
Constrained Functionality: ACT-R Model

 1

Constrained Functionality:

Application of the ACT-R Cognitive Architecture to

the AMBR Modeling Comparison

Christian Lebiere

The ACT-R Cognitive Architecture

Symbolic Level

ACT-R is a production system theory that models the steps of cognition by a sequence of

production rules that fire to coordinate retrieval of information from the environment and

from memory. It is a cognitive architecture that can be used to model a wide range of

human cognition. It has been used to model tasks from memory retrieval (Anderson,

Bothell, Lebiere & Matessa, 1998) to visual search (Anderson, Matessa & Lebiere,

1997). The range of models developed, from those purely concerned with internal

cognition to those focused on perception and action, makes ACT-R a plausible candidate

to model a task like the air traffic control simulation described previously because the

task includes all of these various components. In all domains, ACT-R is distinguished by

the detail and fidelity with which it models human cognition. It makes claims about what

Constrained Functionality: ACT-R Model

 2

happens cognitively every few hundred milliseconds in performance of a task. ACT-R is

situated at a level of aggregation considerably above basic brain processes but

considerably below significant tasks like air-traffic control. The new version of the

theory has been designed to be more relevant to tasks which require deploying significant

bodies of knowledge under conditions of time pressure and high information-processing

demand. This is because of the increased concern with the temporal structure of

cognition and with the coordination of perception, cognition, and action.

Figure 1 displays the information flow in the ACT-R 4.0 architecture (Anderson &

Lebiere, 1998). There are essentially three memories -- a goal stack that encodes the

hierarchy of intentions guiding behavior, a procedural memory containing production

rules, and a declarative memory containing chunks. These are all organized through the

current goal that represents the focus of attention. The current goal can be temporarily

suspended when a new goal is pushed on the stack. The current goal can be popped in

which case the next goal will be retrieved from the stack. Productions are selected to fire

through a conflict resolution process that chooses one production from among the

productions that match the current goal. The selected production can cause actions to be

taken in the outside world, can transform the current goal (possibly resulting in pushes

and pops to the stack), and can make retrieval requests of declarative memory (such as

what is the sum of 3 and 4?). The retrieval result (such as 7) can be returned to the goal.

The arrows in Figure 1.1 also describe how new declarative chunks and productions are

acquired. Chunks can be added to declarative memory either as popped goals reflecting

the solutions to past problems or as perceptions from the environment. Productions are

Constrained Functionality: ACT-R Model

 3

created from declarative chunks called dependencies through a process called production

compilation which takes an encoding of an execution trace resulting from multiple

production firings and produces a new production that implements a generalization of

that transformation in a single production cycle.

<Insert Figure 1 here>

Subsymbolic Level

ACT-R can be described as a purely symbolic system in which discrete chunks and

productions interact in discrete cycles. However, ACT-R also has a subsymbolic level in

which continuously varying quantities are processed, often in parallel, to produce much

of the qualitative structure of human cognition. These subsymbolic quantities participate

in neural-like activation processes that determine the speed and success of access to

chunks in declarative memory as well as the conflict resolution among production rules.

ACT-R also has a set of learning processes that can modify these subsymbolic quantities.

Formally, activation reflects the log posterior odds that a chunk is relevant in a particular

situation. The activation Ai of a chunk i is computed as the sum of its base-level

activation Bi plus its context activation:

Ai = Bi + Wj

j

! Sji Activation Equation

Constrained Functionality: ACT-R Model

 4

In determining the context activation, Wj designates the attentional weight given the focus

element j. An element j is in the focus, or in context, if it is part of the current goal chunk

(i.e. the value of one of the goal chunk’s slots). Sji stands for the strength of association

from element j to a chunk i. ACT-R assumes that there is a limited capacity of source

activation and that each goal element emits an equal amount of activation. Source

activation capacity is typically assumed to be 1, i.e. if there are n source elements in the

current focus each receives a source activation of 1/n. The associative strength Sji

between an activation source j and a chunk i is a measure of how often i was needed (i.e.

retrieved in a production) when chunk j was in the context. Associative strengths provide

an estimate of the log likelihood ratio measure of how much the presence of a cue j in a

goal slot increases the probability that a particular chunk i is needed for retrieval to

instantiate a production. The base level activation of a chunk is learned by an

architectural mechanism to reflect the past history of use of a chunk i:

Bi = ln tj
!d
" ln

nL!d

1! dj=1

n

#

Base-Level Learning Equation

In the above formula tj stands for the time elapsed since the jth reference to chunk i while

d is the memory decay rate and L denotes the life time of a chunk (i.e. the time since its

creation). As Anderson and Schooler (1991) have shown, this equation produces the

Power Law of Forgetting (Rubin & Wenzel, 1996) as well as the Power Law of Learning

(Newell & Rosenbloom, 1981). When retrieving a chunk to instantiate a production,

ACT-R selects the chunk with the highest activation Ai. However, some stochasticity is

Constrained Functionality: ACT-R Model

 5

introduced in the system by adding gaussian noise of mean 0 and standard deviation σ to

the activation Ai of each chunk. In order to be retrieved, the activation of a chunk needs to

reach a fixed retrieval threshold τ that limits the accessibility of declarative elements. If

the gaussian noise is approximated with a sigmoid distribution, the probability P of chunk

i to be retrieved by a production is:

P =
1

1+ e
!
A
i
!"

s

 Retrieval Probability Equation

where s=√3σ/π. The activation of a chunk i is directly related to the latency of its

retrieval by a production p. Formally, retrieval time Tip is an exponentially decreasing

function of the chunk’s activation Ai:

Tip = Fe
! fAi

 Retrieval Time Equation

where F is a time scaling factor. In addition to the latencies for chunk retrieval as given

by the Retrieval Time Equation, the total time of selecting and applying a production is

determined by executing the actions of a production’s action part, whereby a value of 50

ms is typically assumed for elementary internal actions. External actions, such as pressing

a key, usually have a longer latency determined by the ACT-R/PM perceptual-motor

module (Byrne & Anderson 1998). In summary, subsymbolic activation processes in

ACT-R make a chunk active to the degree that past experience and the present context (as

given by the current goal) indicates that it is useful at this particular moment.

Constrained Functionality: ACT-R Model

 6

Just as subsymbolic activation processes control which chunk is retrieved from

declarative memory, the process of selecting which production to fire at each cycle,

known as conflict resolution, is also determined by subsymbolic quantities called utility

that are associated with each production. The utility, or expected gain, E of a production

is defined as:

E = P •G ! C Expected Gain Equation

where G is the value of the goal to which the production applies, and P and C are

estimates of the goal’s probability of being successfully completed and the expected cost

in time until that completion, respectively, after this production fires. Just as for retrieval,

conflict resolution is a stochastic process through the injection of noise in each

production’s utility, leading to a probability of selecting a production i given by:

p(i) =
e

Ei
t

e

Ej

t

j

!

 Conflict Resolution Equation

where t=√6σ/π. Just as for the base-level activation, a production’s probability of

success and cost are learned to reflect the past history of use of that production,

Constrained Functionality: ACT-R Model

 7

specifically the past number of times that that production lead to success or failure of the

goal to which it applied, and the subsequent cost that resulted, as specified by:

P =
Successes

Successes + Failures
 Probability Learning Equation

C =
Costs!

Successes + Failures
 Cost Learning Equation

Costs are defined in terms of the time to lead to a resolution of the current goal. Thus the

more/less successful a production is in leading to a solution to the goal and the more/less

efficient that solution is, the more/less likely that production is to be selected in the

future.

Constrained Functionality: ACT-R Model

 8

Experiment I Model

Modeling Methodology

If it is to justify its structural costs, a cognitive architecture should facilitate the

development of a model in several ways. It should limit the space of possible models to

those that can be expressed concisely in its language and work well with its built-in

mechanisms. It should provide for significant transfer from models of similar tasks, either

directly in the form of code or more generally in the form of design patterns and

techniques. Finally, it should provide learning mechanisms that allow the modeler to

only specify in the model the structure of the task and let the architecture learn the details

of the task in the same way that human cognition constantly adapts to the structure of its

environment. These architectural advantages not only reduce the amount of knowledge

engineering required and the number of trial-and-error development cycles, providing

significant savings in time and labor, but also improve the predictiveness of the final

model. If the “natural” model derived a priori from the structure of the task, the

constraints of the architecture and the guidelines from previous models of related tasks

provide a good fit of the empirical data, one can be more confident that it will generalize

to unforeseen scenarios and circumstances than if it is the result of post hoc knowledge

engineering and data analysis. That is the approach that we have adopted in developing a

model of this task, and indeed more generally in our use of the ACT-R architecture.

Constrained Functionality: ACT-R Model

 9

When faced with developing a model of this task, we did not try to reverse-engineer from

their data and protocols which techniques and strategies subjects used when confronted

with the task, but instead we asked ourselves which ACT-R model would best solve the

task given the architectural constraints. An additional emphasis in developing the model

was on simplicity, both because of the time constraints provided by the fly-off and

because since the subjects had only had a limited amount of practice with the task it was

fairly unlikely that they had developed highly elaborate strategies. Generally, for each

phase, the total development time, including the time-consuming process of finding the

best way to interface with the simulation, was less than 6 weeks, and the time to develop

the model itself was less than a week. A more time-consuming part of the process is the

repeated tweaking of the model (both in terms of real-valued parameters as well as

symbolic knowledge structures) to attempt to improve the fit to the data. This practice,

however widespread, can take arbitrarily large amounts of time and often results in very

little meaningful improvements to the model. Our experience here confirmed that it

would best be left to a minimum if tolerated at all. Indeed, from our perspective this

project illustrated quite nicely the dual advantage of cognitive architectures. Because

they provide considerable constraints upon the mechanisms and parameters to be used for

building human performance models, they limit the degrees of freedom where other, non-

first-principled methods have to resort to parameter-fitting and further validation.

Moreover, because of those constraints and the leverage of built-in mechanisms, the

development of the model is much more efficient, making human performance models

more affordable for their many potential applications.

Constrained Functionality: ACT-R Model

 10

One common design pattern in ACT-R models of similar tasks (e.g. Lee & Anderson

2001) is the concept of unit task (Card, Moran & Newell, 1983). Unit tasks correspond

to subtasks of more complex tasks that are associated with a specific goal in a given

context. That decomposition has been shown to have significant psychological validity

in the prediction of subject performance (Corbett, Anderson & O’Brien, 1995). Unit

tasks further the goal of simplicity because they provide a way to decompose a model of

a complex task into independent sets of productions applying in specific situations.

Moreover, unit tasks correspond directly to the concept of goal type in ACT-R, with each

goal of that type corresponding to a specific instance of that unit task and productions

that match that goal type corresponding to the knowledge required to solve that unit task.

The decomposition of ACT-R models is similar to the software engineering concept of

object-oriented programming, with classes corresponding to goal types, instances of those

classes corresponding to chunks (goals) of that type, and methods applying to objects of

that class corresponding to productions that apply to goals of that type.

Of course unit task decomposition is not merely a software engineering principle for

developing cognitive models, but rather it corresponds to an underlying psychological

reality as well. The unit tasks for this simulation are fairly clearly identified. In both the

aided and un-aided conditions, processing an aircraft that requires action by the central

controller is a clearly defined unit task. In the color (aided) condition, scanning the radar

screen for an aircraft that turned color, identifying its need for action, is another unit task.

Similarly, in the text (un-aided) condition, the subtasks of scanning a single text window

or radar screen area constitute unit tasks as well. Finally, in the text condition, selecting

Constrained Functionality: ACT-R Model

 11

the next part of the screen to scan is the top-level unit task. Those five unit tasks define

the structure of the ACT-R model and the procedural knowledge required to solve them

will be described in detail in the following subsections.

Another design pattern that appears in countless ACT-R models (e.g. cognitive

arithmetic, alphabet arithmetic, instance-based problem solving, etc) deals with the trade-

off between trying to retrieve an answer from memory, which tends to be fastest but most

error-prone, and attempting to re-derive it using backup methods such as computation or

perceptual scanning. In this simulation, this problem appears in many instances, such as

identifying the position of an aircraft from its identifier when scanning a text window, or

deciding whether an aircraft has been processed when scanning it on the radar screen.

Both of these questions could be answered1 either by attempting to retrieve a related

memory (respectively of scanning or processing that aircraft) or by searching the proper

screen area (respectively the radar screen or a text window) for the information. While

ACT-R provides the capacity for the model to decide between each course of action

based on their expected cost (in terms of time to perform the action) and probability of

success (in providing the needed information), this requires learning from experience

with the system which wasn’t the focus of the phase I modeling effort (but was

highlighted in the phase II model as will be seen in a later section). Instead, as is often

1 There might be cases when the information is not present on the screen, such as when a

text message pertaining to an aircraft has scrolled off the top of the window or when an

aircraft mentioned in a message has exited the radar screen, but the display changes

slowly enough that those cases are relatively rare.

Constrained Functionality: ACT-R Model

 12

the case, retrieval from memory is preferred over explicit scanning because of its

relatively low cost. Only if that retrieval fails, either because the chunk encoding the

information wasn’t present in memory or because its activation had decayed below the

retrieval threshold, will the strategy of explicit scanning be selected. This pattern of

attempting to retrieve information from memory and only when it fails is a pervasive one

in ACT-R models, and one that is transparently supported by the architecture. As the

information is re-created from the environment or explicit computation, the activation of

the chunk encoding it will gradually rise with practice until it can retrieved directly. This

process of transition from explicit methods to a reliance on memory is a pervasive aspect

of human cognition that ACT-R can account for in a direct, straightforward manner

through its activation calculus.

