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ABSTRACT 
No work on mobile text messaging so far has taken into 
account the effect of learning on the change in visual 
exploration behavior as users progress from non-expert to 
expert level. We discuss within the domain of multi-tap 
texting on mobile phone and address the process of 
searching versus selecting a letter on the keypad interface. 
We develop a simulation model that forecasts the 
probability of letter location recall by non-expert users and 
thereby models learning, as the user acquires expertise in 
recalling, with practice, session after session. We then plug-
in this probability within a model of visual strategy that 
combines the effect of different ways visual exploration: 
non-expert users search for a letter while expert users select 
a letter. The observed non-expert non-motor time preceding 
a key press (for a letter) correlates extremely well with the 
simulation results. 

Categories and Subject Descriptors 
H.5.2 [Information Interfaces and Presentation]: User 
Interfaces—Evaluation/methodology. 

General Terms 
Human Factors. 

Keywords 
Texting, learning, visual search, non-expert/novice user, 
mobile phone  

 
1. INTRODUCTION 
While the empirical work evaluating mobile keypad layout 
for text entry is strong, it has either concentrated solely on 
expert behavior, see e.g. the survey [12], or solely on non-
expert behavior, see e.g. [14], [6]. In essence, all previous 
work ignores a user’s gradual skill development from 
novice to expert level. 

This is not surprising, as this is a difficult transition to 
analyze. First, finding pure novice users who never used 
texting before is getting harder and harder in many 
countries. Most previous studies were performed in 
geographical regions where a sizeable subset of the subjects 
had prior experience in texting. Second, performing 
experiments on learning in text entry is difficult, as 
monitoring the transition between novice and expert 
adequately requires longitudinal evaluation over a 
prolonged period of time (e.g. the experiment in [13] took 
20 sessions of 45 minutes each to compare learning in two 
soft keyboards). The logistics of scheduling such an 
experiment for several users as well as the boredom factor 
(e.g. [3] found that even a 30 minute session could be 
“tedious and frustrating” for a typical subject) make this 
next to impossible. Last, but not least, reimbursing 
participants for their time becomes expensive for such long-
running studies. 
One solution for this is to develop cognitive models that 
predict user performance transitioning from novice to expert 
level in texting on mobile phones. Towards this end, [5] 
developed a first model, although it had a few limitations: 
(a) it is a coarse ACT-R model at the symbolic level, which 
advocates instantaneous availability of knowledge. This 
ignores all the neural effort that takes place in acquiring that 
knowledge. (b) it completely ignores the stochastic nature of 
human behavior. (c) it did not account for the time that is 
usually spent by novice users in visually scanning the 
frontal surface in order to identify a letter location on the 
phone keypad. 
In this paper, we present a new simulation model that 
addresses the limitations of [5]. We make the following 
assumptions about the process: When the user is a pure 
novice with respect to a given keypad layout, she performs 
an explicit visual search to find each letter. However, as she 
gains expertise with practice over time, she gradually starts 
recalling letter locations and spends less time in visual 
search. With this increase in prior knowledge of letter 
locations, she now begins to spend more time deciding 
which letter location to select out of the remembered ones. 
Overall, the objective of the new simulation model is to be 
able to take into account this gradual transition from a 
searching process to a selection (i.e. decision) process. We 
simulate this transition by predicting the amount of time that 
precedes the key press for a letter. We refer to this time as 
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non-Fitts time, which implies that this is the fraction of the 
user’s total task performance time after subtracting the 
movement time predicted by Fitts law [7]. In previous work, 
the non-Fitts time for novice users was measured in an 
empirical study in [14]. Similar to that study, our model 
does not provide for error checking or error correction 
behavior. Finally, we apply our model to predict the curve 
of simulated user’s text entry speed and show how her entry 
speed changes with the change in her accuracy of letter 
location recall. 

