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Abstract 

This paper presents a representation of training based on an 
ACT-R model of list learning. The benefit of the list model 
representation for making training predictions can be seen in 
the accurate a priori predictions of trials to mastery given the 
number of task steps. The benefit of using accurate step times 
can be seen in the even more accurate post-hoc model results.  

Keywords: Training; prediction; list length; ACT-R. 

Introduction 

Numerous studies have documented operational and training 

problems with the modern autoflight systems, in particular 

the flight management system (FMS) and its pilot interface, 

the control display unit (CDU). During the last few years, 

more attention has been given to the limitations of current 

autoflight training methods. Many studies have concluded 

that current training programs are inadequate in both depth 

and breadth of coverage of FMS functions (Air Transport 

Association, 1999; BASI, 1998; FAA Human Factors Team, 

1996).  

Matessa and Polson (2006) proposed that the 

inadequacies of the programs are due to airline training 

practices that encourage pilots to master FMS programming 

tasks by memorizing lists of actions, one list for each task. 

Treating FMS programming skills as lists of actions can 

interfere with acquisition of robust and flexible skills. This 

hypothesis of the negative consequence of list-based 

representation was validated by Taatgen, Huss, and 

Anderson (2008), who show poorer performance for list-

based representation compared to a stimulus-based 

representation. 

This paper extends the table-based training time 

predictions of Matessa and Polson (2006) by presenting a 

computational model that represents procedure training as 

list learning. The model is meant to describe training 

programs where to-be-learned procedures are formally 

trained, and trainees must demonstrate mastery before they 

can go on to more advanced, on-the-job training. Airline 

transition training programs are examples of this paradigm. 

The model takes as input the number of steps in a procedure 

and the time per step, and it generates estimates of the 

training time required to master the procedure. Predictions 

of the model are compared to human data and show the 

benefit of the number-of-steps and step-time parameters. 

Model 

Novice pilots lack an organizing schema for memorizing 

lists of actions and so the actions are effectively represented 

as nonsense syllables (Matessa & Polson, 2006). Therefore, 

the list model does not represent the actual information to be 

learned, but instead as an engineering approximation 

represents the training as learning a list of random digits. 

The model is motivated by the table-based list model of 

Matessa and Polson (2006), but is implemented in the ACT-

R cognitive architecture (Anderson, 2007). 

Table-Based List Model 

The following description from Matessa and Polson (2006) 

shows how procedure learning can be represented as list 

learning, and a table-based prediction of training time can 

be created based on procedure length. A representation of a 

task must encode both item (actions and parameters) and 

order information. Anderson, Bothell, Lebiere, and Matessa 

(1998) assumed that item and order information is encoded 

in a hierarchical retrieval structure incorporated in their 

ACT-R model of serial list learning shown in Figure 1. The 

order information is encoded in a hierarchically organized 

collection of chunks. The terminal nodes of this retrieval 

structure represent the item information. The model assumes 

that pilots transitioning to their first FMS-equipped aircraft 

master a cockpit procedure by memorizing a serial list of 

declarative representations of individual actions or 

summaries of subsequences of actions. It is assumed that 

each of these attempts to learn the list is analogous to a test-

study trial in a serial recall experiment. 

 

 
Figure 1: The List Model representation for a list  

of nine digits (from Anderson et al., 1998). 
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An interpretive process uses the list to perform the 

procedure. This process incorporates the knowledge 

necessary to understand each step description and to execute 

actions necessary to perform each step. Thus, an item such 

as “Press the LEGS key” would generate the actions 

required to locate the Legs key on the CDU keyboard and 

press it. A parameter such as a waypoint identifier would be 

represented in working memory as a sequence of letters. 

The interpretative process would generate the keystrokes 

necessary to enter the identifier into the scratch pad. 

The list actions representation is a consequence of pilots’ 

decisions to treat the task of mastering FMS procedures as 

learning serial lists of actions. The retrieval structure shown 

in Figure 1 is generated by processes that adults use to 

memorize any arbitrary serial list of items. It is assumed that 

a novice representation of a FMS procedure with nine 

actions would be represented by replacing the terminal-node 

chunks with chunks representing individual actions in the 

procedure. The retrieval structure only encodes order 

information and supports access to the chunks representing 

individual actions. The groupings of the actions imposed by 

this structure have no relationship to the underlying task 

structure. Because these retrieval structures are unique to 

each task, they block transfer of training. 