Finally, a key aspect of our methodology that is also pervasive in ACT-R modeling

(Anderson & Lebiere, 1998) is the use of Monte Carlo simulations to reproduce not only

the aggregate subject data such as the mean performance or response time but also the

variation that is a fundamental part of human cognition. In that view, the model doesn’t

represent an ideal or even average subject but instead each model run is meant to be

equivalent to a subject run, in all its variability and unpredictiveness. For that to happen,

it is essential that the model not be merely a deterministic symbolic system but be able to

exhibit meaningful non-determinism. To that end, randomness is incorporated in every

part of ACT-R’s subsymbolic level, including chunk activations which control their

probability and latency of retrieval, production utilities which control their probability of

selections, and production efforts which control the time that they spent executing.

Constrained Functionality: ACT-R Model

 13

Moreover, as has been found in other ACT-R models (e.g. Lebiere & West, 1999;

Gonzalez, Lebiere & Lerch, 2003), that randomness is amplified in the interaction of the

model with a dynamic environment: even small differences in the timing of execution

might mean missing a critical deadline, which results in an airplane going on hold (with

the resulting 50-point penalty), which requires immediate attention, which might cause

another missed deadline and so on. The magnitude of the sensitivity to random

fluctuations was brought to our attention when an early, noise-free version of the model

was run in real-time against the simulation. Even though both the model and the

simulation were deterministic and the only source of randomness was small sub-second

variations in synchronization between the two systems, performance varied by as much

as 100 points in the same condition.

To model the variations as well as the mean of subject performance, the model was

always run as many times as there were subject runs. For that to be a practical strategy of

model development, it is essential that the model run very fast, ideally significantly faster

than real-time. Our model ran up to 5 times real-time, with the speed limitation being

due entirely to the communication bottleneck between model and simulation rather than

the computational requirements of ACT-R, which can run at several hundred times real-

time. This speed made it possible to run a full batch of 48 scenarios in about an hour and

a half, enabling a relatively quick cycle of model development. One source of variation

in subject performance that we could not exploit is individual differences. ACT-R has

been able to provide a fine-grained account of individual differences in working memory

performance through continuous variations in the value of the architectural parameter W

Constrained Functionality: ACT-R Model

 14

controlling spreading activation (Lovett, Reder & Lebiere, 1997). An obvious way to

account for individual differences in this task would be to include variations of the effort

production parameter controlling the speed of execution of the model, in a manner

consistent with the slow man-fast man distinction of Card, Moran and Newell (1983).

However, for the sake of simplicity and the avoidance of arbitrary degrees of freedom,

we left the parameters unchanged. Generally, all parameters controlling the model were

left at their default values, established either by the architecture or by existing models.

The rate of base-level decay d was 0.5 and the level of activation noise was 0.25, both of

which have been consistently used in many ACT-R models. The retrieval threshold was

0.0 and the latency factor was 1.0, both values being architectural defaults. The effort for

productions that do not involve any perceptual or motor actions was left at the

architectural default of 50msec. Two parameters were roughly estimated: the effort for

perceptual productions was set at 500 msec and the effort for productions involving

actions (typically move the mouse to a target and click) was set at 1sec.

Model

Six chunk types are defined using the chunk-type command. They consist of the name

of the chunk type and the associated slots. One chunk type, rule, holds the basic content

of the instructions to define each category of event by relating a specific action (e.g.

contact) to the color used for that event in the aided condition (e.g. yellow) and the

amount of penalty points associated with failing to act on it in a timely fashion (e.g. 50).

Five chunks of that type are defined using the add-dm command to encode that

Constrained Functionality: ACT-R Model

 15

information for all five event types. The initial base-level activation of those chunks is

set by the command sdp to reflect the level of practice at that point in the simulation, i.e.

120 references over the last hour (3600 seconds), to reflect the instruction study phase as

well as the first block of practice. These history parameters will determine the activation

of those chunks according to the base-level learning equation, which in turn will

determine how fast and how reliably they can be retrieved. These chunks will only be

used in the aided (color-coded) condition to map color of aircraft to required action. All

other chunks defined by the add-dm command are simply symbols used in other chunks

(which the system would define by default) and the initial goals for the color and text

condition. The model tests the type of scenario obtained from the simulation to decide

which of these two chunks to set as the initial goal. The other five chunk types that are

defined correspond to the goals used for the five unit tasks that compose this task. Those

goal types are color-goal, text-goal, scan-text, scan-screen and process. They and their

associated procedural knowledge will be described in detail in the rest of this section.

The productions that apply to each goal type will be listed in a table using an informal

English description that is meant to capture their function without obscure syntactic

details. Production names are in bold while words in italics correspond to production

variables and words in bold within the production text correspond to specific chunks

(constants). The order in which the productions are listed correspond to their order of

priority in the conflict resolution process, with the earlier productions being favored and

the later productions only allowed to fire if the preceding ones cannot match.

Constrained Functionality: ACT-R Model

 16

Table 2.1 presents the productions for the top-level unit task color-goal. The production

color-target-detection detects a colored aircraft on the radar screen and notes the aircraft

identity in the goal. The production color-target-acquisition notes the aircraft color in

the goal and the production color-action retrieves from memory the chunk linking that

color to the required action and pushes a subgoal to process that action on the aircraft. If

none of these productions can apply, the production wait fires, essentially filling the

50msec of this production cycle before the next cycle of detection can take place. The

productions above would provide a perfectly functional treatment of the color-goal unit

task, but there is one additional production called subgoal-next which has to do with

onset detection. If an aircraft turns color while a subgoal to process another aircraft is the

current goal, the model will detect that aircraft while it processes the subgoal and create a

prospective subgoal to process that new aircraft. That subgoal will be returned to the

parent color-goal when the process subgoal is completed and the production subgoal-

next will immediately push it without having to fire the productions to detect the aircraft,

map its color to the action and create a new subgoal. This treatment is consistent with

subject awareness of event onset and predicts the right slope for the time to handle an

aircraft as a function of intervening events.

Subgoal-next

 IF the goal is of type color-goal

 and a subgoal to process a colored aircraft was formulated previously

 THEN push that subgoal

Color-target-detection

Constrained Functionality: ACT-R Model

 17

 IF the goal is of type color-goal

 and a colored aircraft is present on the screen

 THEN note that aircraft

Color-target-acquisition

 IF the goal is of type color-goal and a colored aircraft has been detected

 THEN note its color

Color-action

 IF the goal is of type color-goal and an aircraft and its color have been identified

 and a rule chunk can be retrieved linking color to action

 THEN push subgoal to process action on aircraft at current position

Wait

 IF the goal is of type color-goal

 THEN do nothing

Table 2.1: Productions applicable to the unit task color-goal

Table 2.2 presents the productions for the top-level unit task text-goal. The text

condition is more complex than the color condition because relevant events are much

harder to detect and that is reflected in its unit task structure. Unlike color-goal, the text-

goal unit task does not directly detect aircraft that require action and subgoal any process

goal but instead directs attention to specific areas of the screen in which to perform that

detection. There are four screen areas to be scanned, the three text message windows,

left for incoming aircraft, right for exiting aircraft and low for speed changes, which are

scanned by the unit task scan-text, and the radar screen area between the green and

Constrained Functionality: ACT-R Model

 18

yellow lines for exiting aircraft, which are scanned by the unit task scan-screen. The

latter is necessary because the central controller has to initiate the transfer of exiting

aircraft to other controllers, whereas all other actions are taken in response to a text

message. There are four productions that implement a sequential scan of the four areas

by pushing a subgoal to scan each area given the previous one. This solution was chosen

for its simplicity and systematicity2, but other are possible such as a random scan or a

scan based on the probabilities of finding a new event in each of the four areas, a strategy

that might be optimal and for which ACT-R’s utility learning mechanism would be well

suited. However, the data available was inconclusive on that aspect of subject behavior

and finer-grained data such as eye movements would be needed to precisely determine

subjects’ strategies in that regard. Note that this systematic scan only happens when no

event onset was detected in another window when scanning the present window.

Between-left

 IF the goal is of type text-goal and the last area scanned was between

 THEN push a subgoal to scan the text area left starting at the bottom

Left-right

 IF the goal is of type text-goal and the last area scanned was left

 THEN push a subgoal to scan the text area right starting at the bottom

Right-low

 IF the goal is of type text-goal and the last area scanned was right

2 Indeed, the author significantly improved his personal performance by adopting that

method.

Constrained Functionality: ACT-R Model

 19

 THEN push a subgoal to scan the text area low starting at the bottom

Low-between

 IF the goal is of type text-goal and the last area scanned was low

 THEN push a subgoal to scan the screen area between

Table 2.2: Productions applicable to the unit task text-goal

Table 2.3 presents the productions for the unit task scan-text responsible for scanning a

text window. As initialized by the text-goal productions described previously, scan-text

goals start scanning at the bottom of the screen. This is contrary to the usual top-down

scanning pattern, but new messages appear at the bottom of the screen and it is therefore

the best place to look for them. Subjects probably took some time to learn this scanning

pattern but they are expected by that time in the simulation to have adopted the more

efficient strategy. Again, more detailed data such as eye movements, and data from

earlier trials would be needed to conclusively answer the questions regarding the subjects

scanning strategies. The production find-flush-message scans upward from the current

position (initially bottom) to find the next message that is flush against the left side of the

window, indicating a message from an aircraft or another controller requesting action. If

no such message can be found, the production no-flush-message pops the goal, which

returns control to the text-goal unit-task. If a message is found requesting action, the

model then tries to determine whether that action has already been completed. The

production memory-for-message searches declarative memory for a chunk recording the

completion of a process goal for the task and aircraft indicated by the message. Recall

Constrained Functionality: ACT-R Model

 20

that when completed goals are popped they become permanent declarative memory

chunks that can be retrieved later. However, retrieval of a chunk is subject to its

activation reaching threshold, and failure to retrieving a trace of past execution is no

guarantee that it didn’t happen. Therefore if memory retrieval fails the production

message-reply will scan down the text window from the current message for an indented

message containing the acknowledgment message that would have resulted from taking

that action. If either a memory or a message indicating completion of the action is found,

the goal is popped, because under the bottom up scanning strategy finding a message that

had been attended to suggests that no unattended message older than the current message

will be found. As we will discuss shortly, this is not an ironclad guarantee and it may be

a natural source of skipped messages that result in violations. If no indication that the

action requested by the message has taken place, the production subgoal-message-task

pushes a subgoal to perform that action and clears the goal to allow further scanning to

take place when that unit task is completed. Note that the strategy of first trying to

retrieve a piece of information from memory and then resorting to an explicit strategy to

reconstruct that information if the retrieval fails is a very general design pattern in ACT-

R (e.g. Lebiere, 1998) that is very naturally supported by the architecture’s conflict

resolution mechanism. Since memory retrieval usually takes much less effort than

implementing a complicated strategy, the utility learning mechanism will tend to assign a

higher priority to the retrieval strategy which will then be attempted first. Again, since

learning was not the focus of this model and training data was not available, this learning

mechanism was not activated and instead the production ordering was relied upon to

indicate priority.

Constrained Functionality: ACT-R Model

 21

Again, this production set would provide a perfectly adequate implementation of the

scan-text unit task. But it would result in a very systematic pattern of execution by

exhaustively scanning a text window to find and process all unattended events then move

on to the next area and so on. While it might result in the right aggregate performance

(and indeed did in the first version of the model, as will be elaborated in the discussion

section), its deliberate character would prevent it to display the subjects ability to

promptly respond to a new event as indicated by the sharply decreasing curve of number

and average time of responses as a function of intervening events. The model needs to be

able to focus on newly occurring events. The production detect-onset-text provides that

capacity by detecting the onset of a new message in other text windows and record in the

current goal to focus attention to that window as soon as the current message has been

processed. The production focus-onset-text accomplishes that by focusing on a new goal

to scan the text window in which the new message has appeared. This onset detection

mechanism has a number of interesting attributes. First of all, the ability to detect the

onset of a new event is very time-limited (fixed at 1 second in our model). While the

onset detection productions have the highest priority in their unit task, if the model is

otherwise busy during that limited time window (such as by an event-processing

subgoal), it might miss the event onset and fail to record it. Second, only one event onset

can be stored in the current goal and subsequent ones will not be recorded. An

alternative would be to have the most recent onset overwrite the older ones, but again

finer-grained data would be needed to shed light on that question. Third, the new goal to

scan the text window in which the event onset appeared replaces the current goal rather

Constrained Functionality: ACT-R Model

 22

than being a subgoal. This is consistent with viewing the goal stack as a limited memory

and not relying on it to provide a perfect memory of past situations. However, it also

means that messages further up in the current window might not be processed because of

the distraction of shifting to a new text window, constituting a very natural source of

errors. Indeed, it suggests a rational analysis (Anderson, 1990) of onset detections: while

they provide the ability to opportunistically respond to newly occurring events and

emergency situations, they distract from the task at hand and might be detrimental to its

performance. An onset detection mechanism along the lines of the one described here

was subsequently added to ACT-R/PM (Byrne & Anderson, 2001), but much remains to

be done to determine the proper treatment of onset detection in an integrated architecture

such as ACT-R.