 
2. BACKGROUND 
2.1 Multi-tap Text Entry on Mobile Phone 
[6] were the first to investigate multi-tap text entry on cell 
phones. Shortly after that, Silfverberg et al. performed an 
extensive empirical study on multi-tap text entry [17]. This 
was followed by other studies [11] and [3]. 
While [6] and [17] concentrated on expert users, the 
following studies [11] and [3] analyzed both novice and 
expert users. These studies also point out that [17] is an 
overly optimistic predictive model, as it focuses solely on 
the motor part. It effectively ignores any potential cognitive 
component (which is non-zero even for expert behavior as 
discussed in [11]). [14] demonstrated the existence of this 
cognitive component in novice users and contributed a 
model for novice user behavior in text entry. 
Our work is motivated by the fact that no work on mobile 
text messaging so far has considered the impact of learning.  
In other words, we focus on the change in visual exploration 
behavior as well as the effects of increasing recall accuracy 
as users progress from novice to expert level. 

2.2 Using the ACT-R Cognitive Architecture 
The ACT-R cognitive architecture [2] is a discrete-event 
simulation framework that embodies current theories of 
cognition, perception and motor behavior. It enables the 
creation of models that simulate the temporal (and often 
simultaneous) progression of cognitive processes, such as 
attentional changes and memory retrieval, as well as motor 
processes, such as movement of fingers. It has been used as 
a basis for several models in Human-Computer-Interaction 
[15]. An ACT-R based simulation model can be “run” at 
two levels: symbolic and sub-symbolic. The symbolic level 
in ACT-R is an abstract characterization of how brain 
structures encode knowledge [1]. At this level, the natural 
randomness inherent in human behavior is not simulated. 
The sub-symbolic level is an abstract characterization of the 
role of neural computation in making the aforementioned 
knowledge available to different cognitive processes [1]. 
This level simulates the randomness in human behavior. 
 
 

3. USER STRATEGIES: Visual search versus 
Selection 
The vision module in ACT-R is an attentional system - it 
does not account for time spent in visual exploration (visual 
search) in the field-of-view. This is a shortcoming of 
ACT-R, which affects our work, as users at the novice level 
perform a visual search to find the key for a given letter. On 
the other hand, expert behavior, involves selecting (i.e. 
deciding, not searching) a key by using stored knowledge. 
In previous work, [16] observed experimentally that placing 
multiple letters on each key of a keypad results in a longer 
visual search time per letter compared to a single key for 
each letter. The same authors also observed a noteworthy 
shortcoming of a previous work on this issue: The formula 
to compute choice-reaction time for a key on the keypad in 
[18] is correctly based on Hick-Hyman law [8, 10]. 
However, [18] then mistakenly utilized the Hick-Hyman 
Law to calculate visual search time instead of selection (i.e. 
decision) time. To further clarify this distinction, [16] 
mentions that novice users, by definition, do not know the 
mapping between letters and keys for a given keypad layout. 
Therefore, novices cannot select (i.e. decide) between 
alternative responses, which is required for usage of the 
Hick-Hyman law. 

 
4. A NEW COGNITIVE MODEL FOR 
MOBILE TEXTING 
In the subsections below, we present the pieces of our new 
cognitive simulation model. We first describe the task that 
we consider in this work. Then we describe how we adapt 
ACT-R and discuss how we model the average visual 
search and selection (i.e. decision) time for a letter. We then 
utilize these two quantities in an equation that predicts an 
important part of the non-Fitts time of text entry on cell 
phones. 

4.1 The task 
In this work, we focus on the task of performing a key press 
on the cell phone. More precisely, we focus on a simulation 
model that predicts the non-Fitts time preceding the key 
press for a letter in a letter-group containing multiple 
distinct letters. 