The following figure is a possible list describing an FMS 

procedure for the Boeing 777 for responding to the 

following hold clearance that would be generated by a pilot 

with limited glass-cockpit experience.  

“NASA 1: Hold west of Haden on the 270 degree radial. 

Right turns. 10 mile legs. Expect further clearance at 2130 

z.” 

 

1. Press HOLD Function/Mode Key. 

2. Press LSK 6L, if a holding pattern is in the route. 

3. Line select waypoint identifier for Haden to scratchpad. 

4. Press LKS 6L. 

5. Enter the quadrant and the radial, W/270. 

6. Press LSK 2L. 

7. Enter the turn direction into the scratchpad, R. 

8. Press LSK 3L. 

9. Enter the leg distance into the scratchpad, 10. 

10. Press LSK 5L. 

11. Enter expect further clearance time, 2130. 

12. Press LSK 3R. 

13. Verify the resulting holding pattern on the ND. 

14. Press EXECUTE. 

 

Figure 2: A possible novice representation of a FMS 

procedure for responding to a Hold clearance. 

 

This probably looks like a list of nonsense syllables to 

you, as it does to novice pilots. Pilots do not receive an 

explicit instruction on how to encode FMS procedures in 

memory early in training and lack organizing schemas that 

would help in memorizing instructions. Catrambone (1995) 

has shown that novices tend to describe problem solutions 

in terms of actions used to solve the problem. In the case of 

FMS programming skills, this process leads to long lists that 

are very difficult to memorize. 

The list shown in Figure 2 has undesirable properties and 

would be difficult to memorize. It is long—14 items—and it 

is organized as a linear sequence of actions that cannot be 

directly stored in memory (Anderson, et al., 1998). Some 

kind of idiosyncratic organization would have to be imposed 

on it to break it up into sublists before it could be 

successfully memorized. Furthermore, the representation of 

the procedure for programming a hold shown in Figure 2 is 

specific to a particular clearance. It would be relatively easy 

to generalize this representation to clearances with identical 

parameters but with different values. However, generalizing 

this procedure to cover the entry of any hold clearance 

requires numerous nontrivial inferences. 

 

The Savings Paradigm The list model assumes that 

learning a FMS procedure is analogous to memorizing serial 

lists of nonsense syllables for a pilot with limited FMS 

experience. Training times can be estimated using results of 

an experimental paradigm initially developed by 

Ebbinghaus (1888/1913, Chapter 8). On the first day of the 

experiment, participants learn a serial list of items to a 

criterion of mastery of one perfect recitation of the list. 

Performance is measured as the number of trials to mastery. 

Participants return to the laboratory 24 hours later and 

relearn the list to the same criterion of mastery. Training 

stops on the first day that participants perform perfectly on 

the first presentation of the list after a 24-hour retention 

interval. 

 

Table-based Prediction Matessa and Polson (2006) 

developed a table that presents the number of retentions on 

each successive day and the number of days of training 

required to be able recall a list perfectly after 24 hours. The 

numbers in the table were derived by synthesizing the 

results of several experiments from the list-learning 

literature starting with the data from Ebbinghaus 

(1885/1913, Chapter 8). The numbers are extrapolations 

generated by fitting power functions to Ebbinghaus’s results 

and then adjusting them to account for the fact that he used 

a very rapid presentation rate. 

Training time is estimated by calculating the amount of 

time it would take to administer N repetitions of a procedure 

of length L during one session in a fixed-base or full-motion 

simulator. The model’s description of the training processes 

has three time parameters: session setup time (SST), 

repetition setup time (RST), and step time (ST). SST is the 

time required to set up a simulator to begin training a 

specific procedure. RST is the time required to set up the 

simulator for the next repetition, and ST is the time required 

for a trainee to perform a step and receive feedback from the 

instructor if necessary. These values are then summed over 

days to generate a training- time prediction for a given 

procedure.  

The time devoted to training a procedure on one day = 

SST + N*RST + N*L*ST. 
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The values for N, the number of repetitions on a day, are 

taken from the table. Values for SST and RST were set to 

120 seconds, and ST was set to 5 seconds. Current fixed-

based and full-motion simulators were found to be ill-suited 

to this kind of training; they are designed to simulate the 

execution of complete missions. 