Detect-onset-text

 IF the goal is of type scan-text and the area scanned is window

 and a message onset is detected in area next which is not window

 THEN make a note to scan text area next

Focus-onset-text

 IF the goal is of type scan-text, no aircraft is selected and onset was detected in area next

 THEN focus on a subgoal to scan text area next starting at bottom

Find-flush-message

 IF the goal is of type scan-text of area window and no aircraft is currently selected

 and message is the next flush message in window going up from current position

 THEN note the task, aircraft and controller in message

Constrained Functionality: ACT-R Model

 23

No-flush-message

 IF the goal is of type scan-text and no aircraft is currently selected

 THEN pop the current goal

Memory-for-message

 IF the goal is of type scan-text with current task task and aircraft aircraft

 and there is a chunk for processing task task on aircraft aircraft

 THEN pop goal

Message-reply

 IF the goal is of type scan-text of area window with current aircraft aircraft

 and message is the next indented message in window containg aircraft going down

 from current position

 THEN pop goal

Subgoal-message-task

 IF the goal is of type scan-text with task task, aircraft aircraft and controller controller

THEN clear goal and

 push subgoal to process task task on aircraft aircraft with controller controller

Table 2.3: Productions applicable to the unit task scan-text

Table 2.4 presents the productions for the unit task scan-screen responsible for scanning

the radar screen, more specifically the area between the green and yellow lines in which

exiting aircraft that need to be transferred can be detected. Because of the similarity

between the two unit tasks, both of which consists in scanning a screen area to detect

events that require actions, the set of productions for the unit task scan-screen is quite

Constrained Functionality: ACT-R Model

 24

similar to those for the unit task scan-text. Scan-for-transfer scans the radar area for

exiting aircraft, memory-for-transfer and trace-of-transfer search in declarative

memory and the top right text window respectively if the aircraft has already been

transferred. If not, subgoal-transfer pushes a subgoal to transfer the aircraft. If no more

exiting aircraft can be detected, scan-done pops the goal. The message onset detection

productions detect-onset-screen and focus-onset-screen are similar to their counterpart

in unit task scan-text.

Detect-onset-screen

IF the goal is of type scan-screen and no onset has been detected

 and a message onset is detected in area next

 THEN make a note to scan text area next

Focus-onset-screen

 IF the goal is of type scan-screen, no aircraft selected and onset was detected in area next

 THEN focus on a subgoal to scan text area next starting at bottom

Detect-red

 IF the goal is of type scan-screen and no aircraft is selected

 and a colored aircraft is present

 THEN note position and controller associated with aircraft

 and push subgoals to process both tasks for aircraft in position with controller

Scan-for-transfer

 IF the goal is of type scan-screen and no aircraft is currently selected

 and aircraft is outgoing in the between area

 THEN note aircraft with its position and associated controller

Constrained Functionality: ACT-R Model

 25

Scan-done

 IF the goal is of type scan-screen and no aircraft is currently selected

 THEN pop goal

Memory-for-transfer

 IF the goal is of type scan-screen with current aircraft and controller

 and there is a chunk for processing aircraft with controller

 THEN clear the goal

Trace-of-transfer

 IF the goal is of type scan-screen with current aircraft and controller

 and there is an indented message for aircraft in text area right

 THEN clear the goal

Subgoal-transfer

 IF the goal is of type scan-screen with current aircraft in position with controller

 THEN clear goal

 and push subgoal to process transfer on aircraft in position with controller

Table 2.4: Productions applicable to the unit task scan-screen

There are noteworthy differences as well. First, the model does not assume any specific

scan ordering but instead detects exiting aircraft in an arbitrary order. Unlike the text

window scanning for which a natural ordering existed, any order in scanning the between

radar screen area (e.g. clockwise, counterclockwise, starting at any corner, etc) seems

equally valid and indeed subject protocols indicating widely different strategies. Again,

more precise data such as eye movements would be needed to determine the answer.

Constrained Functionality: ACT-R Model

 26

Second, the model avoided focusing on the same aircraft twice in the same unit task by

using an attended feature similar to the one existing in ACT-R/PM. This application

actually suggests a possible answer to a longstanding question in ACT-R/PM regarding

the duration of the attended feature tag: unit tasks provide natural boundaries to reset

attended tags. Third, there is an additional detection production detect-red that detects a

red aircraft indicating holding violation in a manner similar to the color detection

productions in the unit-task color-goal. When a holding aircraft is detected, detect-red

pushes two subgoals for that aircraft corresponding to the two actions that can be

performed depending on the direction of the aircraft: accept and welcome for incoming

aircraft and transfer and contact for outgoing aircraft. That pipelining of actions certainly

leads to more duplicated or incorrect messages than necessary, but a more precise

treatment would require a complex reasoning process that would best be implemented as

a separate unit task. Subjects caught in a holding violation might not want to spend the

time on such a process and might resort to this shotgun approach, and this would have

significantly increased the model complexity as well. Nonetheless, further analysis of

subjects’ strategy choice in the case of holding infractions would be needed to sort out

the matter, and too little data was available because of the relative rarity of that condition.

Table 2.5 presents the productions for the unit task process responsible for actually

processing an action request through a sequence of button clicks and mouse selections.

This unit task is common to the color and text condition because although the information

available will vary between conditions the basic logic of the unit task remains unchanged.

The first action to perform is to click the button on the right side of the screen

Constrained Functionality: ACT-R Model

 27

corresponding to the requested action. The production answer-speed-request

determines if the aircraft is blocked and pushes the corresponding button. The production

answer-other-requests pushes the corresponding button for all other actions because no

action-specific decision is necessary. The next action is to select the aircraft. However,

in some conditions (e.g. responding to a text message) the location of the aircraft is not

yet known and the aircraft will have to be located first. The production memory-for-

position attempts to extract the aircraft position from an existing process chunk. If that

fails, the productions find-position-inner, find-position-between and find-position-

outer scan the radar screen area corresponding to the action requested (e.g. the outer area

for accepting incoming aircraft) to find the aircraft position. This is another instance of

the retrieve-vs-compute design pattern encountered in the two previous unit tasks. Once

its position is determined the target can then be selecting by production click-target. The

production click-controller then selects the external controller associated to the aircraft,

unless preempted by productions skip-speed-change-controller and skip-welcome-

controller that explicitly skip that step for the speed change and welcome actions

respectively. The click-send production then clicks the send button and pops the goal,

which becomes a memory chunk encoding the processing of this task. As in previous

unit tasks, there is an additional production to detect the onset of an event, in this case the

appearance of a colored aircraft on the radar screen, and creates a subgoal to process that

aircraft when the current goal is completed. That subgoal is then returned to the parent

goal and pushed by the production subgoal-next in the color-goal unit task.

Constrained Functionality: ACT-R Model

 28

Next-target

 IF the goal is of type process and the display condition is color

 and a aircraft of color is detected

 and there is a rule associating color with action

 THEN note position of aircraft and

 create a subgoal to process action on aircraft in position

Answer-speed-request

 IF the goal is of type process with action speed-change for aircraft in position

 and step select

 THEN determine if aircraft is blocked

 and push button corresponding to accept-reject decision

 and note that the step is now target

Answer-other-requests

 IF the goal is of type process with action and step select

 THEN push button corresponding to action and note that the step is now target

Memory-for-position

 IF the goal is of type process with aircraft and no known position

 and there is a chunk for processing aircraft in position

 THEN note position

Find-position-inner

 IF the goal is of type process with action speed-change for aircraft and no position

 and the location of aircraft in screen area inner is found to be position

 THEN note position

Find-position-between

 IF the goal is of type process with action contact for aircraft with controller

Constrained Functionality: ACT-R Model

 29

 and no known position

 and the location of aircraft in screen area between on controller side is position

 THEN note position

Find-position-outer

 IF the goal is of type process with aircraft and no known position

 and the location of aircraft in screen area outer is found to be position

 THEN note position

Click-target

 IF the goal is of type process with aircraft in position and step target

 THEN select aircraft in position and update step to controller

Skip-speed-change-controller

 IF the goal is of type process with action speed-change and step controller

 THEN update step to send

Skip-welcome-controller

 IF the goal is of type process with action welcome and step controller

 THEN update step to send

Click-controller

 IF the goal is of type process with aircraft step controller

 THEN select controller associated with aircraft and update step to send

Click-send

 IF the goal is of type process with step send

 THEN push button send and pop goal

Table 2.5: Productions applicable to the unit task process

Constrained Functionality: ACT-R Model

 30

The final part of the model concerns the code at the top of the model that is used to

compute the workload estimates. While ACT-R has traditionally shied away from such

meta-awareness measures and concentrated on matching directly measurable data such as

external actions, response times and eye movements, it is by no means incapable of doing

so. For the purpose of this model, we proposed a measure of cognitive workload in ACT-

R grounded in the central concept of unit task. Workload is defined as the ratio of time

spent in critical unit tasks to the total time spent on task. Critical unit tasks are defined as

tasks that involve actions, such as the process goal that involves handling an event with 3

or 4 mouse clicks, or tasks that involve some type of pressure, such as the scanning goal

described above that results from an onset detection i.e. carries an expectation of a new

event that needs to be handled promptly. The ratio is scaled to fit the particular

measurement scale used in the self-assessment report.

Finally, two specific considerations need to be discussed. First is the decision not to use

ACT-R/PM. That decision was primarily driven by practical considerations, including

the tight development schedule for phase I and the fact that ACT-R/PM at the time only

ran on the Macintosh while the D-OMAR simulation only ran on Windows. While the

model is at a slightly higher degree of abstraction than ACT-R/PM (for example, it

performs a search of a list of messages in a single production), it operates in substantially

similar ways and an ACT-R/PM version could be developed fairly straightforwardly by

expanding those specific productions that currently call the interface code directly. This

would allow us to replace the only two parameters that we estimated, the average

perception and action times, with more accurate ACT-R/PM predictions. However, it is

Constrained Functionality: ACT-R Model

 31

an open question whether a higher degree of fidelity at the perceptual and motor level

would necessarily lead to a better model of the relatively higher-level data (e.g. total

penalty points) presented here. But that question of the right level of analysis is a

fundamental one that an ACT-R/PM version of this model would allow us to pursue.

The second consideration is the inclusion on the web site and CD-ROM of the complete

text of the model. The first thing to point out is that the entire code of the model of a

relatively complex task can indeed be included in a dozen fairly sparse pages. This is a

reflection of the architecture’s ability to generate complex behavior from a comparatively

simple model. More fundamentally, providing the running code of our models has been

an increasingly important practice in the ACT-R community. For example, the code

from all the models described in our book (Anderson & Lebiere, 1998) is available on our

web site (http://act.psy.cmu.edu) and can even be run directly on the web without having

to download and install ACT-R. A point-and-click web interface enables visitors to

easily change the model parameters and re-run the model to determine if its predictions

are overly sensitive to the values of the parameters. Moreover, modelers are encouraged

to adopt, if not pieces of models directly (which has been done, e.g. Byrne & Anderson,

2001), certainly the design patterns used in other models, as we have attempted to do in

this case. The goal of this openness is both to facilitate model development and to

increase the constraints on the resulting models in order to increase their predictiveness

and generality.

Constrained Functionality: ACT-R Model

 32

Experiment I Results

Because the variability in performance between runs, even of the same subject, is a

fundamental characteristic of this task, we ran as many model runs as there were subject

runs. Figure 2 compares the mean performance in terms of penalty points for subjects

and model for color (left three bars) and text (right three bars) condition by increasing

workload level. The model matches the data quite well, including the strong effects of

color-vs-text condition and of workload for the unaided (text) condition.

<Insert Figure 2 here>

 Because ACT-R includes stochasticity in chunk retrieval, production selection and

perceptual/motor actions, and because that stochasticity is amplified by the interaction

with a highly dynamic simulation, it can reproduce a large part of the variability in

human performance, as indicated by Figure 3 which plots the individual subject and

model runs for the two conditions that generated a significant percentage of errors (text

condition in medium and high workload). The range of performance in the medium

workload condition is almost perfectly reproduced other than for two outliers and a

significant portion of the range in the high condition is also reproduced, albeit shifted

slightly too upward. It should be noted that each model run is the result of an identical

model that only differs from another in its runtime stochasticity. The model neither

learns from trial to trial nor is modified to take into account individual differences.

Constrained Functionality: ACT-R Model

 33

<Insert Figure 3 here>

The model reproduces not only the subject performance in terms of total penalty points,

but also matches well to the detailed subject profile in terms of penalties accumulated

under eight different error categories, as plotted in Figure 4.

<Insert Figure 4 here>

The model also fits the mean response times (RT) for each condition, as reported in

Chapter 8. The differences in RT between conditions are primarily a function of the time

taken by the perceptual processes of scanning radar screen and text windows. A more

detailed analysis is presented in Figure 5, which plots the detailed pattern of latencies to

perform a required action for each condition and number of intervening events (i.e.

number of planes requiring action between the time of a given plane requiring action and

the time the action is actually performed). The model predicts very accurately the

degradation of RT as more events compete for attention, including the somewhat

counterintuitive exponential (note that RT is plotted on a log scale) increase in RT as a

function of number of events rather than a more straightforwardly linear increase.

<Insert Figure 5 here>

In a crucial test of the model’s multi-tasking abilities, it also closely reproduces the

probability of response to a required action in terms of number of intervening events

Constrained Functionality: ACT-R Model

 34

(plotted in Figure 6) before the action can be performed, a very sensitive measure of the

ability to detect and process events immediately after they occur.

<Insert Figure 6 here>

That multi-tasking capacity results from the model’s ability to detect event onsets and set

the next goal to process those events. Thus, despite ACT-R’s strong goal-directed

behavior, as indicated by its structure pictured in Figure 1, it can exhibit the proper level

of multi-tasking abilities without requiring any alteration to its basic control structure.

Interestingly, a version of the model that ignores event onsets and stays with a very

systematic scanning strategy actually performs quite well but provides a very different

multi-tasking profile.