4.2 Modifications to ACT-R 
We extend the ACT-R 6.0 framework for our work as 
follows: The motor module of the standard ACT-R 
framework contains only a model of a QWERTY computer 
keyboard. To develop our model of text entry on cell 
phones, we added a model for the keypad interface of a 
Nokia 5190 handset to the motor module of ACT-R. This is 
the same handset used in previous work [14]. For this, we 
created a virtual grid containing all key locations as well as 
a start and recoil position for the right thumb. See Figure 1, 
where columns 0-2 contain the keys, and column 3 contains 
the start and the recoil positions. Although the recoil 
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position may vary and hence affect the movement time 
predicted by Fitts’ law, this work focuses only on the non-
Fitts component of user’s total task performance time and is 
hence unaffected by the exact location of the recoil position. 
We further make the following simplifying assumptions: a) 
all the keys on the keypad are of the same size, b) the width 
of a key is one “key unit”, c) the horizontal and vertical 
distance between adjacent keys on the keypad is one “key 
unit”, and d) that the (right-handed) user holds the handset 
in the right hand and uses only the thumb to press keys. 
We also added several motor movement styles. The first is 
called thumb-recoil-to-location and models the movement 
of the right-hand thumb from a key to the recoil location 
(3, 2) in Figure 1. The second movement style addresses the 
fact that in multi-tap text entry more than one character is 
mapped to the same key. The default “peck” movement 
style of ACT-R (a directed movement of a finger to a new 
location followed by a keystroke, all as one continuous 
movement) is only appropriate for keyboards where a single 
letter is mapped to each key. To adapt this for multi-tap text 
entry, we extended the ACT-R system to allow the modeler 
to specify the location of the target key as well as the 
character the cognitive model would be pecking for. We 
named the new movement style peck-to-location-for-char. 
Finally, we modified the ACT-R motor module to disable 
the inclusion of Fitts law time in the task performance time 
during simulation. This allows us to focus only on the 
cognitive aspect of text entry. 

 

  
 

4.3 Visual Search Time for Letter 
To model the behavior of a novice user, we predict the 
visual search time for a letter on the multi-tap keypad as 
follows. 

Let,   
 NFTav

L    denote Average Non-Fitts time for letter, 
 NFTav

N    denote Average Non-Fitts time for number,  
 CogTav

L  denote Average Cognitive Time for letter, 
 CogTav

N  denote Average Cognitive Time for number, 
 VSRTav

L denote Average Visual Search Time for letter, 
 VSRTav

N denote Average Visual Search Time for number 
 
Then, for a novice user, 
  NFTav

L   = CogTav
L  + VSRTav

L  
 

where Cognitive Time, CogTav
L, is the mental processing 

time preceding the visual search for an alpha-numeric 
character (i.e. letter or number). 
Next, we make two assumptions: (i) For a given instance of 
the task execution (i.e. for a given trial), the difference 
between the novice cognitive times for any two distinct 
alpha-numeric characters (i.e. letter or number) on the 
keypad is zero, and (ii) Visual Search Time for a number on 
the cell phone keypad (1 to 9 and 0) is zero. We believe that 
these assumptions are valid due to the following reasons: In 
case of the first assumption, all the alpha-numeric characters 
are treated uniformly as symbols; they are not distinguished 
by their features (i.e. lines, angles and curves that make up 
an alpha-numeric character). Hence the cognitive times for 
all alpha-numeric characters are conjectured to be the same. 
In case of the second assumption, the numbers are thought 
to be arranged in a standardized layout that is common to all 
telephones, including landlines. Hence, we assume that 
users are very familiar with this layout. Furthermore, 
numbers on the keypad are mapped one per key and the font 
size of numbers is usually are fairly large compared to 
letters. Hence a typical user is assumed not to spend any 
time for searching a number on the cell phone keypad. 
   We can therefore write, 

 VSRTav
L  = VSRTav

L    −  VSRTav
N   

                        (since VSRTav
N is assumed to be 0 as per 

                          assumption (ii) above) 
               = (NFTav

L   − CogTav
L)  − (NFTav

N   − CogTav
N) 

               = (NFTav
L   − NFTav

N)   + (CogTav
N − CogTav

L)  
               =  NFTav

L   − NFTav
N 

                          (since CogTav
N − CogTav

L is assumed  
                           to be 0 as per assumption (i) above) 
Thus, 
   VSRTav

L  =  NFTav
L   − NFTav

N 
 
We use the empirical data from [14] to compute VSRTav

L as 
follows: Using the data from the first 75 trials of the study, 
the NFTav

L is 1679.79ms and NFTav
N is 999.20ms. 

