predictable locations, 

that is directly compatible with the 185 msec estimate for small shifts of attention, such 

as when scanning menu items using the perceptual/motor layers (Byrne & Anderson, 

1998).  The feedback production latency was set to 500 msec, in accordance with the 

color-detection productions in the color goal since both represent the detection of an 

unscheduled event such as the change of color of an aircraft or the appearance of the 

feedback icon.  The wait-for-feedback production latency was set to 1 second, as for the 
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wait production in the experiment I model, representing the coarseness of the general 

alertness loop.  The answer-altitude-requests production latency was also set to 1 

second, as for all other action productions, representing the average action time factoring 

for an averaging of Fitt’s law mouse movements, action preparation and clicking 

movement.  As in the experiment I model, the latency times were not fixed but instead 

varied according to a uniform distribution of +/- 25% around the mean.  In summary, 

those parameters were not estimated to fit the data but instead generalized directly from 

the experiment I model and other architectural guidelines. 

 

The critical step in the decision goal is the attempt to retrieve a past decision to provide 

the basis for the current one.  That step is described schematically in Figure 8.  On top is 

the current goal, with each square representing one slot of the goal.  After the first three 

encoding productions have fired, the goal contains the actual size, fuel and turbulence of 

the current aircraft, with no decision currently made. 

 

<Insert Figure 8 here> 

 

At the bottom is one of possibly many decision chunks in declarative memory.  Note 

incidentally that those chunks have the same structure as the current decision goal: since 

past goals become chunks when they are popped, the correspondence between structures 

is logical and allows for a direct correspondence in matching.  One could request that the 

chunk retrieved from memory match exactly the characteristics of the current aircraft in 

the goal.  This would correspond to the exact (symbolic) match process in ACT-R.  



Constrained Functionality: ACT-R Model 

 43 

However, this would be undesirable for a number of reasons.  First, at the start the 

knowledge base is still very sparse and activations are weak: requiring the retrieval of an 

exact match would severely limit the probability of successful retrievals and reduce the 

decision to random guessing.  Second, retrieving items that do not perfectly match allow 

for the model to generalize to new instances that have never been seen before, an 

essential characteristic in the real world where characteristics are not binary and the same 

situation is never seen exactly again.  Finally, it makes the process more robust by 

preventing a single specific instance for exerting excessive influence (e.g. if it happens to 

be wrong) by letting all neighboring instances participate in the retrieval process rather 

than limit it to the one that happens to match exactly.  This process of generalizing to 

similar stimuli directly produces the patterns observed for central vs. peripheral stimuli. 

 

In the training phase, only eight decision chunks will be created in memory, because that 

is the number of unique stimuli.  For each new round of stimuli, the goal being popped is 

identical to an existing chunk in memory and is thus merged with it, resulting in a 

strengthening of the existing chunk through the base-level learning equation.  As 

displayed in the table above, the activation of the chunk is determined by its base-level 

activation Bi, with noise of amplitude s added.  Over time, the base-level activation of 

decision chunks will increase, making it increasingly likely that their activation will be 

higher than the retrieval threshold τ and retrieval will be successful.  If the memory 

chunk doesn’t match the retrieval pattern perfectly, its match score will equal its 

activation decreased by the similarity between desired retrieval pattern and actual chunk 

value, scaled by the mismatch penalty MP.  This partial matching process will apply for 
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all slots specified in the retrieval pattern, e.g. in the case illustrated above the similarity 

between large and small, Simsl, and between turbulence level 1 and 3, Sim13, both apply 

additively to the match score.  Partial matches are less likely to be the most active and to 

be retrieved, but if the initial activation was high enough to overcome the mismatches 

and/or the activation of the perfectly matching chunk was sufficiently low, they have a 

chance to win the activation race and be the retrieved chunk. 

 

Just as for productions, parameters involved for declarative memory were set using 

constraints from the architecture and other models.  The latency factor F scaling retrieval 

latency was left at the architectural default of 1.0.  The decay rate d in the base-level 

learning equation was also left at its architectural default of 0.5 used in almost all ACT-R 

models.  The mismatch penalty MP scaling the similarity decrements in the partial 

matching equation was left at its default value of 1.5.  The activation noise s controlling 

the stochasticity of memory retrieval was left at its default value of 0.25 used in many 

ACT-R models.  The only architectural parameter that doesn’t have a consensus default 

value is the retrieval threshold τ, which was coarsely estimated at –1.0.  As Anderson et 

al (1998) have observed, the value of the retrieval threshold seems to vary with the 

average activation level and cannot seem to be fixed at this time.  However, the value 

used here is well within the range of values for that parameter used in other models.  As 

for chunk-specific parameters, the prior values for the activations of the color-action 

mapping chunks were left at their values set in the experiment I model.  The only 

additional parameters to be specified were the similarities between the quantities used in 

the stimuli, i.e. the fuel, size and turbulence.  Similarities between quantities are typically 
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set according to regular scales, usually linear or exponential scales (e.g. Lebiere, 1998; 

Wallach & Lebiere, 2003).  In the initial model, we set the similarities to decrease 

linearly as a function of distance on each scale, reaching minimal values for the extreme 

items of the scale. 