Finally, the model reproduces the subjects’ answers to the self-reporting workload test

administered after each trial. Since ACT-R doesn’t have any built-in concept of

workload, we simply defined the workload of an ACT-R model as the scaled ratio

between the time spent in critical unit tasks to the total time on task. The critical unit

tasks in which the model feels “pressured” or “busy” are defined as the Process goals, in

which the model is busy performing a stream of actions, and the Scan-Text goals that are

the result of an onset detection, in which the model feels “pressured” to find and process

a new event requiring action. As shown in Figure 7, that simple definition captures the

main workload effects, specifically effects of display condition and of schedule speed.

The latter effect results from reducing the total time to execute the task (i.e. the

Constrained Functionality: ACT-R Model

 35

denominator) while keeping the total number of events (roughly corresponding to the

numerator) constant, thereby increasing the ratio. The former effect results from adding

to the process tasks the message scanning tasks resulting from onset detection in the text

condition, thus increasing the numerator while keeping the denominator constant thereby

increasing the ratio as well. Another quantitative effect that is reproduced is the higher

rate of impact of schedule speed in the text condition (and the related fact that workload

in the slowest text condition is higher than workload in the fastest color condition). This

is primarily a result of task embedding, i.e. the fact that a process task can be (and often

is) a subgoal of another critical unit task (scanning a message window following the

detection of an onset in that window), thus making the time spent in the inner critical task

count twice.

<Insert Figure 7 here>

In summary, the advantages of this model are that it is relatively simple, required almost

no parameter tuning or knowledge engineering, provides a close fit to both the mean and

variance of a wide range of subject performance measures as well as workload estimates,

and suggests a straightforward account of multi-tasking behavior within the existing

constraints of the ACT-R architecture.

Constrained Functionality: ACT-R Model

 36

Experiment II Model

Initial model

The methodology adopted in creating the experiment I model was to not try to reverse-

engineer subjects’ procedures through a cognitive task analysis or similar methods but

instead to simply develop a model that was simple and arose naturally from the

architecture. At the basic cognitive level, it meant relying on architectural mechanisms

like chunk creation to seamlessly accomplish functions like episodic memory for past

actions and aircraft positions. At the higher, structural level, it meant leveraging the

close relation between the architectural concept of goal and the HCI concept of unit task

to structure the model around a modular set of goals and the knowledge needed to solve

them. We will follow this methodology again in the development of the experiment II

model.

At the structural level, this new model involved the removal of three unit tasks from the

original model and the addition of one. The unit tasks removed were related to the text

condition, which was not used in this model. They were the high-level unit task that

handles the allocation of attention to various screen areas, and the specialized unit tasks

to scan text windows and the radar screen. Because of unit task modularity, they didn’t

need to be removed and could simply have been ignored, never being called upon, but we

took them out for reasons of simplicity. The two remaining unit tasks are the high-level

unit task for scanning the radar screen and identifying color-coded aircraft and the low-

Constrained Functionality: ACT-R Model

 37

level unit task responsible for producing the sequence of actions needed to process an

aircraft. The new unit task being added is inserted between the two. It involves a

decision goal that is called by the high-level goal when a magenta aircraft is identified as

requesting an altitude change. This goal involves deciding which action needs to be

performed on the aircraft, then calls the process goal to perform it. This new unit task

involves eight new productions that can apply to goals of the decision type, one of which

being the crux of the decision engine while the others handle relatively straightforward

stimuli input and feedback processing. The new model has a total of 19 production rules

distributed over the three goal types of color, decision and process.

At the cognitive level, categorization is handled by relying on basic architectural

mechanisms. While the concept of categorization evokes the idea of production rules, the

basic mechanism on which the initial model relies is memory. Before rules can be

formulated, the knowledge must reside in the system on which to base those rules. Thus

this model will rely on the same basic mechanism as the experiment I model, that is

ACT-R’s automatic creation of memory chunks encoding past goals, in this case goals of

the new decision type. When a decision is made and the feedback processed, the decision

goal is popped and becomes a long-term memory chunk. Future decisions can then be

made from retrieving past decision chunks.

This model can be characterized as an instance-based model (e.g. Logan, 1988). Those

models are characterized by an initial reliance on a general-purpose strategy (e.g. relying

on external aids, performing a computation procedure, or, as in this case, simply

Constrained Functionality: ACT-R Model

 38

guessing). As that strategy is exercised, knowledge from past decision-making instances

builds into long-term memory and can gradually be used as the basis for making

decisions. This gradual switch from general procedures to specific expertise is a

hallmark of human cognition. In ACT-R, that approach has been applied with great

success to a broad array of domains including control problems, i.e. the Sugar Factory

(Lebiere, Wallach & Taatgen, 1998; Wallach & Lebiere, 2002) and the Transportation

Task (Wallach & Lebiere, 2002), game playing, i.e. Paper Rock Scissors (Lebiere &

West, 1999; West & Lebiere, 2001), Backgammon (Sanner, Anderson, Lebiere & Lovett,

2000) and 2x2 Games (Bracht, Lebiere & Wallach, 1998; Lebiere, Wallach & West,

2000) and decision making, i.e. real-time dynamic decision making (Lerch, Gonzalez &

Lebiere, 1999; Gonzalez, Lerch & Lebiere, 2003) and multi-person decision-making

tasks (Lebiere & Shang, 2002). One argument often raised about the general instance-

based approach is that it has so many degrees of freedom in representation and

parameters that it can be applied to produce anything. While such objections are often

disingenuous (and are often leveled at the practice of cognitive modeling in general, e.g.

see (Roberts and Pashler, 2001)), the ACT-R models listed above model a significant

number of tasks over a broad range of domains while adopting consistent representations

and parameter values. The ability to apply the same mechanisms across a wide range of

tasks illustrates the major integrative advantage of cognitive architectures.

We will now examine the model in detail. As previously mentioned, the production rules

in the two remaining unit tasks from the experiment I model are essentially unchanged.

Exceptions involve a single production in each task that interacts with the new decision

Constrained Functionality: ACT-R Model

 39

goal. In the top-level color goal, a new production color-magenta-action detects the

magenta color associated with a plane requesting an altitude change, then pushes a goal

to make a decision on whether to accept or reject the request (instead of directly

processing the plane). In the low-level process goal, a new production answer-altitude-

requests detects that the request is for an altitude change and presses the button (accept

or reject altitude change) corresponding to the decision. Since this is the only request for

which the button to select is not uniquely determined by the request but is instead a

function of a decision made, a different production is thus required.

All other productions apply to the decision goal. The order in which the productions are

listed represent their utility ranking, and thus usually the order in which they fire to solve

a given goal. The first three productions, target-fuel, target-turbulence and target-size,

encode the characteristics of the aircraft, i.e. its fuel, turbulence and size respectively, by

moving attention to the various pieces of information near the aircraft. The production

remember-decision is the key production for this goal because it is primarily responsible

for the decision-making. It attempts to make a decision by retrieving a past decision for

an aircraft sharing the characteristics of the current one. If it is successful in retrieving

such a chunk, it simply makes the decision that was correct for that chunk. If no chunk

can be retrieved, however, then a backup production called guess-decision will make a

decision by simply guessing randomly. Once a decision has been made, the production

subgoal-process pushes a subgoal to process the aircraft with that decision. After the

process subgoal has been completed, the decision goal is resumed. The production wait-

for-feedback will wait for the feedback to appear. Once a feedback is available,

Constrained Functionality: ACT-R Model

 40

indicating either a correct or incorrect decision, the production feedback can fire. If the

feedback indicates an incorrect decision, the decision is changed to the correct one. In

either case, the goal is then popped, creating a declarative memory chunk (or reinforcing

an identical one) holding the correct decision for an aircraft with these characteristics.

That chunk can then potentially be retrieved as a basis for future decisions.

Color-Magenta-Action (color unit task)

 IF the goal is to detect a color aircraft at position and its color is magenta

 THEN push a goal to make a decision for aircraft at position

Target-fuel/turbulence/size (3 separate productions)

 IF the goal is to make a decision for aircraft and no fuel/turbulence/size is known

 THEN encode the fuel/turbulence/size of aircraft in the goal

Remember-decision

 IF the goal is to make a decision for aircraft of fuel, turbulence and size

 AND there is a memory of a decision for an aircraft of fuel, turbulence and size

 THEN select decision

Guess-decision

 IF the goal is to make a decision for aircraft of fuel, turbulence and size

 THEN randomly decide between accept-altitude and reject-altitude

Subgoal-process

 IF the goal is to make a decision for aircraft at position

 THEN push the goal to process decision for aircraft at position

Constrained Functionality: ACT-R Model

 41

Feedback

 IF the goal is to make a decision and feedback is available

 THEN update decision according to feedback and pop the goal

Wait-for-feedback

 IF the goal is to make a decision and a decision has been made

 THEN wait for feedback

Answer-altitude-requests (process unit task)

 IF the goal is to process an altitude-request action and the step is select

 THEN push the button corresponding to the action and change the step to target

Table 4.1: Production Rules for Decision Goal and Related Goals

The effort parameters for these productions were set in accordance with the parameters

for productions in the experiment I model and with similar parameters in other ACT-R

models. By default, all productions took 50 msec to fire. The three encoding productions

(target-fuel, target-turbulence and target-size) were assigned a latency of 200 msec.

Because those items are in direct proximity to the aircraft and in predictable locations,

that is directly compatible with the 185 msec estimate for small shifts of attention, such

as when scanning menu items using the perceptual/motor layers (Byrne & Anderson,

1998). The feedback production latency was set to 500 msec, in accordance with the

color-detection productions in the color goal since both represent the detection of an

unscheduled event such as the change of color of an aircraft or the appearance of the

feedback icon. The wait-for-feedback production latency was set to 1 second, as for the

Constrained Functionality: ACT-R Model

 42

wait production in the experiment I model, representing the coarseness of the general

alertness loop. The answer-altitude-requests production latency was also set to 1

second, as for all other action productions, representing the average action time factoring

for an averaging of Fitt’s law mouse movements, action preparation and clicking

movement. As in the experiment I model, the latency times were not fixed but instead

varied according to a uniform distribution of +/- 25% around the mean. In summary,

those parameters were not estimated to fit the data but instead generalized directly from

the experiment I model and other architectural guidelines.

The critical step in the decision goal is the attempt to retrieve a past decision to provide

the basis for the current one. That step is described schematically in Figure 8. On top is

the current goal, with each square representing one slot of the goal. After the first three

encoding productions have fired, the goal contains the actual size, fuel and turbulence of

the current aircraft, with no decision currently made.

<Insert Figure 8 here>

At the bottom is one of possibly many decision chunks in declarative memory. Note

incidentally that those chunks have the same structure as the current decision goal: since

past goals become chunks when they are popped, the correspondence between structures

is logical and allows for a direct correspondence in matching. One could request that the

chunk retrieved from memory match exactly the characteristics of the current aircraft in

the goal. This would correspond to the exact (symbolic) match process in ACT-R.

Constrained Functionality: ACT-R Model

 43

However, this would be undesirable for a number of reasons. First, at the start the

knowledge base is still very sparse and activations are weak: requiring the retrieval of an

exact match would severely limit the probability of successful retrievals and reduce the

decision to random guessing. Second, retrieving items that do not perfectly match allow

for the model to generalize to new instances that have never been seen before, an

essential characteristic in the real world where characteristics are not binary and the same

situation is never seen exactly again. Finally, it makes the process more robust by

preventing a single specific instance for exerting excessive influence (e.g. if it happens to

be wrong) by letting all neighboring instances participate in the retrieval process rather

than limit it to the one that happens to match exactly. This process of generalizing to

similar stimuli directly produces the patterns observed for central vs. peripheral stimuli.

In the training phase, only eight decision chunks will be created in memory, because that

is the number of unique stimuli. For each new round of stimuli, the goal being popped is

identical to an existing chunk in memory and is thus merged with it, resulting in a

strengthening of the existing chunk through the base-level learning equation. As

displayed in the table above, the activation of the chunk is determined by its base-level

activation Bi, with noise of amplitude s added. Over time, the base-level activation of

decision chunks will increase, making it increasingly likely that their activation will be

higher than the retrieval threshold τ and retrieval will be successful. If the memory

chunk doesn’t match the retrieval pattern perfectly, its match score will equal its

activation decreased by the similarity between desired retrieval pattern and actual chunk

value, scaled by the mismatch penalty MP. This partial matching process will apply for

Constrained Functionality: ACT-R Model

 44

all slots specified in the retrieval pattern, e.g. in the case illustrated above the similarity

between large and small, Simsl, and between turbulence level 1 and 3, Sim13, both apply

additively to the match score. Partial matches are less likely to be the most active and to

be retrieved, but if the initial activation was high enough to overcome the mismatches

and/or the activation of the perfectly matching chunk was sufficiently low, they have a

chance to win the activation race and be the retrieved chunk.

Just as for productions, parameters involved for declarative memory were set using

constraints from the architecture and other models. The latency factor F scaling retrieval

latency was left at the architectural default of 1.0. The decay rate d in the base-level

learning equation was also left at its architectural default of 0.5 used in almost all ACT-R

models. The mismatch penalty MP scaling the similarity decrements in the partial

matching equation was left at its default value of 1.5. The activation noise s controlling

the stochasticity of memory retrieval was left at its default value of 0.25 used in many

ACT-R models. The only architectural parameter that doesn’t have a consensus default

value is the retrieval threshold τ, which was coarsely estimated at –1.0. As Anderson et

al (1998) have observed, the value of the retrieval threshold seems to vary with the

average activation level and cannot seem to be fixed at this time. However, the value

used here is well within the range of values for that parameter used in other models. As

for chunk-specific parameters, the prior values for the activations of the color-action

mapping chunks were left at their values set in the experiment I model. The only

additional parameters to be specified were the similarities between the quantities used in

the stimuli, i.e. the fuel, size and turbulence. Similarities between quantities are typically

Constrained Functionality: ACT-R Model

 45

set according to regular scales, usually linear or exponential scales (e.g. Lebiere, 1998;

Wallach & Lebiere, 2003). In the initial model, we set the similarities to decrease

linearly as a function of distance on each scale, reaching minimal values for the extreme

items of the scale.