Therefore, using the above equation, we find that VSRTav
L  

=  NFTav
L   − NFTav

N = 1679.79 − 999.20 = 680.59 ms. 
 

Figure 1.  Virtual grid for the Nokia 5190 keypad. 
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4.4 Selection Time for Letter 
In case of an expert user, we use the Hick-Hyman Law to 
compute the selection time (i.e. decision time) for a letter on 
the keypad. The Hick-Hyman law is: 

Selection time = a + b log2 (n) 
where n is the number of already known items to select 

(i.e. decide) from. The items being already known, ideally 
there is no searching involved in this case. The coefficients 
a and b are constants. Since text entry is continuous, there 
would be no surprises on stimulus arrival and therefore, as 
suggested by [20], we set the constant, a, to 0. [20] also 
maintains that the speed of key presses in response to 
stimulus presentation would range between 5 to 7 bits per 
second. We assume that the fastest selection (or choice) 
processing speed would be appropriate for a pure expert 
user, and therefore we set the constant, b, to 1/7 seconds per 
bit. [16] had suggested that, the number of alternatives, n, 
should be based upon the number of keys (i.e. reactions) on 
the keypad rather than the number of letters (i.e. stimuli). 
Hence we set n = 8 since the traditional cell phone keypad 
has letters appearing only on eight buttons. 

Let,   
 SLTav

L   denote Average Selection time for letter 
Then, 
   SLTav

L = b log2 (n) = (1/7) * log28 = 428.57 ms. 
 
In case of an expert user, the Average Non-Fitts time for 
letter, NFTav

L, could be written as 
       NFTav

L   = CogTav
L  + SLTav

L 

 

where Cognitive Time, CogTav
L, is the mental processing 

time preceding the selection of a letter. 
 
5. INTEGRATING VISUAL EXPLORATION 
STRATEGIES 
In this section, first we briefly discuss the typical behavior 
of a novice user during multi-tap text entry in cell phones; 
then we define few terms that we use in this work; finally 
we provide a strategy adaptation equation that we use during 
the simulation. 

5.1 Novice Behavior during Multi-tap Text 
Entry 
Let us assume that the task of a novice user is to copy some 
letters into the cell phone. Let there be three main areas viz. 
display area, text input area and the keypad area from top to 
bottom respectively on the frontal surface of the handset. 
Let each of those letters be pre-displayed one at a time (i.e. 
one per trial) in the display area so that the user can see the 
letter clearly before copying it into the text input area. Let 
us further assume that no typing error is committed during 
the text entry. Initially, the user holds the handset in her 
right hand with her right thumb roughly on location (3, 0), 
the start position in Figure 1. Then she roughly carries out 
the following actions: (i) She looks in the display area at the 

letter to be copied. (ii) She tries to recall the position of the 
letter in the keypad area. (iii) If the recall fails, she does one 
of two things: (a) If her thumb is on the start position, she 
visually searches the keypad to find the letter on it and then 
pecks the key containing the letter with her right thumb. (b) 
If her thumb is not on start position, we assume that it will 
be on a key that she pecked last. In that case, she first recoils 
her thumb to some location in column 3 of Figure 1 (this 
helps her not to block the keypad area with her thumb so 
that she can see the keypad area clearly). Next, she visually 
searches the keypad to find the letter on it. Once she finds 
the letter, she pecks the key containing that letter with her 
right thumb. (iv) If the recall succeeds, she does not spend 
time searching the keypad for the letter; rather, she directly 
pecks the key (containing that letter) since she already 
remembers its position on the keypad. (v) The next letter, 
then, gets pre-displayed in the display area. (vi) She 
saccades back to the display area to look at the next letter to 
be copied. She then repeats the above steps starting from (ii) 
again until all the letters are copied into the input text area.  