 

Further Refinements 

Based on the results of the first model (see next section), we implemented three changes 

and a significant addition to the model.   

 

The first change was primarily in reaction to the fact that, while the response time for the 

secondary task (transferring planes) was about right (as was to be expected since that task 

and that part of the model were essentially unchanged since the first experiment), the 

response time for the primary task (authorizing altitude changes) was significantly too 

high.  We reasoned that a possible reason was that while the altitude change task was 

clearly presented as the primary task, we did not provide a priority ordering between the 

various tasks.  We made that choice partly for consistency with the experiment I model 

and partly for simplicity, but it was clear that subjects gave higher priority to the primary 

task.  Therefore, we modified the production ordering to give priority to the magenta 

aircraft over others when multiple planes request action at the same time.  As expected, 

the response time for the primary task decreased significantly (by about 1 second), 

bringing it significantly closer to the subject data. 
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The second change concerned the similarities between stimuli components.  One 

consequence of the linear similarities is that extrapolated stimuli had the same error rate 

as their trained neighbors because the translation in stimuli values simply added a 

constant value to the mismatch penalty for all training chunks, leaving the probability of 

retrieving them unchanged.  While linear similarities are often used for their simplicity, 

exponentially decreasing similarities have also been used and correspond more closely to 

human similarity metrics on domains like numbers (e.g. Whalen, 1997).  Therefore, we 

changed the similarity scale between stimuli components to decrease exponentially with 

distance.  That distribution has one parameter, which is the rate of the exponential 

decrease.  It was fixed to leave the similarities between training stimuli unchanged, 

therefore affecting only the similarities to extrapolated stimuli.  The result of a switch to 

an exponential similarity function is to decrease the similarity between close stimuli and 

increase the similarity between distant stimuli.  This leads to an increase in probability of 

extrapolated error, because distant instances, which are not likely to generalize well, are 

now more likely to be retrieved and generate the incorrect response. 

 

The third change concerned the workload definition.  While the workload formula based 

solely on time on task captured the main effects, it did so so weakly that the match to the 

data is quite poor.  There is just not enough difference in time spent in critical unit tasks 

between the various conditions and blocks to reproduce the size of the effects in the data.  

However, one measure of performance is strongly correlated with the observed changes 

in workload: the percentage of errors in altitude change decisions.  Therefore, we added 

the time-based and success-based (in terms of number of errors) measures of effort, still 
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divided by total time on task, with the same multiplicative factor as in experiment I.  One 

basic question was how to combine effort and success given that they involved two 

separate scales.  To bridge the gap, we assigned to the goal of making an altitude decision 

the value G from the production utility function, which is its intended semantic in term of 

time worth devoting to the task.  Thus, we multiplied the number of errors by the value of 

G, which was set to 15 seconds, added it to the time spent on critical unit tasks (in this 

case, the decision and process goals) and divided by the total time on task.  The result is a 

computational workload measure that closely captures the human data. 

 

The main addition originated from the recognition that while the instance-based model 

did an excellent job at capturing human performance for problem type 6, it just could not 

learn fast enough to capture the very steep learning curve for problem type 1.  Therefore, 

while memory is still the primary foundation for categorization as is confirmed by the 

problem type 6 data, an additional mechanism, rule learning, must be introduced to 

account for the problem type 1 data.  While category rule learning can certainly be 

thought of as a conscious process where explicit rules can be formulated, represented as 

chunks in declarative memory, then iteratively tested, modified and rejected or accepted, 

that process is fraught with degrees of freedom.  In effect, a great number of different 

algorithms can be implemented (Anderson & Betz, 2001), individual differences are 

paramount, and the architecture provides very little constraint on the process.  Therefore, 

we tried a different approach to provide for the learning of general rules while preserving 

strong architectural constraints. 
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To accomplish those ends, we represented categorization rules as production rules.  