Further Refinements

Based on the results of the first model (see next section), we implemented three changes

and a significant addition to the model.

The first change was primarily in reaction to the fact that, while the response time for the

secondary task (transferring planes) was about right (as was to be expected since that task

and that part of the model were essentially unchanged since the first experiment), the

response time for the primary task (authorizing altitude changes) was significantly too

high. We reasoned that a possible reason was that while the altitude change task was

clearly presented as the primary task, we did not provide a priority ordering between the

various tasks. We made that choice partly for consistency with the experiment I model

and partly for simplicity, but it was clear that subjects gave higher priority to the primary

task. Therefore, we modified the production ordering to give priority to the magenta

aircraft over others when multiple planes request action at the same time. As expected,

the response time for the primary task decreased significantly (by about 1 second),

bringing it significantly closer to the subject data.

Constrained Functionality: ACT-R Model

 46

The second change concerned the similarities between stimuli components. One

consequence of the linear similarities is that extrapolated stimuli had the same error rate

as their trained neighbors because the translation in stimuli values simply added a

constant value to the mismatch penalty for all training chunks, leaving the probability of

retrieving them unchanged. While linear similarities are often used for their simplicity,

exponentially decreasing similarities have also been used and correspond more closely to

human similarity metrics on domains like numbers (e.g. Whalen, 1997). Therefore, we

changed the similarity scale between stimuli components to decrease exponentially with

distance. That distribution has one parameter, which is the rate of the exponential

decrease. It was fixed to leave the similarities between training stimuli unchanged,

therefore affecting only the similarities to extrapolated stimuli. The result of a switch to

an exponential similarity function is to decrease the similarity between close stimuli and

increase the similarity between distant stimuli. This leads to an increase in probability of

extrapolated error, because distant instances, which are not likely to generalize well, are

now more likely to be retrieved and generate the incorrect response.

The third change concerned the workload definition. While the workload formula based

solely on time on task captured the main effects, it did so so weakly that the match to the

data is quite poor. There is just not enough difference in time spent in critical unit tasks

between the various conditions and blocks to reproduce the size of the effects in the data.

However, one measure of performance is strongly correlated with the observed changes

in workload: the percentage of errors in altitude change decisions. Therefore, we added

the time-based and success-based (in terms of number of errors) measures of effort, still

Constrained Functionality: ACT-R Model

 47

divided by total time on task, with the same multiplicative factor as in experiment I. One

basic question was how to combine effort and success given that they involved two

separate scales. To bridge the gap, we assigned to the goal of making an altitude decision

the value G from the production utility function, which is its intended semantic in term of

time worth devoting to the task. Thus, we multiplied the number of errors by the value of

G, which was set to 15 seconds, added it to the time spent on critical unit tasks (in this

case, the decision and process goals) and divided by the total time on task. The result is a

computational workload measure that closely captures the human data.

The main addition originated from the recognition that while the instance-based model

did an excellent job at capturing human performance for problem type 6, it just could not

learn fast enough to capture the very steep learning curve for problem type 1. Therefore,

while memory is still the primary foundation for categorization as is confirmed by the

problem type 6 data, an additional mechanism, rule learning, must be introduced to

account for the problem type 1 data. While category rule learning can certainly be

thought of as a conscious process where explicit rules can be formulated, represented as

chunks in declarative memory, then iteratively tested, modified and rejected or accepted,

that process is fraught with degrees of freedom. In effect, a great number of different

algorithms can be implemented (Anderson & Betz, 2001), individual differences are

paramount, and the architecture provides very little constraint on the process. Therefore,

we tried a different approach to provide for the learning of general rules while preserving

strong architectural constraints.

Constrained Functionality: ACT-R Model

 48

To accomplish those ends, we represented categorization rules as production rules.

Specifically, we created one production rule for each possible single-dimensional

categorization rule, for a total of 6 production rules. Those productions could have been

created through the process of production compilation (Taatgen & Anderson, 2002), but

we wanted to avoid the complexity of the underlying process of explicitly formulating

those rules. Those six production rules now compete with the Remember-decision and

guess-decision rules. The basis of the competition is the subsymbolic utility learning

mechanism, which tracks the effectiveness of those rules at producing the correct answer

and successfully solving the decision goal. For problem type 6, the single-dimensional

production rules do no better than the random rule and worse than the remember rule, and

are therefore weeded out. For problem type 3, no single-dimensional rule can provide

perfect categorization but some can do significantly better than the random rule, and even

the remember rule until enough instances have been learned. In that case, the rule first

predominates until it is replaced by the retrieve production. For problem type 1, one of

the six rules can provide perfect performance and its utility will quickly become

dominant, leading to the nearly uniform use of that rule. The only parameters of the

utility learning process are the value of the goal, G, which has previously been fixed at

15, and the value of the utility noise parameter, which is left at the default value of 1.0.

A process of categorization rule learning has been added while preserving strong

architectural constraints and avoiding arbitrary degrees of freedom.

Constrained Functionality: ACT-R Model

 49

Experiment II Results

Original Results

The most important quantitative results are the percentages of error committed in the

primary category task, presented in Figure 9. As for other following data figures, the left

plot is for problem type 1, the central plot is for problem type 3 and the right plot is for

problem type 6. The fit to problem type 6 is excellent. This is consistent with the fact

that no useful (linear) rule exists for problem type 6 and that an instance-based strategy

like the one used in the model is likely to be the most effective for that problem type. For

problem type 3, the model captures the shape of the curve but is consistently slower than

human subjects at learning the category by an approximately constant factor. The fit to

problem type 1 is the worst, with the model only starting to significantly learn the

category in block 4 while humans have already significantly mastered it by block 2.

While instance-based learning is more efficient on problem type 1 than 6 because a

neighboring instance retrieved through partial matching is more likely to be of the right

category, it is not nearly enough to match the human subjects. This suggests that a more

efficient strategy exists for learning problem type 1 (and probably problem type 3).

<Insert Figure 9 here>

Figure 10 presents in the same format the penalty points for the secondary task,

processing the aircraft moving between controller airspaces. While errors on the

Constrained Functionality: ACT-R Model

 50

secondary task are too few to generate significant numbers of penalty points, the model

generally produces similar levels and patterns. The main sources of errors in the

secondary task are the lack of time to accomplish the task in a timely manner and

commission errors when retrieving color-action mapping chunks. Those two sources of

errors are fundamentally the same as for the primary task. Therefore the two error

measures are not independent but instead constrain each other through the same

architectural mechanisms. They cannot be adjusted independently but instead provide

converging evidence on model performance.

<Insert Figure 10 here>

Figure 11 presents the response time data for the secondary task. Because the response

time to the secondary time is primarily determined by the latency of the processing steps

and those parameters were left unchanged from the experiment I model, this is a direct

prediction of the original model. No significant speedup with practice or any significant

effect of primary task category is predicted, in line with the human data.

<Insert Figure 11 here>

Figure 12 presents the response time data for the primary task. The model consistently

overestimates the amount of time required by the primary time. In particular, response

time for the primary task is larger than for the secondary task because the primary task

involves an additional decision step that requires significant time. However, this doesn’t

Constrained Functionality: ACT-R Model

 51

take into account the fact that the primary task, as indicated by its name, carries a higher

priority than the secondary task and, when primary and secondary tasks conflict, the

former is likely to take precedence. In the initial model, we did not implement any

specific precedence scheme, which might have led to this overestimate of primary task

response time.

<Insert Figure 12 here>

A speedup with practice of about 1 second is predicted in all conditions, consistent with

the data. This results from the increasing success and speed of retrievals. Initially,

retrieval of previous instances is more likely to fail, which takes longer than successful

retrievals. Moreover, over time the activation of chunks representing previous instances

increases with rehearsal, which according to the retrieval latency equation decreases the

retrieval time. Both factors contribute to the speedup. However, the speed up seems to

take place somewhat later than for the subjects. Also, the model doesn’t predict the

shorter response time for problem type 1 observed for the subjects. This confirms the

conclusion reached from the error rate data that rule learning might be involved for

problem type 1, which would also decrease the response time in addition to increasing

accuracy.

Figure 13 presents the workload ratings for the various conditions. No change was made

to the definition of workload used for experiment I, which was a scaled ratio of time

spent in critical goals to total time on task. The critical goals are the process goals, as in

Constrained Functionality: ACT-R Model

 52

experiment I, and the new decision goals. Because no change was made to the definition

or the parameters, this is a direct prediction from the experiment I model. While it does a

pretty good job at predicting base workload, such as in block 4 and 8 of problem type 1

and block 8 of categories 3 and 6, it fails to reproduce the full range of the problem type

and practice effects observed in the rest of the human data. The model in fact exhibits

very slight effects of problem type and practice, but because they only reflect the

response time decrease observed for the primary task (specifically the decision goal),

they are insufficient in capturing the significant effects in the human data. Since the

human data does not indicate a sizable difference in response time but significant effects

of problem type and practice on response accuracy that mirror the effects observed in the

workload data, it seems reasonable that the subjects workload self-assessments reflect not

only considerations of time but success as well.

<Insert Figure 13 here>

Figure 14 presents error percentage data for the primary task in the transfer condition.

The data presented represents the percentage of errors in the primary task for the last

block (8) of the training phase, the instances of the transfer phase that were seen in the

training phase (“Trained”) and the instances of the transfer phase that were seen in the

training phase (“Extrapolated”). We will focus on the data points for the transfer phase.

The most important thing about the transfer phase is that it is handled exactly the same as

the training phase, i.e. every stimulus is answered by attempting to retrieve a similar

instance from declarative memory. No new procedure, with the attending degrees of

Constrained Functionality: ACT-R Model

 53

freedom that it would introduce, is used for the transfer phase. The match to the trained

examples is excellent.

<Insert Figure 14 here>

For the extrapolated examples, the model predicts a similar error percentage to the trained

examples, with the minor variations in the results due to the stochastic nature of the

model runs. This results because of the form of the partial matching equation used. An

extrapolated stimulus will have an additional activation penalty subtracted from its match

score compared to the neighboring trained stimulus, but since the similarity function used

in the original model is linear, the same penalty will apply to all chunks and the

probability of retrieving any given chunk will be unchanged (other than for their

probability of reaching the retrieval threshold, but the chunks are active enough that this

is not a factor). This is a direct consequence of using a linear similarity metric. Other

forms of similarity functions (e.g. ratio or exponential, as have been used in other ACT-R

models) have decreasing penalties with distance and would show the proper increase in

error for extrapolated instances. The aggregation over broad categories of stimuli, such as

trained, extrapolated and equidistant, might obscure more specific results of the model.

Figure 15 presents a comparison of human data and model results on the training phase

for all individual stimuli:

<Insert Figure 15 here>

Constrained Functionality: ACT-R Model

 54

Each individual point in the graph corresponds to a single stimulus (modulo category-

preserving transformations), plotted by problem type. The X axis is the decision

probability for the stimulus (accept, but it could equally well be decline) in human data,

and the Y axis is the same for model results. Thus, a perfect fit would have all data

points on the x=y diagonal. The more points deviate from that line, the poorer the fit.

Quantitative fits by categories are given at the top of the figure. Again, an equation of

y=0+1x with R^2=1.0 would indicate a perfect fit. The linear regression curves actually

displayed are not quite that perfect, but all have a small intercept (absolute value of 0.05

or lower) and a slope roughly between 0.8 and 1.0. The underestimate of the slope for

problem type 3 and especially problem type 1 is consistent with the larger consistency

values for the model in the previous figure, especially for problem type 1 where the

model is slower at learning the correct categorization values and therefore produces more

extreme values. The R^2 correlations are generally high, indicating a good fit, though

interestingly and somewhat surprisingly R^2 is best for problem type 1 (0.890) and worse

for problem type 6 (0.485), which is the opposite of the results for the aggregate error

percentages presented previously where the best fits were for problem type 6 and the

worse for problem type 1! This primarily results from the characteristics of the

categories. Problem type 1 is easier to classify and thus produces more extreme

probability values, which makes larger correlation values more likely. Conversely,

problem type 6 is harder to classify, with lots of mixed probabilities toward 0.5, which

reduces possible correlations. Thus, R^2 correlations is actually a misleading indicator of

model fit, in this case primarily reflecting characteristics of the task. A better measure of

fit is Root Mean Square Error (RMSE), which measures the deviation between data and

Constrained Functionality: ACT-R Model

 55

predictions (Schunn & Wallach, 2003). RMSE is 14.1% for Problem type 1, 13.4% for

Problem type 3 and 12.5% for Problem type 6, which correctly indicates a better fit for

Problem type 6 and a worse fit for Problem type 1. Similar results can be plotted for

transfer stimuli only, with similar fits and actually a slightly smaller RMSE for Problem

type 6.