5.2 Definitions 
In the aforementioned sections, we explained two cases: (a) 
When the user is novice, her Non-Fitts time would be 
composed of Cognitive time and Visual Search Time. (b) 
When the user is expert, her Non-Fitts time would be 
composed of Cognitive time and Selection Time. In order to 
generalize these two cases, let us consider that the Non-Fitts 
time is composed of the Cognitive time and Visual 
Exploration Time where Visual Exploration Time is either 
the Visual Search Time or the Selection Time or a 
combination of both. As a user gradually transitions from 
novice to expert level with practice, the proportion of her 
visual search time versus selection time at any given 
instance of task execution is determined by a quantity 
known as Recall Accuracy which is defined as the ratio of 
the number of successful recalls to the number of recall 
attempts (per letter position on the keypad). 

5.3 Recall Accuracy Computation 
During a simulation run, our ACT-R model attempts to 
recall the position of a letter (to be texted) on the keypad at 
every trial. The recall attempt either fails or succeeds. We 
divide all the trials from the run equally into blocks. Let 
each block constitutes n trials. Let the number of successful 
recalls per block be x where x <= n. Let Ra denote the 
Recall Accuracy. Then, 

    Ra = x / n 
Recall Accuracy, thus, ideally varies from 0 

corresponding to visual search only by pure novice, to 1 
corresponding to selection only by pure expert. 

 
5.4 Visual Strategy Adaptation Equation 
During a simulation run, corresponding to a given block of 
trials, the Average Visual Exploration Time, VETav

L, for 
letter position on the keypad can be computed by 
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interpolating between the Average Visual Search Time 
(VSRTav

L) and Average Selection Time (SLTav
L) for letter 

position as follows: 
VETav

L =  (1− Ra ) * VSRTav
L  +  Ra * SLTav

L 
 
where Ra is the Recall Accuracy. We term this equation 

Visual Strategy Adaptation Equation. The equation reflects 
that with practice, as the user becomes more familiar with 
the arrangement of the keys on the keypad, she is able to 
remember more letter positions and hence her search time 
for a letter position decreases towards zero. With the 
increase in familiarity of keypad layout, she adapts to spend 
more time in selecting (i.e. choosing) a letter position out of 
all the letter positions she remembers so far and therefore 
her selection time dominates. We adapted this idea from [4] 
who had applied it for searching menus in graphical user 
interfaces. For our simulation, we substitute VSRTav

L  and 
SLTav

L of the equation with the values obtained in the 
previous section in order to obtain the average visual 
exploration time (in ms) as follows: 

 VETav
L =  (1− Ra ) * 680.59  +  Ra * 428.57 

During the simulation run, for every block of simulated 
trials, we compute the recall accuracy, Ra, and then plug-in 
that value in the above equation to calculate the average 
visual exploration time, VETav

L per block of simulated 
trials. 
 
6. REAL USER’S NON-FITTS TIME 
In order to validate our simulation results, we need real user 
data to compare against. This section discusses how we 
obtained the real user data related to novice non-Fitts time 
and expert non-Fitts time. 

6.1 Real Novice Non-Fitts Time 
One of the user studies carried out in [14] identified the non-
Fitts time for the task considered in our work. Using the 
non-Fitts time collected from the first 75 user trials of that 
empirical study, we created 15 blocks of real non-Fitts time 
where each block is an average of 5 trials (a trial being one 
instance of task execution), in the temporal order of trials. 
Table 1 has the real non-Fitts time of novice users for those 
15 blocks. 

