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Abstract. Intelligent and versatile behavior requires the capability of adapting to 
novel and unanticipated situations. When facing novel and unexpected tasks, a fast 
and general solution consists in creating new declarative task representations, and 
subsequently acting upon them. Although this mechanism seems straightforward 
in general terms, it poses significant difficulties to be implemented in a biological 
model, and the exact neural substrates of this process are still unknown. Based on 
the analysis of two different computational models, we hypothesized that the brain 
circuit for interpreting instructions would comprise the aPFC (holding 
dependencies among specialized cortical areas) and the basal ganglia 
(orchestrating the exchange of information among regions). To verify this 
hypothesis, we designed and ran an fMRI experiment where participants had to 
perform changing tasks that consisted of different combinations of atomic 
cognitive operations. Both models and experimental data suggest that the aPFC is 
critical in representing abstract knowledge that reflects planned cognitive 
operations.  This is consistent with the late appearance of aPFC in the evolution of 
the human brain, and its role in enabling human intelligence and culture.  On the 
other hand, results and simulations show that the effect of this cortical region is 
made possible by the contribution of the basal ganglia circuit, which works as a 
general-purpose interpreter of declarative knowledge. 
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Introduction 

One of the hallmarks of intelligent behavior is the capability of directing one’s own 
behavior on the basis of predefined, declarative representations. This capability is 
useful because declarative knowledge is usually more flexible to manipulate than other 
types of knowledge, and can be more easily communicated. Humans routinely exhibit 
this type of intelligent behavior when they are engaged in complex tasks such as 
planning or problem solving. Perhaps the most striking example of this behavior is 
following instructions, i.e. the capability of traducing abstract representations of 
behavior into action. This process is akin to interpreting a programming language 
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statement in computer science. Computationally, this process requires some mandatory 
computational steps that are independent of the implementation of the interpreter itself; 
in particular, instructions need to be translated into operations and structures that match 
the underlying hardware. 

In this paper, we provide converging and computational evidence that a particular 
circuit in the human brain is responsible for interpreting instructions. In particular, we 
present two different models of the task, developed in two different modeling 
frameworks, together with preliminary results from a neuroimaging experiment. The 
model and the data suggest that the circuit involved in interpreting instructions 
comprises the anterior regions of the prefrontal cortex and a set of medial nuclei 
collectively known as the basal ganglia. 

1. The Task 

Instructed behavior is seldom investigated in cognitive psychology, and data from the 
instructional phase of experiments routinely discarded. Thus, we developed a novel 
task that was used for both testing our models and collecting experimental data from 
participants. The task consists in solving a series of arithmetic problems, each of which 
is combination of three operations, such as “divide x by 3”, “multiply y by 2”, and 
“multiply x and y”. Each problem required exactly two input numbers (x and y) and 
always contained one binary and two unary operations. In order to ensure that 
intermediate and final results were always integer numbers, participants were instructed 
to use the quotient as the result of a division, and discard the remainder (e.g., 7 / 2 = 3). 
The three operations were randomly selected from a set of five, each of which was 
associated to an alphabetical letter L = {A, B, C, D, E}. Table 1 illustrates the 
operations used in the experiment and provides some examples.  

Each trial consisted of three consecutive phases: (a) An instruction phase, where 
the problem was presented; (b) An execution phase, where the two input numbers 
where presented and calculations were performed; and (c) A response phase, were 
participants indicated whether a certain number was the solution to the problem or not. 
The structure of a sample trial is illustrated in Figure 1. 

Instructions were presented as a string of letters and variables such as AExDy. 
Instructions were in prefix notation, so that the above problem was interpreted as 
A(E(x), D(y)), that is, (x / 3) × (y + 1) (see Table 1). 

 
Table 1. The five operations used in the experiment 

Operation Meaning Examples 
A(x, y) x × y A(4, 2) = 4 × 2 = 8;  A(2, 3) = 2 × 3 = 6 

B(x, y) x / y B(8, 2) = 8 / 2 = 4;   B(6, 3) = 6 / 3 = 2 

C(x) x × 2 C(4) = 4 × 2 = 8;  C(3) = 3 × 2 = 6 

D(x) x + 1 D(7) = 7 + 1 = 8;  D(3) = 3 + 1 = 4 

E(x) x / 3 E(9) = 9 / 3 = 3;  E(6) = 6 / 3 = 2 

 
 



 
 

Figure 1. Structure of a sample trial in the experiment. 

2. Models for Interpreting Instruction 

To explore the nature of the processes involved in interpreting instructions we 
developed two computational cognitive models that could perform the task. The two 
models exemplify two complementary and converging approaches. The first model was 
developed within an integrated cognitive architecture that allows symbolic encoding 
and decoding of declarative knowledge by production rules. The second model, on the 
other hand, was built upon an existing lower-level neural network model of the basal 
ganglia-prefrontal circuit. 