Final Results

As described in the modeling section, the main change between original and final model

is the introduction of 6 production rules representing all possible single-dimensional

categorization rules to compete with the retrieval and random strategies on the basis of

learned production utility. The principal goal was to allow faster learning of problem

type 1. Figure 16 presents the learning curves of error percentages on the primary task

for the three categories for the original and revised model. One can see that the final

results are significantly improved over the original ones. For problem type 6, no

significant change occurs and the excellent fit to human data of the original model is

preserved. Since no single-dimensional rule can do better than 50% correct, i.e. chance,

they are initially indistinguishable of the random production and then are quickly

discarded in favor of the retrieval production rule. For problem type 3, the best a single-

dimensional rule can do is to be successful 75% of the time, which is initially

significantly better than the random and retrieval strategies and will boost performance to

the subject level. Most significantly, for problem type 1 a perfect single-dimensional rule

exists and will be quickly identified. Because of randomness in the utility computations,

Constrained Functionality: ACT-R Model

 56

other rules, especially the retrieval rule, still occasionally fire depending on their utility

level, generating less-than-perfect model-performance (about 10% errors) similar to

humans.

<Insert Figure 16 here>

Figure 17 presents the response time for the primary task in the final model. Prioritizing

the primary task over the secondary task has led to a decrease in the primary task

response time, much closer to subjects RT for categories 3 and 6, but still about 1 second

too high for problem type 1.

<Insert Figure 17 here>

Interestingly, the response time for the secondary task has not significantly increased

because a better prioritization resulted in better performance overall as confirmed by

Figure 18, which presents the penalty points for the secondary task. A better

prioritization scheme for the primary task has not only lowered response times but also

reduced error rates for the secondary task on a par with human level. As we have seen

many times, components and parameters of the model have an influence on multiple data

measures and cannot be optimized separately.

<Insert Figure 18 here>

Constrained Functionality: ACT-R Model

 57

Figure 19 presents the workload ratings for the final model. By adding a success-based

component to the workload formula, the model can now capture practice and problem

type effects in the workload measure. Even though workload levels seem a bit too high

by about a constant factor, both the size of reduction with practice and the increase with

problem type difficulty are about the right size, which is notable since the size of the

success factor in the workload equation was not a free parameter but was instead

determined by the same G factor as weighing cost and success in the utility equation.

<Insert Figure 19 here>

Figure 20 presents the performance in the transfer task. Changing the similarity function

to exponential similarities that exhibit sharper initial differences and then gradually

flattening similarities similar to those obtained in human rating studies (e.g. Whalen,

1996) increases errors for extrapolated items because it reduces the relative probability of

retrieving neighboring items. Since the change in similarity functions preserved the

similarities between trained items, it didn’t change performance in the training task, and

also fixed the single parameter in determining the exponential function. Therefore, the

size of the increase in errors for extrapolated items was not optimized but instead a direct

prediction of the shift to an exponential similarity function.

<Insert Figure 20 here>

Constrained Functionality: ACT-R Model

 58

Discussion and conclusion

Parameterization

Roberts and Pashler (2000) suggested that the behavior of cognitive models should be

studied over their entire range of possible parameters to determine not only what data

models can account for but also what data they cannot account for. It is of course an

open question what the model parameters are. Real-valued architectural and knowledge

parameters seem to qualify, but they do not really constitute degrees of freedom if they

are treated as constants set by the architecture or by other models. On the other hand,

Baker and Koedinger (2003) have suggested that every knowledge structure itself, such

as each chunk and production rule, should be counted as a free parameter. Our view is

that while as long as the knowledge structures are specified by modelers there will be a

possibility of exploiting degrees of freedom in model specification, which need not be the

case. Our methodology in developing our model has been to aim for the simplest, most

natural way to solve the problem in the ACT-R architecture, and explicitly mention when

we revised that model and why. Moreover, Anderson, Bothell, Douglas & Haimson

(2003) and Taatgen (2003) have used the production compilation mechanism to

automatically encode instructions whose interpretation would then be compiled into the

production rules executed by the model. Because task-specific declarative knowledge is

the result of a direct encoding of instructions given to subjects and task-specific

production rules are the product of an architectural compilation mechanism (and a

general-purpose interpretation mechanism), one can argue that no degrees of freedom

Constrained Functionality: ACT-R Model

 59

exist in the creation of their model. While we did not follow that methodology here, we

tried to avoid endowing the model with any expert knowledge that would clearly go

beyond the instructions received.

Nonetheless, examining the influence of real-valued parameters on the model results is a

valid and often worthwhile exercise in which we have engaged regularly (e.g. Lebiere,

1998; Lebiere & Wallach, 2001). In this section, we will describe the impact of

variations of three architectural parameters directly involved in the declarative memory

retrieval process central to the instance-based categorization strategy. Those parameters

are the retrieval threshold RT, which determines when a chunk is active enough to be

retrieved, the activation noise S which controls the stochasticity of the chunk activations

and therefore of the retrieval process, and the mismatch penalty MP, which scales the

activation penalty for mismatches and thus controls the degree of retrieval generalization.

The key measure of performance as a function of parameter variation is the probability of

categorization errors for the primary task for all training blocks (a block here corresponds

to a single presentation of all instances, i.e. half a block as described previously). Figure

21 presents the probability of categorization errors as a function of the retrieval threshold:

<Insert Figure 21 here>

As expected, performance is worse for relatively high retrieval thresholds (0.0 and –0.5),

which delay retrieval from memory longer. But one would assume that the lower the

retrieval threshold, the easier the access to memory and therefore the better the

Constrained Functionality: ACT-R Model

 60

performance. But that is counting without the possibility of errors of commission in

memory retrieval, i.e. the possibility of retrieving an incorrect instance chunk because it

is very active and can overcome mismatch penalties. Thus an overly low retrieval

threshold leads to a process where a few chunks are retrieved very quickly, build up more

strength through rehearsal, and intrude upon other retrievals, leading to a permanently

high number of errors. That is the pattern displayed for retrieval threshold values of –1.5

and lower. One is better off delaying retrieval until all instances have had some time to

establish their activation and will not be so easily invaded by over-active neighbors.

Somewhat surprisingly (and satisfyingly), the retrieval threshold value of –1.0 that was

chosen to correspond to the human learning curve, especially for problem type 6, also

turns out to be optimal in terms of providing the best long-term performance, i.e. lowest

number of errors. This echoes the conclusion reached in (Lebiere, 1998) regarding the

influence of various parameters on the learning of arithmetic facts through years of

studying and experience. This suggests that perhaps the human cognitive architecture is

even more flexible that previously thought in adapting its mechanisms to provide

optimum long-term performance.

Figure 22 presents the variations in performance as a function of the activation noise S:

<Insert Figure 22 here>

Different noise values seem to provide best performance at different stages of training.

For instance, a high noise value (e.g. 0.5) is best in the first handful of blocks because it

Constrained Functionality: ACT-R Model

 61

increases the probability of retrieving anything rather than deciding randomly, while a

very low noise value (e.g. 0.1) is best after a lot of training, i.e. dozen blocks, because it

reduces the probability that stochastic activation variations will lead to an error of

commission. Intermediate values, such as the default value of 0.25, provide best

performance for intermediate amounts of training. This suggests that a truly optimal

architecture would start with a high noise associated to new knowledge structures that

would gradually decrease with practice. Lebiere (1998) suggested that it would produce

a power law of practice for the reduction of commission errors. It is also similar to the

technique of simulated annealing used in connectionist algorithms such as the Boltzmann

Machine (Ackley, Hinton & Sejnoski, 1985). Finally, Figure 23 presents the probability

of errors as a function of the mismatch penalty MP:

<Insert Figure 23 here>

A similar pattern to the previous two figures emerges. Overly lax mismatch penalties

(e.g. 0.5) lead to a permanently high percentage of errors. However, different values

provide best performance for different amounts of training. The default value of 1.5

provides the fastest initial learning among MP values that trend toward perfect

performance, thereby striking the best balance between the need for initial generalization

and later precision in memory retrieval.

Constrained Functionality: ACT-R Model

 62

Implications for ACT-R modeling

As mentioned previously, it has generally been the long-term approach of the ACT-R

modeling community to view the various models developed in the architecture as

compatible pieces of human knowledge and skills that could ultimately be integrated

back into a whole individual. This presents constraints and opportunities that provide

strong guidance to the enterprise of developing models within the framework of a unified

theory of cognition. One opportunity is the potential ability of reusing previous models

and therefore be able to build increasingly complex models out of model libraries, in a

manner similar to software engineering practices. One constraint is the need to be

compatible, in both parameters and knowledge representation, with previously developed

models. As previously discussed, we leveraged this methodology in developing this

model, and its parameters and representations do reflect the consensus of the ACT-R

community. In turn, this model suggests some new guidelines, practices and extensions

for future models.

One such guideline is the adoption of exponentially decreasing similarity metrics for

continuous quantities. Past models have not been strongly sensitive to the specific shape

of the similarity function as long as it remained monotonically decreasing with distance,

but the generalization test of Experiment 2 provided a strong constraint in that regard,

that seems retrospectively quite natural. Exponentially decreasing similarities will

generally result in the accuracy of partial matching to decrease with the distance from

known instances, a result that intuitively seems to hold in general fashion.

Constrained Functionality: ACT-R Model

 63

Another implication lies in the use of unit tasks and their implications. The concept of

unit task is crucial to the functional organization of our model, but it is also relevant in

other dimensions. One suggestion is that the attended tags associated with perceptual

scanning should expire at the end of the associated unit task, which would provide a more

natural limit on the growth of those tags than artificial upper bounds. Another

implication of unit tasks is on their use in determining cognitive workload, a

methodology that could be applied to any other model and provide a connection with a

large Human Factors literature in which that concept plays a fundamental role.

A final general recommendation would concern the cognitive modeling enterprise in

general. While quantitatively fitting model to data is a central tenet of the field, there is

such a thing as too much of a good thing. The dangers of overfitting model to data are

well-known to machine learning practitioners, and most of them might be applicable to

model development. Given the pervasive variability of human behavior and the need for

the efficient, affordable development of cognitive models, it might well be worth

adopting the 80/20 rule as a guiding principle of cognitive modeling.

Constrained Functionality: ACT-R Model

 64

Summary of Questions and Answers

This section presents the ACT-R architecture of cognition, the methodology used in

developing models and its account of individual differences, cognitive workload, multi-

tasking and categorization.

How is cognition represented in your system?

Cognition is represented in terms of a computational architecture that implements a

unified theory of cognition (Newell, 1990). While unified, the architecture is highly

modular and includes separate modules for procedural skill, long-term declarative

memory, the current context (a.k.a. goal), and perceptual/motor systems including visual,

manual, auditory and speech (Anderson et al, submitted).3 The latter modules

communicate through limited buffers with the central production system. All modules

operate in parallel but are internally serial, as is their communication through the buffer

system. The central production system represents procedural skill in the form of

production rules. Knowledge in declarative memory (as well as the other modules and

buffers) is represented in the form of structured chunks. Rules and chunks, as well as the

operations of the other modules, are strongly limited in their complexity, i.e. the “Atomic

Components of Thought” (Anderson & Lebiere, 1998). While rules and chunks are

3 As described previously, for practical reasons we used a previous version of the

architecture without perceptual/motor modules. Instead we estimated compatible latency

parameters for the production rules corresponding to perceptual/motor actions.

Constrained Functionality: ACT-R Model

 65

represented symbolically to capture the sequential, structured nature of cognition, their

characteristics are determined by associated subsymbolic quantities that endow them with

“soft” qualities such as adaptivity, similarity-based generalization and stochasticity.

Production rules are selected according to their utility and chunks are retrieved from

memory according to their activation, both of which reflect the history of those

structures. All components of the model, including rules and chunks and their

subsymbolic parameters, are learnable by the architecture.

What is your modeling methodology?

Our modeling methodology is based on emphasizing the power and constraints of the

ACT-R architecture. The basic methodology is to create the most natural and effective

model of the task given the architecture, i.e. a model that respects rather than fights the

constraints of the architecture and naturally leverages its mechanisms. The model relies

naturally on fundamental features of the architecture, such as memory, for a broad range

of purposes from incidental learning to concept formation. The central organizing

construct to guide structured cognition is the concept of goal. Goals correspond well to

the concept of unit task in human-computer interaction (Card, Moran and Newell, 1983).

Complex models are organized around a set of goal types, each with the skills needed to

solve them in the form of production rules. Being able to add and remove goal types

modularly provides both a tractable way to author complex models, as well as a theory of

skill compositionality.

Constrained Functionality: ACT-R Model

 66

What role does parameter tuning play?

Parameter tuning plays a limited role in ACT-R model development. Some degree of

parameter flexibility is required of any cognitive model because of the variety of ways

that cognition can be applied to solving a task, and of the differences between

individuals. However, parameter tuning must be limited and principled to address

concerns that models can account for anything (Roberts and Pashler, 2001) and to

provide actual predictiveness. Architectural parameters should be fixed across models

(modulo individual differences) because they represent a cognitive constant. Parameters

associated with knowledge structures should be learned or set according to reasonable

principles (again allowing for individual differences). Knowledge structures constituting

the model, i.e. chunks and productions, can be viewed as parameters themselves (Baker,

Corbett & Koedinger, 2003). Therefore, as described previously, they should also be

learned or set to reflect the natural way for the architecture to solve the problem rather

than specially engineered to fit the data.

What is your account of individual differences?