Specifically, we created one production rule for each possible single-dimensional 

categorization rule, for a total of 6 production rules.  Those productions could have been 

created through the process of production compilation (Taatgen & Anderson, 2002), but 

we wanted to avoid the complexity of the underlying process of explicitly formulating 

those rules.  Those six production rules now compete with the Remember-decision and 

guess-decision rules.  The basis of the competition is the subsymbolic utility learning 

mechanism, which tracks the effectiveness of those rules at producing the correct answer 

and successfully solving the decision goal.  For problem type 6, the single-dimensional 

production rules do no better than the random rule and worse than the remember rule, and 

are therefore weeded out.  For problem type 3, no single-dimensional rule can provide 

perfect categorization but some can do significantly better than the random rule, and even 

the remember rule until enough instances have been learned.  In that case, the rule first 

predominates until it is replaced by the retrieve production.  For problem type 1, one of 

the six rules can provide perfect performance and its utility will quickly become 

dominant, leading to the nearly uniform use of that rule.  The only parameters of the 

utility learning process are the value of the goal, G, which has previously been fixed at 

15, and the value of the utility noise parameter, which is left at the default value of 1.0.  

A process of categorization rule learning has been added while preserving strong 

architectural constraints and avoiding arbitrary degrees of freedom. 
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Experiment II Results 

Original Results 

The most important quantitative results are the percentages of error committed in the 

primary category task, presented in Figure 9.  As for other following data figures, the left 

plot is for problem type 1, the central plot is for problem type 3 and the right plot is for 

problem type 6.  The fit to problem type 6 is excellent.  This is consistent with the fact 

that no useful (linear) rule exists for problem type 6 and that an instance-based strategy 

like the one used in the model is likely to be the most effective for that problem type.  For 

problem type 3, the model captures the shape of the curve but is consistently slower than 

human subjects at learning the category by an approximately constant factor.  The fit to 

problem type 1 is the worst, with the model only starting to significantly learn the 

category in block 4 while humans have already significantly mastered it by block 2.  

While instance-based learning is more efficient on problem type 1 than 6 because a 

neighboring instance retrieved through partial matching is more likely to be of the right 

category, it is not nearly enough to match the human subjects.  This suggests that a more 

efficient strategy exists for learning problem type 1 (and probably problem type 3). 

 

<Insert Figure 9 here> 

 

Figure 10 presents in the same format the penalty points for the secondary task, 

processing the aircraft moving between controller airspaces.  While errors on the 
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secondary task are too few to generate significant numbers of penalty points, the model 

generally produces similar levels and patterns.  The main sources of errors in the 

secondary task are the lack of time to accomplish the task in a timely manner and 

commission errors when retrieving color-action mapping chunks.  Those two sources of 

errors are fundamentally the same as for the primary task.  Therefore the two error 

measures are not independent but instead constrain each other through the same 

architectural mechanisms.  They cannot be adjusted independently but instead provide 

converging evidence on model performance. 

 

<Insert Figure 10 here> 

 

Figure 11 presents the response time data for the secondary task.  Because the response 

time to the secondary time is primarily determined by the latency of the processing steps 

and those parameters were left unchanged from the experiment I model, this is a direct 

prediction of the original model.  No significant speedup with practice or any significant 

effect of primary task category is predicted, in line with the human data. 

 

<Insert Figure 11 here> 

 

Figure 12 presents the response time data for the primary task.  The model consistently 

overestimates the amount of time required by the primary time.  In particular, response 

time for the primary task is larger than for the secondary task because the primary task 

involves an additional decision step that requires significant time.  However, this doesn’t 
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take into account the fact that the primary task, as indicated by its name, carries a higher 

priority than the secondary task and, when primary and secondary tasks conflict, the 

former is likely to take precedence.  In the initial model, we did not implement any 

specific precedence scheme, which might have led to this overestimate of primary task 

response time. 

 

<Insert Figure 12 here> 

 

A speedup with practice of about 1 second is predicted in all conditions, consistent with 

the data.  This results from the increasing success and speed of retrievals.  Initially, 

retrieval of previous instances is more likely to fail, which takes longer than successful 

retrievals.  Moreover, over time the activation of chunks representing previous instances 

increases with rehearsal, which according to the retrieval latency equation decreases the 

retrieval time.  Both factors contribute to the speedup.  However, the speed up seems to 

take place somewhat later than for the subjects.  Also, the model doesn’t predict the 

shorter response time for problem type 1 observed for the subjects.  This confirms the 

conclusion reached from the error rate data that rule learning might be involved for 

problem type 1, which would also decrease the response time in addition to increasing 

accuracy. 