6.2 Real Expert Non-Fitts Time 
We use data from two previously reported user studies, [11] 
and [17], to derive a lower bound on expert user data.  
[11] found an overall expert measure of 7.93 words per 
minute (a word being a group of five letters) without 
differentiating between the time-out or time-out-kill feature 
for the multi-tap mode of a cell phone and also without 
differentiating between the use of either the index finger or 
the thumb. Using the common assumption of 5 letters per 
word, the average total task performance time to enter a 
letter by an expert user would therefore be (60/7.93) /5 = 
1513.24 ms.  

From [17], we obtain the mean text entry speed of 23.75 
words per minute by averaging over 22.5 wpm (time-out, 
index finger), 20.8 wpm (time-out, thumb), 27.2 wpm (time-
out-kill, index finger) and 24.5 wpm (time-out-kill, thumb), 
all of which were predicted utilizing Fitts law. The reason 
we take the average of all the expert entry speeds from [17] 
is because we want to avoid differentiating between various 
modes (i.e. index finger, thumb, time-out or time-out-kill) at 
the expert level, thereby staying compatible with [11]. 
Using the value 23.75 wpm computed above, we derive the 
average time to enter a letter by an expert user as predicted 
by Fitts law to be (60/23.75) / 5 = 505.26 ms (assuming 5 
letters per word). 
We, therefore, derive the expert non-Fitts time for entering a 
letter to be (Average Total Task Performance Time – 
Average Fitts Law Time) = (1513.24 − 505.26) = 1007.98 
ms. 

 
7. SIMULATED USER’S NON-FITTS TIME 
Our ACT-R simulation model uses a single modeler-defined 
chunk-type. The chunks created from this chunk-type helps 
the model to keep track of the state of search of a letter on 
the display area as well as on the keypad, the last letter 
searched and found, the current letter being searched, the 
location of the current letter on the keypad and the location 
of the current letter on the display area. The procedural 
knowledge of our model is represented using the production 
rules which are similar to those in [5]. 
The key rules of the model are as follows: 
• can-recall-letter-location-on-keypad matches if the 

keypad coordinates of the current letter (that has just 
been encoded from the display area) is same as the 
information present in the retrieval buffer and fails to 
match if it doesn’t. If the match occurs, the model will 
execute a motor action directly, without any attention 
shift, to enter the letter. 

• cannot-recall-letter-location-on-keypad matches if the 
keypad coordinates of the current letter (that has just 
been encoded from the display area) is not same as the 
information present in the retrieval buffer (more 
specifically when the retrieval buffer is empty). If the 
match occurs, it will lead to the shift of visual attention, 
to the keypad area, for the current letter. 