The ACT-R architecture provides a number of accounts of individual differences. The

first source of variation in individual differences is simply noise, especially when

interacting with a complex dynamic environment, as demonstrated in our results for

experiment 1. Stochasticity is a component of every subsymbolic mechanism, including

activation, utility and latency computations, which in turn determine every cognitive step

including production rule firing and memory retrieval. The second source of individual

Constrained Functionality: ACT-R Model

 67

differences are changes in architectural parameters that account for variations in

fundamental abilities such as working memory (Lovett, Reder & Lebiere, 1999),

psychomotor speed and emotions (Ritter et al, 2003). Once estimated, an individual’s

parameters can be applied to a model of any task to obtain predictions of that individual

performance on that particular task. The final source of individual differences is

variations in knowledge structures (chunks and production rules) and their associated

parameters. Because those variations can be extremely complex and task-specific, it is

the hardest source of individual differences for which to derive a consistent account.

What is your account of cognitive workload?

Cognitive workload is defined as a function of the operations of the architecture. Certain

goals (unit tasks) involving external manipulations and interruptions are defined as

critical. The measure of cognitive workload is the ratio of time spent solving those goals

to the total time on task. A similar but finer-grained measure of workload focused on

atomic cognitive, perceptual and motor actions might be defined in a manner similar to

the BOLD response in fMRI experiments but the data in this task did not address this

level of detail. A single measure of workload is provided, but it could easily be defined

in a modality-specific way by directly exploiting the modular nature of the architecture,

basically defining a workload dimension per module in line with workload theories such

as multiple resource theory (Wickens, 1992). Mechanisms by which subjects estimate

workload are not specified, but could originate in a mechanism for aggregate retrievals of

past goals called blending (Lebiere, 1999). In this model, our assumption was that

Constrained Functionality: ACT-R Model

 68

performance determined workload, but the model could be augmented to allow workload

to determine strategy, and thus performance.

What is your account of multi-tasking?

Structured cognition in ACT-R is organized around the concept of goal. However,

production rules can match inputs from any number of modules, especially perceptual

buffers, to provide reactive as well as goal-driven behavior. Detection of a perceptual

event can lead to a cognitively controlled goal switching. After the external event has

been handled, the goal can be switched back to the original one, or cognition can

continue on another path. Switching back and forth between goals can be accomplished

simply by retrieving previous goals from memory. Or multiple tasks can be

accomplished concurrently by combining their goal representations through extensive

training (e.g. Byrne & Anderson, 1998). However, the architecture imposes constraints

on multi-tasking: the former solution requires lengthy and uncertain goal retrievals while

the latter will lead to a slowdown in cognitive operations because of a diffusion in

spreading activation.

What is your account of categorization?

Categorization is not a primitive function of the architecture but rather depends upon

more basic mechanisms. The initial basis of categorization is memory, specifically the

identification of a stimulus by the retrieval of a similar instance from declarative

Constrained Functionality: ACT-R Model

 69

memory. Similarity-based partial matching provides generalization and the gradual

emergence of soft categories. Explicit categorization rules can also be formulated, which

are in turn compiled into production rules.4 Production utility learning can then be used

to select between competing categorization rules and instances. Therefore, while

categorization is not an ACT-R primitive, architectural constraints provide limits on

categorization performance through underlying mechanisms like memory decay and

stochasticity.

Acknowledgments

The author would like to thank John R. Anderson for many helpful suggestions during

the course of the project, Dan Bothell for supporting the integration for Experiment 1 and

Eric Biefeld for supporting the integration for Experiment 2. This project was supported

by grants from the Office of Naval Research.

4 For the sake of simplicity and efficiency, we did not use in this model the production

compilation mechanism but instead encoded directly the kind of production rules that

would be created.

Constrained Functionality: ACT-R Model

 70

References

Ackley, D. H., Hinton, G. E., and Sejnowski, T. J. (1985) A learning algorithm for

Boltzmann machines. Cognitive Science, 9, 147--169.

Anderson, J. R. (1990). The Adaptive Character of Thought. Hillsdale, NJ: Erlbaum.

Anderson, J. R., Bothell, D. J., Douglass, S. A. & Haimson, C.. (2003) Learning a

complex dynamic skill. In Proceedings of the 2003 ACT-R Workshop.

Pittsburgh, PA.

Anderson, J. R., & Betz, J. (2001). A hybrid model of categorization. Psychonomic

Bulletin and Review, 8, 629-647.

Anderson, J. R., Bothell, D., Lebiere, C. & Matessa, M. (1998). An integrated theory of

list memory. Journal of Memory and Language, 38, 341-380.

Anderson, J. R. & Lebiere, C. (1998). The atomic components of thought. Mahwah, NJ:

Erlbaum.

Anderson, J. R., Matessa, M., & Lebiere, C. (1997). ACT-R: A theory of higher level

cognition and its relation to visual attention. Human Computer Interaction, 12(4),

439-462.

Anderson, J. R. & Schooler, L. J. (1991). Reflections of the environment in memory.

Psychological Science, 2, 396-408.

Baker, R. S., Corbett, A. T., & Koedinger, K. R. (2003) Statistical techniques for

comparing ACT-R models of cognitive performance. In Proceedings of the 2003

ACT-R Workshop. Pittsburgh, PA.

Constrained Functionality: ACT-R Model

 71

Bracht, J., Lebiere, C., & Wallach, D. (1998). On the need of cognitive game theory:

ACT-R in experimental games with unique mixed strategy equilibria. Paper

presented at the Joint Meetings of the Public Choice Society and the Economic

Science Association, New Orleans, LA.

Byrne, M.D., & Anderson, J.R. (1998). Perception and Action. In J. R. Anderson & C.

Lebiere (Eds.) The Atomic Components of Thought. Mahwah, NJ: Erlbaum.

Byrne, M. D., & Anderson, J. R. (2001). Serial modules in parallel: The psychological

refractory period and perfect time-sharing. Psychological Review, 108, 847-869.

Card, S. K., Moran, T. P., & Newell, A. (1983). The Psychology of Human Computer

Interaction. Hillsdale, NJ: Lawrence Erlbaum Associates.

Corbett, A. T, Anderson, J. R., & O’Brien, A. T. (1995). Student modeling in the ACT

Programming Tutor. In P. Nichols, S. Chipman & B. Brennan (Eds.),

Cognitively diagnostic assessment (pp. 19-41). Hillsdale, NJ: Lawrence Erlbaum

Associates.

Gonzalez, C., Lerch, F. J., & Lebiere, C. (2003). Instance-based learning in real-time

dynamic decision making. Cognitive Science.

Lebiere, C. (1998). The dynamics of cognition: An ACT-R model of cognitive

arithmetic. Ph.D. Dissertation. CMU Computer Science Dept Technical Report

CMU-CS-98-186.

Pittsburgh,PA. Available at http://reports-archive.adm.cs.cmu.edu/.

Lebiere, C. (1999). The dynamics of cognitive arithmetic. Kognitionswissenschaft

[Journal of the German Cognitive Science Society] Special issue on cognitive

Constrained Functionality: ACT-R Model

 72

modelling and cognitive architectures, D. Wallach & H. A. Simon (eds.)., 8 (1),

5-19.

Lebiere, C., & Shang, J. (2002). Modeling group decision making in the ACT-R

cognitive architecture. In Proceedings of the 2002 Computational Social and

Organizational Science (CASOS). June 21-23, Pittsburgh, PA.

Lebiere, C., Wallach, D. & Taatgen N. (1998). Implicit and explicit learning in Act-R. In

F. E. Ritter & R. Young (Eds.). Proceedings of the 2nd European conference on

cognitive modeling, pp. 183-189, Nottingham: Nottingham University Press.

Lebiere, C., & West, R. L. (1999). A dynamic ACT-R model of simple games. In

Proceedings of the Twenty-first Conference of the Cognitive Science Society, pp.

296-301. Mahwah, NJ: Erlbaum.

Lebiere, C., & Wallach, D. (2001). Sequence learning in the ACT-R cognitive

architecture: Empirical analysis of a hybrid model. In Sun, R. & Giles, L. (Eds.)

Sequence Learning: Paradigms, Algorithms, and Applications. Springer

LNCS/LNAI, Germany.

Lebiere, C., Wallach, D., & West, R. L. (2000). A memory-based account of the

prisoner’s dilemma and other 2x2 games. In Proceedings of International

Conference on Cognitive Modeling 2000, pp. 185-193. NL: Universal Press.

Lee, F. J. & Anderson, J. R. (2001). Does learning of a complex task have to be complex?

A study in learning decomposition. Cognitive Psychology, 42(3), 267-316.

Lerch, F. J., Gonzalez, C., & Lebiere, C. (1999). Learning under high cognitive

workload. In Proceedings of the Twenty-first Conference of the Cognitive

Science Society, pp. 302-307. Mahwah, NJ: Erlbaum.

Constrained Functionality: ACT-R Model

 73

Logan, G. D. (1988). Toward an instance theory of automatization. Psychological

Review, 95, 492-527.

Lovett, M. C., Reder, L. M., & Lebiere, C. (1997). Modeling individual differences in a

digit working memory task. In Proceedings of the Nineteenth Conference of the

Cognitive Science Society, pp. 460-465. Mahwah, NJ: Erlbaum.

Lovett, M. C., Reder, L. M., & Lebiere, C. (1999). Modeling working memory in a

unified architecture: An ACT-R perspective. In Miyake, A. & Shah, P. (Eds.)

Models of Working Memory: Mechanisms of Active Maintenance and

Executive Control. New York: Cambridge University Press.

Newell, A. (1990) Unified Theories of Cognition. Cambridge, MA: Cambridge

University Press.

Newell, A. & Rosenbloom, P.S. (1981). Mechanisms of skill acquisition and the power

law of practice. In J.R. Anderson (Ed.).Cognitive skills and their acquisition (pp.

1-56). Hillsdale, LEA.

Ritter, F. E., et al (2003). Using cognitive modeling to study behavior moderators: pre-

task appraisal and anxiety. In Proceedings of the 2003 ACT-R Workshop.

Pittsburgh, PA.

Roberts, S., & Pashler, H. (2000). How persuasive is a good fit? A comment on theory

testing. Psychological Review, 107, 358-367.

Rubin, D.C. & Wenzel, A.E. (1990). One hundred years of forgetting: A quantitative

description of retention. Psychological Review, 103, 734-760.

Sanner, S., Anderson, J. R., Lebiere, C., & Lovett, M. C. (2000). Achieving efficient and

cognitively plausible learning in Backgammon. Proceedings of The Seventeenth

Constrained Functionality: ACT-R Model

 74

International Conference on Machine Learning. San Francisco: Morgan

Kaufmann.

Taatgen, N. A. (2003) Variability of behavior in complex skill acquisition. In

Proceedings of the 2003 ACT-R Workshop. Pittsburgh, PA.

Taatgen, N.A. & Anderson, J.R. (2002). Why do children learn to say "broke"? A model

of learning the past tense without feedback. Cognition, 86(2), 123-155.

Wallach, D., & Lebiere, C. (2002). On the role of instances in complex skill acquisition.

In Proceedings of the 43rd Conference of the German Psychological Association.

Wallach, D. & Lebiere, C. (2003). Conscious and unconscious knowledge: Mapping to

the symbolic and subsymbolic levels of a hybrid architecture. In Jimenez, L.

(Ed.) Attention and Implicit Learning. Amsterdam, Netherlands: John Benjamins

Publishing Company.

West, R. L., & Lebiere, C. (2001). Simple games as dynamic, coupled systems:

Randomness and other emergent properties. Journal of Cognitive Systems

Research, 1(4), 221-239.

Whalen, J. (1996). The influence of the semantic representations of numerals on

arithmetic fact retrieval. Unpublished dissertation.

Wickens, C. D. (1992). Engineering Psychology and Human Performance. New York,

New York: Harper Collins.

Constrained Functionality: ACT-R Model

 75

Figures

Figure 1: The overall flow of control in ACT-R 4.0.

Figure 2: Mean performance for subjects vs. model on tuneup (left) and flyoff

(right).

Figure 3: Performance for each subject vs. model run.

Figure 4: Penalty points for subjects vs. model runs for each error category.

Figure 5: Response time for subjects vs. model runs as a function of intervening

events.

Figure 6: Number of selections for subjects vs. model runs as a function of

intervening events.

Figure 7: Mean workload for subjects vs. model for each condition.

Figure 8: Partial Matching of Decision Chunks.

Figure 9: Error Probabilities in Primary Task.

Figure 10: Penalty Points in Secondary Task.

Figure 11: Response Time for Secondary Task.

Figure 12: Response Time for Primary Task.

Figure 13: Workload Ratings.

Figure 14: Error Probability in Transfer Condition.

Figure 15: Single-Stimulus Human and Model Comparison in Transfer Phase.

Constrained Functionality: ACT-R Model

 76

Figure 16: Error Probabilities in Primary Task.

Figure 17: Response Time for Primary Task.

Figure 18: Error Probabilities in Secondary Task.

Figure 19: Workload Ratings.

Figure 20: Performance in Transfer Task.

Figure 21: Probability of Categorization Errors for various Retrieval Thresholds

(RT).

Figure 22: Probability of Categorization Errors for various Activation Noise (S).

Figure 23: Probability of Categorization Errors for various Mismatch Penalties

(MP).