 

Figure 13 presents the workload ratings for the various conditions.  No change was made 

to the definition of workload used for experiment I, which was a scaled ratio of time 

spent in critical goals to total time on task.  The critical goals are the process goals, as in 
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experiment I, and the new decision goals.  Because no change was made to the definition 

or the parameters, this is a direct prediction from the experiment I model.  While it does a 

pretty good job at predicting base workload, such as in block 4 and 8 of problem type 1 

and block 8 of categories 3 and 6, it fails to reproduce the full range of the problem type 

and practice effects observed in the rest of the human data.  The model in fact exhibits 

very slight effects of problem type and practice, but because they only reflect the 

response time decrease observed for the primary task (specifically the decision goal), 

they are insufficient in capturing the significant effects in the human data.  Since the 

human data does not indicate a sizable difference in response time but significant effects 

of problem type and practice on response accuracy that mirror the effects observed in the 

workload data, it seems reasonable that the subjects workload self-assessments reflect not 

only considerations of time but success as well. 

 

<Insert Figure 13 here> 

 

Figure 14 presents error percentage data for the primary task in the transfer condition.  

The data presented represents the percentage of errors in the primary task for the last 

block (8) of the training phase, the instances of the transfer phase that were seen in the 

training phase (“Trained”) and the instances of the transfer phase that were seen in the 

training phase (“Extrapolated”).  We will focus on the data points for the transfer phase.  

The most important thing about the transfer phase is that it is handled exactly the same as 

the training phase, i.e. every stimulus is answered by attempting to retrieve a similar 

instance from declarative memory.  No new procedure, with the attending degrees of 
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freedom that it would introduce, is used for the transfer phase.  The match to the trained 

examples is excellent. 

 

<Insert Figure 14 here> 

 

For the extrapolated examples, the model predicts a similar error percentage to the trained 

examples, with the minor variations in the results due to the stochastic nature of the 

model runs.  This results because of the form of the partial matching equation used.  An 

extrapolated stimulus will have an additional activation penalty subtracted from its match 

score compared to the neighboring trained stimulus, but since the similarity function used 

in the original model is linear, the same penalty will apply to all chunks and the 

probability of retrieving any given chunk will be unchanged (other than for their 

probability of reaching the retrieval threshold, but the chunks are active enough that this 

is not a factor).  This is a direct consequence of using a linear similarity metric.  Other 

forms of similarity functions (e.g. ratio or exponential, as have been used in other ACT-R 

models) have decreasing penalties with distance and would show the proper increase in 

error for extrapolated instances. The aggregation over broad categories of stimuli, such as 

trained, extrapolated and equidistant, might obscure more specific results of the model.  

Figure 15 presents a comparison of human data and model results on the training phase 

for all individual stimuli: 

 

<Insert Figure 15 here> 
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Each individual point in the graph corresponds to a single stimulus (modulo category-

preserving transformations), plotted by problem type.  The X axis is the decision 

probability for the stimulus (accept, but it could equally well be decline) in human data, 

and the Y axis is the same for model results.  Thus, a perfect fit would have all data 

points on the x=y diagonal.  The more points deviate from that line, the poorer the fit.  

Quantitative fits by categories are given at the top of the figure.  Again, an equation of 

y=0+1x with R^2=1.0 would indicate a perfect fit.  The linear regression curves actually 

displayed are not quite that perfect, but all have a small intercept (absolute value of 0.05 

or lower) and a slope roughly between 0.8 and 1.0.  The underestimate of the slope for 

problem type 3 and especially problem type 1 is consistent with the larger consistency 

values for the model in the previous figure, especially for problem type 1 where the 

model is slower at learning the correct categorization values and therefore produces more 

extreme values.  The R^2 correlations are generally high, indicating a good fit, though 

interestingly and somewhat surprisingly R^2 is best for problem type 1 (0.890) and worse 

for problem type 6 (0.485), which is the opposite of the results for the aggregate error 

percentages presented previously where the best fits were for problem type 6 and the 

worse for problem type 1!  This primarily results from the characteristics of the 

categories.  Problem type 1 is easier to classify and thus produces more extreme 

probability values, which makes larger correlation values more likely.  Conversely, 

problem type 6 is harder to classify, with lots of mixed probabilities toward 0.5, which 

reduces possible correlations.  Thus, R^2 correlations is actually a misleading indicator of 

model fit, in this case primarily reflecting characteristics of the task.  A better measure of 

fit is Root Mean Square Error (RMSE), which measures the deviation between data and 
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predictions (Schunn & Wallach, 2003).  RMSE is 14.1% for Problem type 1, 13.4% for 

Problem type 3 and 12.5% for Problem type 6, which correctly indicates a better fit for 

Problem type 6 and a worse fit for Problem type 1.  Similar results can be plotted for 

transfer stimuli only, with similar fits and actually a slightly smaller RMSE for Problem 

type 6.   