2.1. The ACT-R Model 

The higher-level model of the instruction task was implemented in ACT-R [1], a 
cognitive architecture that has been particularly successful in modeling human learning 
and memory and, more recently, neuroimaging data [2]. ACT-R includes declarative 
knowledge, represented as dictionary-like arrays of slot-value pairs called chunks, and 
procedural knowledge, represented as production rules.  

Chunks are permanently stored in a long-term memory but, in contrast to most 
production systems, can be accessed only when available in buffers serving as interface 
with memory and sensory modules [1]. Buffers have a limited capacity of one chunk 
only, and can only be accessed by production rules. Figure 2 illustrates the relationship 
between modules, buffers, and procedural knowledge. 

Production rules specify the chunk patterns across the various buffers in both the 
condition and action sides. Production rules can typically variabilize only the slot value 
of a chunk, and only under specific circumstances (effectively, involving no search) 
can they use a variable to refer to a specific slot (and not its value). 



 
Figure 2. Overview of the ACT-R architecture [1]. Modules are in light grey; buffers in dark grey. 

 
The ACT-R model can execute the entire task, including visually parsing the 

screen and performing simulated motor responses.  During the instruction phase, the 
model encodes each problem as a series of three consecutive steps. Each step is created 
by scanning the instruction string right to left, recursively finding the first unattended 
letter; retrieving the associated operation; and determining whether to apply the 
operation it to either x, y, or both. During the execution phase, the model simply 
retrieves the three steps in order, executing the corresponding operations and updating 
the values of x and y at the conclusion of each step.  

In ACT-R, all the task information must be either available in the buffers or 
retrieved prior to being used. Thus, some choices had to be made on how to distribute 
the relevant task information. These choices are usually constrained both by the 
specific computations available in a module and its established mapping to a brain 
region [1]. For instance, the intermediate values of x and y, together with the current 
step’s position in the series, were stored in a chunk in the imaginal buffer. This is 
consistent with the imaginal buffer’s association with the parietal cortex, a brain region 
critically involved in visuo-spatial working memory and mathematical cognition [1-3].  

The two most critical parts of the model are the chunks representing the problem 
steps and the production rules that interpret them. Problem steps were maintained in a 
special module that mimics the computations of the existing goal module. A new 
module was created because the goal module is associated with internal control states 
and not with declarative templates for future actions [2]. No established association 
exists between this novel module that processes instructions and a brain region, but 
some speculations are possible. Its role in holding higher-level representations that tie 
together lower-level actions suggest an association with the anterior prefrontal cortex 
(aPFC), which has been often associated with similar functions [4,5] 

The model’s second key component is the production rules that interpret 
instructions. These rules differ from standard ACT-R rules in that they use variables to 
indicate slot names, and not only slot values. This procedure is needed to properly 
instantiate operations are referring to either x or y. The execution of production rules 
has been associated with the basal ganglia [2], and basal ganglia activity has been 
successfully predicted either simply counting the number of production rules fired per 
time unit [1-3], or by counting the number of variable bindings per time unit [6]. Thus, 
the model predicts that the activity of the basal ganglia should reflect the increased 
number of variables in the Execution phase. 



2.2. The Conditional Routing Model 

The ACT-R model provides only indirect evidence of the neural basis of interpreting 
instructions. More compelling evidence can be obtained by modeling the process of 
following instructions within a framework that directly deals with the underlying 
biological circuits. 

Interpreting instructions requires frequent updating of representations in working 
memory, a process that is mediated by a neural loop that connects various cortical areas 
with the prefrontal cortex through the basal ganglia. Several models of this circuit exist 
(e.g., [7-9]). The conditional routing model by Stocco, Lebiere, and Anderson [9] is 
both consistent with the known biology of the circuit and provides a biological 
explanation for some of the computations required by an ACT-R model—in particular, 
for the variable binding process. 