 
 Similar to [14], our model is constructed in such a way that 
it avoids repeated key presses required to scroll for a letter. 
We do this in order to stay compatible with the user study in 
[14] that we model; however we point out that our model 
can easily simulate the effect of scrolling. 
The model performs text entry using only right thumb. 
Although this is to stay theoretically compatible with the 
user study in [14] for novice users, however it must be noted 
that the motor module of ACT-R 6.0 models the action of 
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every finger of either hands in the same way meaning that 
the non-Fitts times obtained from them at any given trial 
will all be the same. We further assume that at expert level, 
the difference between the non-Fitts times obtained from 
right or left thumb, right or left index finger is negligible. 
We set the ACT-R 6.0 sub-symbolic parameters for the 
model as follows: enable sub-symbolic computation (esc) to 
t, retrieval threshold (rt) to -0.70, latency factor (lf) to 
0.00035, activation noise (ans) to 0.05 and base level 
learning (bll) to 0.5. We leave the rest of the parameters at 
their default values. We estimate the above parameter values 
following the ACT-R modeling procedure so as to fit the 
novice non-Fitts time data from simulation to the real non-
Fitts time data observed from novice users. 
We collected data from 9 simulation runs. Each run 
consisted of 150 blocks of trials. At the start of execution of 
every block, 5 distinct letters were randomly chosen out of 
26 letters in order to simulate 5 trials per block. Overall, 
each run involved 21 simulated users * 150 blocks * 5 trials 
= 15750 simulated trials in total. Each simulation run took 
around ten minutes on Windows XP Home Edition running 
on a Pentium 4 CPU, 3.20 GHz and 448 MB RAM.  
Table 1 shows the real and simulated non-Fitts time for the 
15 blocks when the user is at novice level. The simulated 
times are the average of the data collected from 9 simulation 
runs. The 15 blocks of real data constitute the first 75 trials 
from [14], each block being average of 5 trials, in the 
temporal order of the trials. Considerable oscillation is 
evident in real data from blocks 1 to 7 and blocks 13 to 15, 
as illustrated in figure 2. This is due to the associated large 
variance in the first 75 real data points observed in [14], 
possibly owing to the short test. As a direct correlation 
between the real and the simulated novice data makes no 
real sense due to the noise, we generated trendlines for these 
two novice data sets (real and simulated) using MS-Excel. 
The mean slope of the simulated non-Fitts time data from 9 
simulation runs was −5.6581 (SD=0.7355) as shown in 
Figure 2. The slope of the real data being -5.662, differed 
only by 0.069% from the simulated slope. This small 
percentage of difference between the trendline slopes clearly 
indicates that, in general, the moving average (i.e. trend) of 
the simulated data correlates extremely well with that of the 
real data. 
In Figure 3, we show how the Recall Accuracy drives the 
gradual shift of visual exploration behavior from full visual 
search towards full selection. When the recall accuracy is 
near 0, the visual search dominates whereas when it starts 
approaching 1, selection begins dominating. It is also 
apparent from the graph that a combination of search and 
selection occurs during the transition from novice to expert 
level which is in compliance with the normal human 
behavior as discussed in [4]. 
 
 

 
Table 1: Real and Simulated non-Fitts time for 15 blocks of 
data when the user is at novice level. The 15 blocks of real 
data constitute the first 75 trials from [14], each block being 
average of 5 trials, in the temporal order of the trials. 
Simulated data is rounded off to three decimal places. 

 
Block 
No. 

Real Novice  
non-Fitts time  
      (ms) 

Simulated Novice  
non-Fitts time  
     (ms) 

1 1748.22 1931.590 
2 1617.57 1952.065 
3 1890.37 1932.935 
4 1810.90 1922.622 
5 1591.47 1903.082 
6 1607.80 1891.836 
7 1620.65 1876.617 
8 1691.20 1902.466 
9 1628.02 1896.852 
10 1650.55 1878.440 
11 1687.87 1880.802 
12 1616.57 1873.837 
13 1623.32 1866.414 
14 1798.27 1876.137 
15 1614.07 1856.225 

 
 
 

 
 

8. PREDICTING ENTRY SPEED OF 
SIMULATED USER 
Entry speed is usually considered to be the traditional 
measure of performance in text entry. In order to predict this 
measure we would need both the non-Fitts time as well as 
the Fitts time to enter one letter. In this work, we consider 
handheld cell phones whose 12-button keypads are fairly 
small and narrow in size; we consider only 8 keys that are 

Figure 2.  Novice non-Fitts time (simulated vs real) over 
15 blocks, 5 trials per block. The slopes of the trendlines 
for the real and simulated data differ by 0.069%. 
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laid out very close to each other on that miniature-sized 
keypad so that the distance between any two keys is not 
very large compared to the width of the target key (say, 
unlike the case of a QWERTY computer keyboard where 
the distance to width ratios are fairly large). Moreover, the 
Fitts coefficients for 12-button keypad of a cell phone are 
also quite small as reported in [17].  
 
The facts mentioned above results in reducing the impact of 
Fitts law on the key press time on a 12-button cell phone 
keypad to a very small fraction compared to the non-motor 
time spent by a user for a key press; this has been discussed 
in one form or other in several works  such as [9], [19], [14], 
[11] and [3]. On top of all this, it must be noted that we are 
simulating the observations from those participants who, at 
least having used the 12-button keypad of the landline 
phones as part of their day to day living, cannot be 
considered pure novices in terms of the visual familiarity of 
the keypad layout. 
 