 

Final Results 

As described in the modeling section, the main change between original and final model 

is the introduction of 6 production rules representing all possible single-dimensional 

categorization rules to compete with the retrieval and random strategies on the basis of 

learned production utility.  The principal goal was to allow faster learning of problem 

type 1.  Figure 16 presents the learning curves of error percentages on the primary task 

for the three categories for the original and revised model.  One can see that the final 

results are significantly improved over the original ones.  For problem type 6, no 

significant change occurs and the excellent fit to human data of the original model is 

preserved.  Since no single-dimensional rule can do better than 50% correct, i.e. chance, 

they are initially indistinguishable of the random production and then are quickly 

discarded in favor of the retrieval production rule.  For problem type 3, the best a single-

dimensional rule can do is to be successful 75% of the time, which is initially 

significantly better than the random and retrieval strategies and will boost performance to 

the subject level.  Most significantly, for problem type 1 a perfect single-dimensional rule 

exists and will be quickly identified.  Because of randomness in the utility computations, 
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other rules, especially the retrieval rule, still occasionally fire depending on their utility 

level, generating less-than-perfect model-performance (about 10% errors) similar to 

humans. 

 

<Insert Figure 16 here> 

 

Figure 17 presents the response time for the primary task in the final model.  Prioritizing 

the primary task over the secondary task has led to a decrease in the primary task 

response time, much closer to subjects RT for categories 3 and 6, but still about 1 second 

too high for problem type 1. 

 

<Insert Figure 17 here> 

 

Interestingly, the response time for the secondary task has not significantly increased 

because a better prioritization resulted in better performance overall as confirmed by 

Figure 18, which presents the penalty points for the secondary task.  A better 

prioritization scheme for the primary task has not only lowered response times but also 

reduced error rates for the secondary task on a par with human level.  As we have seen 

many times, components and parameters of the model have an influence on multiple data 

measures and cannot be optimized separately. 

 

<Insert Figure 18 here> 

 



Constrained Functionality: ACT-R Model 

 57 

Figure 19 presents the workload ratings for the final model.  By adding a success-based 

component to the workload formula, the model can now capture practice and problem 

type effects in the workload measure.  Even though workload levels seem a bit too high 

by about a constant factor, both the size of reduction with practice and the increase with 

problem type difficulty are about the right size, which is notable since the size of the 

success factor in the workload equation was not a free parameter but was instead 

determined by the same G factor as weighing cost and success in the utility equation. 

 

<Insert Figure 19 here> 

 

Figure 20 presents the performance in the transfer task.  Changing the similarity function 

to exponential similarities that exhibit sharper initial differences and then gradually 

flattening similarities similar to those obtained in human rating studies (e.g. Whalen, 

1996) increases errors for extrapolated items because it reduces the relative probability of 

retrieving neighboring items.  Since the change in similarity functions preserved the 

similarities between trained items, it didn’t change performance in the training task, and 

also fixed the single parameter in determining the exponential function.  Therefore, the 

size of the increase in errors for extrapolated items was not optimized but instead a direct 

prediction of the shift to an exponential similarity function. 

 

<Insert Figure 20 here> 
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Discussion and conclusion 

Parameterization 

Roberts and Pashler (2000) suggested that the behavior of cognitive models should be 

studied over their entire range of possible parameters to determine not only what data 

models can account for but also what data they cannot account for.  It is of course an 

open question what the model parameters are.  Real-valued architectural and knowledge 

parameters seem to qualify, but they do not really constitute degrees of freedom if they 

are treated as constants set by the architecture or by other models.  On the other hand, 

Baker and Koedinger (2003) have suggested that every knowledge structure itself, such 

as each chunk and production rule, should be counted as a free parameter.  Our view is 

that while as long as the knowledge structures are specified by modelers there will be a 

possibility of exploiting degrees of freedom in model specification, which need not be the 

case.  Our methodology in developing our model has been to aim for the simplest, most 

natural way to solve the problem in the ACT-R architecture, and explicitly mention when 

we revised that model and why.  Moreover, Anderson, Bothell, Douglas & Haimson 

(2003) and Taatgen (2003) have used the production compilation mechanism to 

automatically encode instructions whose interpretation would then be compiled into the 

production rules executed by the model.  Because task-specific declarative knowledge is 

the result of a direct encoding of instructions given to subjects and task-specific 

production rules are the product of an architectural compilation mechanism (and a 

general-purpose interpretation mechanism), one can argue that no degrees of freedom 
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exist in the creation of their model.  While we did not follow that methodology here, we 

tried to avoid endowing the model with any expert knowledge that would clearly go 

beyond the instructions received. 

 

Nonetheless, examining the influence of real-valued parameters on the model results is a 

valid and often worthwhile exercise in which we have engaged regularly (e.g. Lebiere, 

1998; Lebiere & Wallach, 2001).  In this section, we will describe the impact of 

variations of three architectural parameters directly involved in the declarative memory 

retrieval process central to the instance-based categorization strategy.  Those parameters 

are the retrieval threshold RT, which determines when a chunk is active enough to be 

retrieved, the activation noise S which controls the stochasticity of the chunk activations 

and therefore of the retrieval process, and the mismatch penalty MP, which scales the 

activation penalty for mismatches and thus controls the degree of retrieval generalization.  