The basal ganglia comprise a number of interconnected nuclei that route signals 
form the entire cortex to the frontal lobes. The heart of the model is the simulated 
striatum, which receives afferents from the entire cortex and is the entry point of the 
circuit. The striatum is modeled as a flat structure of projection neurons, the so-called 
striatal matrix, controlled by a set of interneurons. Biologically, interneurons have a 
high tonic activity maintaining a constant inhibition on projection neurons [10]. In the 
model, projection neurons have a high threshold θ that is calculated to match the 
expected incoming signals from the cortex and the inhibitory interneurons: 

θ ≈ ∑i wi E(xi) (1) 

where wi is weight of the synapses formed with pre-synaptic neuron i, and E(xi) is 
the rate-coded expected activation value of i. Variable binding is permitted by the 
particular two-level organization of the model striatum. The striatal matrix is divided 
into regions that reflect the organization of the cortex. Thus, every cortical region is 
represented by a corresponding patch on the striatal matrix. Each path also has an 
internal organization, with sub-compartments representing different parts of the cortex 
the original cortical regions projects to.  This two-level organization can be imagined 
as a matrix of source-destination pairs of cortical regions, and the entire striatum can be 
imagined as a switchboard [9]. Figure 3 provides a visual rendition of this organization. 

 

 
Figure 3. Organization of the striatum and the cortex in the routing model [9]. 



Consistent with neurophysiology [10], neurons in the striatum are mostly silent, 
with only a minority of them actually active at any time. In our model, the active 
neurons correspond to the active combinations of sources and destinations. Ignoring 
local computations that occur within striatal neurons, the final state of the striatum is 
the block product v ⊗ M of the initial vector v of activations in the source cortical area, 
and the switchboard matrix of allowed destinations M. The block product is a special 
case of tensor producta powerful mechanism for variable binding in neural networks 
[11]. In this case, the variable is the destination cortical region, which is bound to the 
value v, i.e. the original content of the source region. Notice the similarity between this 
mechanism and ACT-R’s production rules, where variables are used to bind the 
contents of a particular destination buffer to the values held in a source buffer. 

2.2.1. Instructions and the Control of Variable Binding 

The very structure of the model suggests one natural way of interpreting instructions. 
In the routing model, the execution of an operation simply consists in the proper 
transfer of signals between cortical regions.  For example, updating the values of x and 
y after an operation consists in copying the representation held in the prefrontal region 
that retrieves arithmetic facts to the cortical region that temporarily holds either x or y. 
This transfer is directed by the proper activation of cells in the striatum.  In fact, any 
internal operation can be properly represented as a switchboard matrix that shares the 
same organization of the striatum. 

Following this logic, we expanded the routing model by adding a novel cortical 
area that shares the switchboard organization of M, so that variable bindings in the 
striatal matrix can be properly controlled by the activation of the corresponding cells in 
the region. In addition to having a switchboard organization, neurons in this region 
need to have a very low tonic activity; this is required so that their expected activation 
value E(x) is low, minimizing the effect in calculating the thresholds in Equation (1). 
and making it easy to bring the activation of projection neurons above the thresholdθ. 
In fact, we ran a number of simulations showing that this mechanism is sufficient to 
make the model execute arbitrary operations such as the instructed arithmetic 
operations required by the task. 

One can wonder about the biological plausibility of such a hypothetical region. In 
fact, the anterior part of the prefrontal cortex (aPFC), and in particular the frontal pole, 
possesses exactly the necessary computational characteristics. Specifically, the aPFC 
receives massive projections from the frontal lobe, and these projections are 
topologically organized, thus providing an organization that resembles the frontal 
projections to the striatum Also, this region is usually silent during the execution of 
most tasks, with its most polar part actually deactivates during a task [5], thus 
satisfying the condition of a low expected value. Finally, its projections seem to 
innervate a large part of the head of the caudate nucleus, the most frontal part of the 
basal ganglia [12]. 

3. Neurocognitive Evidence 

So far, two different computational models have been presented that provide evidence 
that the process of interpreting instructions can be achieved by the joint workings of the 



anterior prefrontal cortex and the basal ganglia. Before testing this prediction, it is 
worth examining whether it is consistent with the existing experimental evidence.  

There is mounting evidence for the role of the aPFC in holding higher-level 
representations, such as those needed in analogical and meta-cognitive tasks [13], or in 
tasks that require branching of different goals [4]. 

To the best of our knowledge, the involvement of the basal ganglia in interpreting 
instructions has not been tested directly. Many converging lines of research, however, 
have singled out the basal ganglia as a potential basis for flexible behavior in general. 
For instance, there is an obvious connection between the function of the basal ganglia 
and the regulation and updating of working memory. Patients with either Parkinson’s 
or Huntington’s disease are impaired in tasks tapping different forms of working 
memory [14], and working memory-related activity in the basal ganglia has been 
reported in a number of neuroimaging studies [15,16]. Individual differences in 
working memory performance are also related to genetic differences in the expression 
of dopamine receptors in the basal ganglia [17], and high working memory capacity 
individuals show greater modulation of basal ganglia activity with increasing task 
demands [18]. Other evidence comes from tasks that require strategic reasoning to cope 
with changes in task rules. These tasks are often used in investigations of so-called 
executive functions. One such example is the Wisconsin Card Sorting Task, which 
requires participants to sort cards according to rules they need to discover by trial and 
error, and are continuously changed by the experimenter. Again, Parkinson patients are 
unable to correctly perform this task [19].  