We, therefore, propose to combine the average value of Fitts 
law time with the simulated average value of non-Fitts time 
for every block to arrive at the total task performance time 
corresponding to that block as follows:  
      TPTav

L =   NFTav
L  +  FTav

L 
where FTav

L denotes the average Fitts law time (in ms) and 
TPTav

L denotes the simulated average total task performance 
time (in ms) for entering a letter. So far as Fitts time 
computation in the ACT-R motor module is concerned, we 
still leave it disabled so as to avoid any conflict during the 
TPTav

L calculation. 
 
In our case, FTav

L  is 505.26 ms as derived in section “Real 
User’s Non-Fitts Time”. Hence for this work, the above 
TPTav

L equation takes the form 
      TPTav

L =   NFTav
L  +  505.26  

   
For every block of trials, we utilize the TPTav

L value 
(calculated per block) to compute the simulated entry speed 
in terms of the traditional words per minute (WPM) metric: 
   WPM = (1/5) * (1/ TPTav

L) * 1000 * 60 
where the convention of five letters per word is assumed.  
 
Figure 4 shows the curve of simulated entry speed in words 
per minute (wpm) and recall accuracy, over 150 blocks of 
trials. The simulated novice speed from our model is found 
to be about 5 wpm which is close to the novice speed of 
5.87 wpm predicted in [14] or 5.59 wpm observed in [11]. 
Besides, while acknowledging the real expert entry speed of 
7.93 words per minute [11], we predict through our model 
that the simulated expert level speed of 7.926 words per 
minute (obtained on inspecting the simulation data) would 
be reached roughly at around 111th block. The predicted 
expert speed is, thus, fairly close to the real one as well. 
 
 

 
9. LIMITATIONS OF THE SIMULATION 
MODEL 
There are quite a few limitations of our model: (i) Our work 
does not model the potential errors that may be committed 
by entering unexpected characters while texting. (ii) In the 
visual strategy adaptation equation, we use average values 
for the visual search time (VSRTav

L) and selection time 
(SLTav

L) for every block of trials. The value of VSRTav
L 

was derived from the real user data observed on a traditional 
12-button multi-tap phone keypad in [14]. This is a layout 
that a typical phone user is very familiar with. If a different 
keypad layout is used, it is possible that the VSRTav

L may 
turn out to be different from the value used in this work. We 
suggest that longitudinal study be undertaken on other cell 
phone keypad layouts to investigate this possibility.  

 
 

 
 
 

Figure 4: Simulated Entry Speed (in wpm - words per 
minute) and the recall accuracy (0 to 1) over 150 blocks 
as the simulated user transitions from novice to expert 
level. The simulated user reaches the expert level at 
around 111th block. 

Figure 3:  Simulated visual exploration time (in ms) and 
the recall accuracy (0 to 1) over 150 blocks as the 
simulated user transitions from novice to expert level.
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10. SUMMARY 
In this paper we presented a new ACT-R based cognitive 
model that simulates the effect of recall accuracy (of letter 
positions in a cell phone keypad) on user behavior in finding 
a letter in the keypad during multi-tap text entry. The 
simulation predicts that as the recall accuracy increases with 
practice, the user gradually changes her visual exploration 
strategy from visual search to selection.  
Our cognitive model is important for two reasons. First, 
from a theoretical standpoint, there has been surprisingly no 
work in cell phone text entry that successfully considers 
cognitive time, visual search time, Hick-Hyman selection 
time and Fitts’ time. Our success will hopefully stimulate 
further work on modeling text entry tasks on other types of 
mobile devices that include all three − cognitive workload, 
visual exploration and aimed movement components. 
Second, nine simulation runs, each equivalent to a 
longitudinal study, taking only 10 minutes per run as 
opposed to several weeks, amply proves that such modeling 
effort will drastically cut down on time. 
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