The key measure of performance as a function of parameter variation is the probability of 

categorization errors for the primary task for all training blocks (a block here corresponds 

to a single presentation of all instances, i.e. half a block as described previously).  Figure 

21 presents the probability of categorization errors as a function of the retrieval threshold: 

 

<Insert Figure 21 here> 

 

As expected, performance is worse for relatively high retrieval thresholds (0.0 and –0.5), 

which delay retrieval from memory longer.  But one would assume that the lower the 

retrieval threshold, the easier the access to memory and therefore the better the 
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performance.  But that is counting without the possibility of errors of commission in 

memory retrieval, i.e. the possibility of retrieving an incorrect instance chunk because it 

is very active and can overcome mismatch penalties.  Thus an overly low retrieval 

threshold leads to a process where a few chunks are retrieved very quickly, build up more 

strength through rehearsal, and intrude upon other retrievals, leading to a permanently 

high number of errors.  That is the pattern displayed for retrieval threshold values of –1.5 

and lower.  One is better off delaying retrieval until all instances have had some time to 

establish their activation and will not be so easily invaded by over-active neighbors.  

Somewhat surprisingly (and satisfyingly), the retrieval threshold value of –1.0 that was 

chosen to correspond to the human learning curve, especially for problem type 6, also 

turns out to be optimal in terms of providing the best long-term performance, i.e. lowest 

number of errors.  This echoes the conclusion reached in (Lebiere, 1998) regarding the 

influence of various parameters on the learning of arithmetic facts through years of 

studying and experience.  This suggests that perhaps the human cognitive architecture is 

even more flexible that previously thought in adapting its mechanisms to provide 

optimum long-term performance.   

 

Figure 22 presents the variations in performance as a function of the activation noise S: 

 

<Insert Figure 22 here> 

 

Different noise values seem to provide best performance at different stages of training.  

For instance, a high noise value (e.g. 0.5) is best in the first handful of blocks because it 
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increases the probability of retrieving anything rather than deciding randomly, while a 

very low noise value (e.g. 0.1) is best after a lot of training, i.e. dozen blocks, because it 

reduces the probability that stochastic activation variations will lead to an error of 

commission.  Intermediate values, such as the default value of 0.25, provide best 

performance for intermediate amounts of training.  This suggests that a truly optimal 

architecture would start with a high noise associated to new knowledge structures that 

would gradually decrease with practice.  Lebiere (1998) suggested that it would produce 

a power law of practice for the reduction of commission errors.  It is also similar to the 

technique of simulated annealing used in connectionist algorithms such as the Boltzmann 

Machine (Ackley, Hinton & Sejnoski, 1985).  Finally, Figure 23 presents the probability 

of errors as a function of the mismatch penalty MP: 

 

<Insert Figure 23 here> 

 

A similar pattern to the previous two figures emerges.  Overly lax mismatch penalties 

(e.g. 0.5) lead to a permanently high percentage of errors.  However, different values 

provide best performance for different amounts of training.  The default value of 1.5 

provides the fastest initial learning among MP values that trend toward perfect 

performance, thereby striking the best balance between the need for initial generalization 

and later precision in memory retrieval. 
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Implications for ACT-R modeling 

As mentioned previously, it has generally been the long-term approach of the ACT-R 

modeling community to view the various models developed in the architecture as 

compatible pieces of human knowledge and skills that could ultimately be integrated 

back into a whole individual.  This presents constraints and opportunities that provide 

strong guidance to the enterprise of developing models within the framework of a unified 

theory of cognition.  One opportunity is the potential ability of reusing previous models 

and therefore be able to build increasingly complex models out of model libraries, in a 

manner similar to software engineering practices.  One constraint is the need to be 

compatible, in both parameters and knowledge representation, with previously developed 

models.  As previously discussed, we leveraged this methodology in developing this 

model, and its parameters and representations do reflect the consensus of the ACT-R 

community.  In turn, this model suggests some new guidelines, practices and extensions 

for future models. 