In summary, the basal ganglia are recruited in a number of different tasks that 
share the common property of requiring flexible restructuring of behavior, either 
because new task rules come into play of because the trial difficulty changes. 
Furthermore, individual differences in performance in these kinds of paradigms are 
reliably associated with individual differences in the basal ganglia, either at the level of 
functional responses or at the level of neuroanatomy.  

4. The Experiment 

The models’ predictions were tested in a neuroimaging study. Ten participants were 
recruited to perform the task previously described while lying in a 3T fMRI scanner. 
Their brain activity was recorded at a rate of a full volume acquisition every 2 seconds, 
with 34 oblique slices acquired for each volume. Each participant solved 80 problems, 
divided into four blocks of 20 trials each. Unlike most fMRI experiments, each 
problem was self-paced. 

In addition to the distinction between encoding and executing a set of instructions, 
the experiment manipulated the amount of practice as a second factor. This 
manipulation provides an additional means to isolate the specific act of interpreting 
instructions, which is important when analyzing data with a limited number of 
participants (see below). Practice was manipulated by having participants perform a 
subset of the problems before the experiment. During the experiment, half of trials 
were novel and half came from the subset of practiced trials. 



4.1. Results 

Because the low number of participants limited the statistical power of traditional 
analysis, we performed a conjunction analysis, using statistical parameter maps 
thresholded at a liberal voxel-level value (p < 0.01, uncorrected) to isolate regions that 
are activated in two or more target contrasts. 

The ACT-R model predicts that the module corresponding to the aPFC region 
should be more active in Novel than Practiced trials, in both the Instruction and 
Execution phases. Thus, we created to statistical parameter maps (one for the 
Instruction phase, one for the Execution phase) that identified those voxels that were 
statistically more active during the Novel than during the Practiced trials (i.e., Novel > 
Practiced). As predicted, the analysis identified a cluster of voxels located in the aPFC 
region, with smaller cluster located in even anterior position in the frontal lobe. The 
results of this analysis are illustrated in the top part of Figure 4; the crosshairs highlight 
the aPFC regions. 

 
Figure 4. Results of the experiment. 

 
Both the ACT-R and the conditional routing model predict that the basal ganglia 

should be more active during the Execution phase than during the Instruction phase. 
Additionally, both models predict that this asymmetry should hold for Novel problems 
only; Practiced problems can be executed as a routine, without referring to the original 
instructions, and there is no reason to expect any additional basal ganglia involvement 
during their execution. To verify this hypothesis, we created two new contrast maps 
that identify those voxels more active in the Execution than the Instruction phase (i.e., 
Execution > Instruction) in the Novel and in the Practiced problems, respectively. As 
predicted, we found one cluster of voxels that was more active during the Execution 
phase and corresponded to the right striatum; it is indicated by the crosshairs in the 
bottom part of Figure 4. As predicted this cluster showed up only in the contrast map 



obtained from Novel trials; Practiced problems did not show, in fact, any voxel that 
was more active during the Execution phase. In summary, our preliminary results 
support our models’ predictions and permit to identify two regions crucially involved 
in interpreting instructions: the aPFC, probably responsible for encoding and accessing 
abstract representations of cognitive actions, and the basal ganglia, probably 
responsible for performing the necessary variable bindings while interpreting 
instructions. 

5. Conclusions 

This paper has presented two models and a neuroimaging study of how humans 
interpret instructions. The models and the experimental data suggest that a circuit 
formed by the basal ganglia and the anterior prefrontal cortex provide the necessary 
computations to translate abstract representations of behavior into action. 

There are at least three reasons why we believe that understanding how the brain 
interprets instructions is important. First, following arbitrary representations of actions 
is the core capability that underlies flexible behavior and planning. Thus, it provides 
one of the foundations of general intelligence. 

Additionally, interpreting instructions constitutes an interesting problem because, 
while its solution is rather simple within symbolic frameworks such as production 
systems, it is instead rather complex to treat within a connectionist framework. Thus, it 
provides a challenge for bridging the gap between abstract computations and their 
biological counterpart. 

The third and final reason why we consider this problem worth investigating is that 
it provides access to the basic operations of the human brain. As suggested in the 
introduction, the process of interpreting instructions consists in the translation of 
abstract representations into basic primitive operations. Thus, understanding how this 
translation mechanism works implicitly provides information about the nature of the 
primitive computations available in the human brain and their implementation. 
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