Constrained Functionality: ACT-R Model

 77

 Conflict

Resolution

Retrieval

 Request

Transform

 Goal

Current

 Goal

Procedural

 Memory
Declarative

 Memory

 Goal

Stack

Retrieval

 Result

Pop
Push

Production

Compilatio

n

ACT-R

OUTSIDE WORLD

Action Perception

Popped

 Goal

Constrained Functionality: ACT-R Model

 78

Color - Low Color - Mid Color - High Text - Low Text - Mid Text - High
0

100

200

300

400

Subjects Mean

Model Mean

Condition

P
e
n
a
lt

y

P
o
in

ts

Color - Low Color - Mid Color - High Text - Low Text - Mid Text - High
0

100

200

300

400

Subjects Mean

Model Mean

Condition

P
e
n
a
lt

y

P
o
in

ts

Constrained Functionality: ACT-R Model

 79

Human - Text Mid Model - Text Mid Human - Text High Model - Text High
0

100

200

300

400

500

600

700

Condition

P
e
n
a
lt

y

P
o
in

ts

Constrained Functionality: ACT-R Model

 80

T H HD SE SD WD DM CE IM
0

100

200

300

400

Subjects Mid

Model Mid

Subjects High

Model High

Condition

P
e
n
a
lt

y

P
o
in

ts

T H HD SE SD WD DM CE IM
0

25

50

75

100

125

150

Subjects Mid

Model Mid

Subjects High

Model High

Condition

P
e
n
a
lt

y

P
o
in

ts

Constrained Functionality: ACT-R Model

 81

6543210
1

10

100

Sub-Txt-Low

Sub-Txt-Mid

Sub-Txt-High

Mod-Txt-Low

Mod-Txt-Mid

Mod-Txt-High

Number of Intervening Events

R
T

(s

e
c
)

6543210
1

10

100

Sub-Clr-Low

Sub-Clr-Mid

Sub-Clr-High

Mod-Clr-Low

Mod-Clr-Mid

Mod-Clr-High

Number of Intervening Events

R
T

(s

e
c
)

Constrained Functionality: ACT-R Model

 82

6543210
0

100

200

300

Sub-Txt-Low

Sub-Txt-Mid

Sub-Txt-High

Mod-Txt-Low

Mod-Txt-Mid

Mod-Txt-High

Number of Intervening Events

N
u
m

b
e
r

o
f

S
e
le

c
ti

o
n
s

6543210
0

100

200

300

Sub-Clr-Low

Sub-Clr-Mid

Sub-Clr-High

Mod-Clr-Low

Mod-Clr-Mid

Mod-Clr-High

Number of Intervening Events

N
u
m

b
e
r

o
f

S
e
le

c
ti

o
n
s

Constrained Functionality: ACT-R Model

 83

Color - Low Color - Mid Color - High Text - Low Text - Mid Text - High
0

1

2

3

4

5

6

Subjects Mean

Model Mean

Condition

W
o
rk

lo
a
d

R
a
ti

n
g

Constrained Functionality: ACT-R Model

 84

Small

Size

20%

Fuel

One

Turbulence Decision

Goal

Large 20% Three AcceptChunk

Bi + N(s)
Simsl

Sim13

Constrained Functionality: ACT-R Model

 85

Constrained Functionality: ACT-R Model

 86

Constrained Functionality: ACT-R Model

 87

Constrained Functionality: ACT-R Model

 88

Constrained Functionality: ACT-R Model

 89

Constrained Functionality: ACT-R Model

 90

Constrained Functionality: ACT-R Model

 91

1.00.80.60.40.20.0
0.0

0.2

0.4

0.6

0.8

1.0

Cat 1

Cat 3

Cat 6

Human

M
o
d
e
l

y = 5.2292e-2 + 0.80874x R^2 = 0.890

y = 2.4735e-2 + 0.92498x R^2 = 0.750

y = - 1.7731e-2 + 1.0172x R^2 = 0.485

Constrained Functionality: ACT-R Model

 92

Primary Task (Altitude Request) - Probability of Error

Category 3

1 2 3 4 5 6 7 8

0.0

0.1

0.2

0.3

0.4

0.5

0.6
Category 6

1 2 3 4 5 6 7 8

0.0

0.1

0.2

0.3

0.4

0.5

0.6
Category 1

1 2 3 4 5 6 7 8

M
e
a
n
 P

 (E
rro

r)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

1 2 3 4 5 6 7 8

0.0

0.1

0.2

0.3

0.4

0.5

0.6

1 2 3 4 5 6 7 8

0.0

0.1

0.2

0.3

0.4

0.5

0.6

1 2 3 4 5 6 7 8

M
e
a
n
 P

 (E
rro

r)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

Trial

1 2 3 4 5 6 7 8

0.0

0.1

0.2

0.3

0.4

0.5

0.6

Trial

1 2 3 4 5 6 7 8

M
e
a
n
 P

 (E
rro

r)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

1 2 3 4 5 6 7 8

0.0

0.1

0.2

0.3

0.4

0.5

0.6

1 2 3 4 5 6 7 8

0.0

0.1

0.2

0.3

0.4

0.5

0.6

1 2 3 4 5 6 7 8

M
e
a
n
 P

 (E
rro

r)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

AFRL G2 = 15.53 (15.53) (15.95)

CHI G2 = 20.92 (8.30) (21.36)

CMU G2 = 7.23 (46.61) (49.69)

SOAR G2 = 5.64 (5.64) (673.62)

Round 3

Human

Round 1
Round 2

Round 3

Human
Round 1

Round 2

Round 3

Human

Round 1
Round 2

Round 3

Trial

1 2 3 4 5 6 7 8

0.0

0.1

0.2

0.3

0.4

0.5

0.6

Human

Round 1

RULEX-2

RULEX-3

Constrained Functionality: ACT-R Model

 93

Category 3

1 2 3 4 5 6 7 8

4

5

6

7

8

9

10

11
Category 6

1 2 3 4 5 6 7 8

4

5

6

7

8

9

10

11

Category 1

1 2 3 4 5 6 7 8

M
e

a
n

 R
e

s
p

o
n

s
e

 T
im

e
 (S

e
c
)

4

5

6

7

8

9

10

11

1 2 3 4 5 6 7 8

4

5

6

7

8

9

10

11

1 2 3 4 5 6 7 8

4

5

6

7

8

9

10

11

1 2 3 4 5 6 7 8

M
e

a
n

 R
e

s
p

o
n

s
e

 T
im

e
 (S

e
c
)

4

5

6

7

8

9

10

11

Trial

1 2 3 4 5 6 7 8

4

5

6

7

8

9

10

11

Trial

1 2 3 4 5 6 7 8

4

5

6

7

8

9

10

11

Trial

1 2 3 4 5 6 7 8M
e

a
n

 R
e

s
p

o
n

s
e

 T
im

e
 (S

e
c
)

4

5

6

7

8

9

10

11

1 2 3 4 5 6 7 8

4

5

6

7

8

9

10

11

1 2 3 4 5 6 7 8

4

5

6

7

8

9

10

11

Primary Task (Altitude Request) - Response Time

1 2 3 4 5 6 7 8M
e

a
n

 R
e

s
p

o
n

s
e

 T
im

e
 (S

e
c
)

4

5

6

7

8

9

10

11

AFRL SSE = 170.02 (170.02) (91.34)

CHI SSE = 3.21 (12.03) (8.04)

CMU SSE = 30.72 (32.36) (88.67)

SOAR SSE = 8.40 (8.40) (55.83)

Round 3

Human

Round 1

Round 2

Round 3

Human
Round 1

Round 2
Round 3

Human
Round 1

Round 2
Round 3

Human
Round 1

RULEX-2
RULEX-3

Constrained Functionality: ACT-R Model

 94

Category 3

1 2 3 4 5 6 7 8

0

20

40

60

80

100
Category 6

1 2 3 4 5 6 7 8

0

20

40

60

80

100
Category 1

1 2 3 4 5 6 7 8

M
e

a
n

 P
e

n
a

lty
 S

c
o

re

0

20

40

60

80

100

1 2 3 4 5 6 7 8

0

20

40

60

80

100

1 2 3 4 5 6 7 8

0

20

40

60

80

100

1 2 3 4 5 6 7 8

M
e

a
n

 P
e

n
a

lty
 S

c
o

re

0

20

40

60

80

100

Trial

1 2 3 4 5 6 7 8

0

20

40

60

80

100

Trial

1 2 3 4 5 6 7 8

0

20

40

60

80

100

Trial

1 2 3 4 5 6 7 8

M
e

a
n

 P
e

n
a

lty
 S

c
o

re

0

20

40

60

80

100

1 2 3 4 5 6 7 8

0

20

40

60

80

100

1 2 3 4 5 6 7 8

0

20

40

60

80

100

Secondary Task (Hand-Off) - Penalty Score

1 2 3 4 5 6 7 8

M
e

a
n

 P
e

n
a

lty
 S

c
o

re

0

20

40

60

80

100

AFRL SSE =5098.42 (5098.42) (5233.39)

CHI SSE = 1726.85 (1921.50) (1916.88)

CMU SSE = 1924.06 (5329.22) (2964.73)

SOAR SSE =2043.46 (2043.46) (2348.25)

Round 3

Human

Round 1

Round 2

Round 3

Human

Round 1

Round 2

Round 3

Human

Round 1

Round 2

Round 3

Human

Round 1

RULEX-2

RULEX-3

Constrained Functionality: ACT-R Model

 95

Category 3

1 2 3 4 5 6 7 8

1

2

3

4

5

6

7

Category 6

1 2 3 4 5 6 7 8

1

2

3

4

5

6

7

Category 1

1 2 3 4 5 6 7 8

M
e
a
n
 W

o
rk

lo
a
d
 R

a
tin

g

1

2

3

4

5

6

7

1 2 3 4 5 6 7 8

1

2

3

4

5

6

7

1 2 3 4 5 6 7 8

1

2

3

4

5

6

7

1 2 3 4 5 6 7 8

M
e
a
n
 W

o
rk

lo
a
d
 R

a
tin

g

1

2

3

4

5

6

7

Trial

1 2 3 4 5 6 7 8

1

2

3

4

5

6

7

Trial

1 2 3 4 5 6 7 8

1

2

3

4

5

6

7

Trial

1 2 3 4 5 6 7 8

M
e
a
n
 W

o
rk

lo
a
d
 R

a
tin

g

1

2

3

4

5

6

7

1 2 3 4 5 6 7 8

1

2

3

4

5

6

7

1 2 3 4 5 6 7 8

1

2

3

4

5

6

7

Workload Rating

AFRL SSE = 5.83 (5.83) (5.89)

CHI SSE = 0.33 (0.33) (1.34)

CMU SSE = 1.05 (3.34) (3.37)

SOAR SSE =0.21 (0.21) (2.12)

Round 3

1 2 3 4 5 6 7 8

M
e
a
n
 W

o
rk

lo
a
d
 R

a
tin

g

1

2

3

4

5

6

7

Round 1
Round 2

Human

Round 3

Round 1
Round 2

Human

Round 3

Round 1
Round 2

Human

Round 3

Round 1
RULEX-2

Human

RULEX-3

Constrained Functionality: ACT-R Model

 96

Transfer Task: Probability of Error

Category 6

0.0

0.2

0.4

0.6

0.8

1.0
Category 1

M
e
a
n
 P

(E
rro

r)

0.0

0.2

0.4

0.6

0.8

1.0

0.0

0.2

0.4

0.6

0.8

1.0

0.0

0.2

0.4

0.6

0.8

1.0

M
e
a
n
 P

(E
rro

r)

0.0

0.2

0.4

0.6

0.8

1.0

0.0

0.2

0.4

0.6

0.8

1.0

0.0

0.2

0.4

0.6

0.8

1.0

M
e
a
n
 P

(E
rro

r)

0.0

0.2

0.4

0.6

0.8

1.0

Category 3

0.0

0.2

0.4

0.6

0.8

1.0

0.0

0.2

0.4

0.6

0.8

1.0

0.0

0.2

0.4

0.6

0.8

1.0

M
e
a
n
 P

(E
rro

r)

0.0

0.2

0.4

0.6

0.8

1.0

Original
Trial 8

Extra-
polated

Trained

Trained Extra-
polated

Original
Trial 8

Trained Extra-
polated

Original
Trial 8

Original
Trial 8

Extra-
polated

Trained

Original
Trial 8

Extra-
polated

Trained

Original
Trial 8

Extra-
polated

Trained

Original
Trial 8

Extra-
polated

Trained Original
Trial 8

Extra-
polated

Trained Original
Trial 8

Extra-
polated

Trained

Original

Trial 8

Extra-
polated

Trained Original
Trial 8

Extra-
polated

Trained Original
Trial 8

Extra-
polated

Trained

AFRL G 2 = 21.28 (21.28) (16.77)

CHI G 2 = 8.53 (3.91) (48.96)

CMU G 2 = 7.99 (8.16) (11.01)

SOAR G 2 =16.23 (16.23) (420.09)

Round 3

Human

Round 1

Round 2

Round 3

Human

Round 1

Round 2

Round 3

Human

Round 1

Round 2

Round 3

Human

Round 1

RULEX-2

RULEX-3

Constrained Functionality: ACT-R Model

 97

1614121086420
0.0

0.1

0.2

0.3

0.4

0.5

0.6

RT = -2.5

RT = -2.0

RT = -1.5

RT = -1.0

RT = -0.5

RT = 0.0

Block

P
ro

b
a
b
ili

ty

C

o
rr

e
c
t

(C
a
t

1
)

Constrained Functionality: ACT-R Model

 98

1614121086420
0.0

0.1

0.2

0.3

0.4

0.5

0.6

S = 0.1

S = 0.2

S = 0.25

S = 0.3

S = 0.4

S = 0.5

Block

P
ro

b
a
b
ili

ty

C

o
rr

e
c
t

(C
a
t

1
)

Constrained Functionality: ACT-R Model

 99

1614121086420
0.0

0.1

0.2

0.3

0.4

0.5

0.6

MP = 0.5

MP = 1.0

MP = 1.5

MP = 2.0

MP = 2.5

Block

P
ro

b
a
b
ili

ty

C

o
rr

e
c
t

(C
a
t

1
)