 

One such guideline is the adoption of exponentially decreasing similarity metrics for 

continuous quantities.  Past models have not been strongly sensitive to the specific shape 

of the similarity function as long as it remained monotonically decreasing with distance, 

but the generalization test of Experiment 2 provided a strong constraint in that regard, 

that seems retrospectively quite natural.  Exponentially decreasing similarities will 

generally result in the accuracy of partial matching to decrease with the distance from 

known instances, a result that intuitively seems to hold in general fashion. 
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Another implication lies in the use of unit tasks and their implications.  The concept of 

unit task is crucial to the functional organization of our model, but it is also relevant in 

other dimensions.  One suggestion is that the attended tags associated with perceptual 

scanning should expire at the end of the associated unit task, which would provide a more 

natural limit on the growth of those tags than artificial upper bounds.  Another 

implication of unit tasks is on their use in determining cognitive workload, a 

methodology that could be applied to any other model and provide a connection with a 

large Human Factors literature in which that concept plays a fundamental role. 

 

A final general recommendation would concern the cognitive modeling enterprise in 

general.  While quantitatively fitting model to data is a central tenet of the field, there is 

such a thing as too much of a good thing.  The dangers of overfitting model to data are 

well-known to machine learning practitioners, and most of them might be applicable to 

model development.  Given the pervasive variability of human behavior and the need for 

the efficient, affordable development of cognitive models, it might well be worth 

adopting the 80/20 rule as a guiding principle of cognitive modeling. 
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Summary of Questions and Answers 

This section presents the ACT-R architecture of cognition, the methodology used in 

developing models and its account of individual differences, cognitive workload, multi-

tasking and categorization. 

 

How is cognition represented in your system? 

Cognition is represented in terms of a computational architecture that implements a 

unified theory of cognition (Newell, 1990).  While unified, the architecture is highly 

modular and includes separate modules for procedural skill, long-term declarative 

memory, the current context (a.k.a. goal), and perceptual/motor systems including visual, 

manual, auditory and speech (Anderson et al, submitted).3  The latter modules 

communicate through limited buffers with the central production system.  All modules 

operate in parallel but are internally serial, as is their communication through the buffer 

system.  The central production system represents procedural skill in the form of 

production rules.  Knowledge in declarative memory (as well as the other modules and 

buffers) is represented in the form of structured chunks.  Rules and chunks, as well as the 

operations of the other modules, are strongly limited in their complexity, i.e. the “Atomic 

Components of Thought” (Anderson & Lebiere, 1998).  While rules and chunks are 

                                                
3 As described previously, for practical reasons we used a previous version of the 

architecture without perceptual/motor modules.  Instead we estimated compatible latency 

parameters for the production rules corresponding to perceptual/motor actions. 
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represented symbolically to capture the sequential, structured nature of cognition, their 

characteristics are determined by associated subsymbolic quantities that endow them with 

“soft” qualities such as adaptivity, similarity-based generalization and stochasticity.  

Production rules are selected according to their utility and chunks are retrieved from 

memory according to their activation, both of which reflect the history of those 

structures.  All components of the model, including rules and chunks and their 

subsymbolic parameters, are learnable by the architecture. 

 

What is your modeling methodology? 

Our modeling methodology is based on emphasizing the power and constraints of the 

ACT-R architecture.  The basic methodology is to create the most natural and effective 

model of the task given the architecture, i.e. a model that respects rather than fights the 

constraints of the architecture and naturally leverages its mechanisms.  The model relies 

naturally on fundamental features of the architecture, such as memory, for a broad range 

of purposes from incidental learning to concept formation. The central organizing 

construct to guide structured cognition is the concept of goal.  Goals correspond well to 

the concept of unit task in human-computer interaction (Card, Moran and Newell, 1983).  

Complex models are organized around a set of goal types, each with the skills needed to 

solve them in the form of production rules.  Being able to add and remove goal types 

modularly provides both a tractable way to author complex models, as well as a theory of 

skill compositionality. 
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What role does parameter tuning play? 

Parameter tuning plays a limited role in ACT-R model development.  Some degree of 

parameter flexibility is required of any cognitive model because of the variety of ways 

that cognition can be applied to solving a task, and of the differences between 

individuals.  However, parameter tuning must be limited and principled to address 

concerns that models can account for anything (Roberts and Pashler, 2001) and to 

provide actual predictiveness.  Architectural parameters should be fixed across models 

(modulo individual differences) because they represent a cognitive constant.  Parameters 

associated with knowledge structures should be learned or set according to reasonable 

principles (again allowing for individual differences).  Knowledge structures constituting 

the model, i.e. chunks and productions, can be viewed as parameters themselves (Baker, 

Corbett & Koedinger, 2003).  Therefore, as described previously, they should also be 

learned or set to reflect the natural way for the architecture to solve the problem rather 

than specially engineered to fit the data. 

 

What is your account of individual differences? 

The ACT-R architecture provides a number of accounts of individual differences.  The 

first source of variation in individual differences is simply noise, especially when 

interacting with a complex dynamic environment, as demonstrated in our results for 

experiment 1.  Stochasticity is a component of every subsymbolic mechanism, including 

activation, utility and latency computations, which in turn determine every cognitive step 

including production rule firing and memory retrieval.  The second source of individual 
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differences are changes in architectural parameters that account for variations in 

fundamental abilities such as working memory (Lovett, Reder & Lebiere, 1999), 

psychomotor speed and emotions (Ritter et al, 2003).  Once estimated, an individual’s 

parameters can be applied to a model of any task to obtain predictions of that individual 

performance on that particular task.  The final source of individual differences is 

variations in knowledge structures (chunks and production rules) and their associated 

parameters.  Because those variations can be extremely complex and task-specific, it is 

the hardest source of individual differences for which to derive a consistent account. 

 

What is your account of cognitive workload? 

Cognitive workload is defined as a function of the operations of the architecture.  Certain 

goals (unit tasks) involving external manipulations and interruptions are defined as 

critical.  The measure of cognitive workload is the ratio of time spent solving those goals 

to the total time on task.  A similar but finer-grained measure of workload focused on 

atomic cognitive, perceptual and motor actions might be defined in a manner similar to 

the BOLD response in fMRI experiments but the data in this task did not address this 

level of detail.  A single measure of workload is provided, but it could easily be defined 

in a modality-specific way by directly exploiting the modular nature of the architecture, 

basically defining a workload dimension per module in line with workload theories such 

as multiple resource theory (Wickens, 1992).  Mechanisms by which subjects estimate 

workload are not specified, but could originate in a mechanism for aggregate retrievals of 

past goals called blending (Lebiere, 1999).  In this model, our assumption was that 
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performance determined workload, but the model could be augmented to allow workload 

to determine strategy, and thus performance. 

 

What is your account of multi-tasking? 

Structured cognition in ACT-R is organized around the concept of goal.  However, 

production rules can match inputs from any number of modules, especially perceptual 

buffers, to provide reactive as well as goal-driven behavior.  Detection of a perceptual 

event can lead to a cognitively controlled goal switching.  After the external event has 

been handled, the goal can be switched back to the original one, or cognition can 

continue on another path.  Switching back and forth between goals can be accomplished 

simply by retrieving previous goals from memory.  Or multiple tasks can be 

accomplished concurrently by combining their goal representations through extensive 

training (e.g. Byrne & Anderson, 1998).  However, the architecture imposes constraints 

on multi-tasking: the former solution requires lengthy and uncertain goal retrievals while 

the latter will lead to a slowdown in cognitive operations because of a diffusion in 

spreading activation. 

 

What is your account of categorization? 

Categorization is not a primitive function of the architecture but rather depends upon 

more basic mechanisms.  The initial basis of categorization is memory, specifically the 

identification of a stimulus by the retrieval of a similar instance from declarative 
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memory.  Similarity-based partial matching provides generalization and the gradual 

emergence of soft categories.  Explicit categorization rules can also be formulated, which 

are in turn compiled into production rules.4  Production utility learning can then be used 

to select between competing categorization rules and instances.  Therefore, while 

categorization is not an ACT-R primitive, architectural constraints provide limits on 

categorization performance through underlying mechanisms like memory decay and 

stochasticity. 
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Figures 

 

Figure 1: The overall flow of control in ACT-R 4.0. 

Figure 2: Mean performance for subjects vs. model on tuneup (left) and flyoff 

(right). 

Figure 3: Performance for each subject vs. model run. 

Figure 4: Penalty points for subjects vs. model runs for each error category. 

Figure 5: Response time for subjects vs. model runs as a function of intervening 

events. 

Figure 6: Number of selections for subjects vs. model runs as a function of 

intervening events. 

Figure 7: Mean workload for subjects vs. model for each condition. 

Figure 8: Partial Matching of Decision Chunks. 

Figure 9: Error Probabilities in Primary Task. 

Figure 10: Penalty Points in Secondary Task. 

Figure 11: Response Time for Secondary Task. 

Figure 12: Response Time for Primary Task. 

Figure 13: Workload Ratings. 

Figure 14: Error Probability in Transfer Condition. 

Figure 15: Single-Stimulus Human and Model Comparison in Transfer Phase. 
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Figure 16: Error Probabilities in Primary Task. 

Figure 17: Response Time for Primary Task. 

Figure 18: Error Probabilities in Secondary Task. 

Figure 19: Workload Ratings. 

Figure 20: Performance in Transfer Task. 

Figure 21: Probability of Categorization Errors for various Retrieval Thresholds 

(RT). 

Figure 22: Probability of Categorization Errors for various Activation Noise (S). 

Figure 23: Probability of Categorization Errors for various Mismatch Penalties 

(MP). 
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Transfer Task:  Probability of Error
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