Numerous studies have shown that PC-based, part-task 

simulators can be used successfully to train skills such as 

performing FMS procedures (e.g., Salas, Bowers, and 

Prince, 1998; Salas, Bowers, and Rhodenizer, 1998; and 

Polson, Irving, and Irving, 1994). The lesson planners 

incorporated into commercially developed simulators can be 

programmed to deliver the necessary repetitions while 

minimizing the SST and RST (Aerosim Technologies, 

www.aerosim.com; Tricom Technologies, www.tricom-

tech.com/products.htm; CAE, www.Cae.com; and Wicat, 

www.wicat.com). Use of such a trainer was modeled by 

reducing the values of SST and RST to 5 seconds. 

ACT-R List Model 

This paper presents a computational list model developed in 

the ACT-R cognitive architecture (Anderson, 2007). ACT-R 

includes a subsymbolic level of representation where facts 

have an activation attribute which influences their 

probability of retrieval and the time it takes to retrieve them. 

The activation Ai of a chunk i is computed from two 

components – the base-level and a context component. The 

base-level activation Bi reflects the recency and frequency 

of practice of the chunk.  The equation describing learning 

of base-level activation for a chunk i is 
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where n is the number of presentations for chunk i, tj is the 

time since the jth presentation, and d is the decay parameter. 

The equation for the activation Ai of a chunk i including 

context is defined as: 

 
where the base-level activation Bi reflects the recency and 

frequency of practice of the chunk as described above. The 

elements j in the sum are the chunks which are in the slots 

of the chunk in module k. Wkj is the amount of activation 

from source j in module k.  The strength of association, Sji, 

between two chunks is 0 if chunk j is not in a slot of chunk i 

or is not itself chunk j. Otherwise it is set using the 

following equation: 

 
Built into this equation is the prediction of a fan effect 

(Anderson, 1974) in that the more things associated to j the 

less likely any of them will be, on average, in the presence 

of j. That is, if there are m elements associated to j their 

average probability will be 1/m.  

The current model is an ACT-R 6.0 model based on the 

ACT-R 4.0 list learning model developed by Anderson et al. 

(1998) and can account for phenomena such as length and 

serial position effects. Figure 3 plots the probability of 

correctly recalling a digit in position as a function of serial 

position in input. There is considerable variation in recall of 

items both as a function of list length and input position. 

These variations are predicted by the model as a reflection 

of the changes in activations of the elements being retrieved. 

These activations increase with rehearsal (base-level 

activation), decrease with time (base-level activation), and 

decrease with list length (associative activation). As the list 

is longer, there will be greater interference because there 

will be more associations from the list element and less 

associative activation to any member of the list.  
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Figure 3: List model showing length  

and serial position effects. 

 

In order to approximate training, the current model differs 

from the Anderson et al. (1998) model by not implementing 

its rehearsal strategy. In this way, presentation rate 

represents task step time (ST). As a consequence, longer 

presentation rates produce poorer performance, in contrast 

to findings from studies that allow rehearsal.  

The model also uses the Pavlik and Anderson (2005) 

version of memory decay that accounts for spacing effects. 

They developed an equation in which decay for the ith 

presentation, di, is a function of the activation at the time it 

occurs instead of at the lag. This implies that higher 

activation at the time of a trial will result in the gains from 

that trial decaying more quickly. On the other hand, if 

activation is low, decay will proceed more slowly.  

Specifically, they propose  

 
to specify how the decay rate, di, is calculated for the ith 

presentation of an item as a function of the activation mi–1 at 

the time the presentation occurred, with 

 
showing how the activation mn after n presentations depends 

on the decay rates, dis, for the past trials. 
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These equations result in a steady decrease in the long-run 

retention benefit for additional presentations in a sequence 

of closely spaced presentations. As spacing gets wider in 

such a sequence, activation has time to decrease between 

presentations; decay is then lower for new presentations, 

and long-run effects do not decrease as much. 

The model is run inside code that simulates the savings 

paradigm in order to determine trials to mastery. The model 

uses the same parameters as Anderson et al. (1998) except 

that the rate of presentation (representing step time) and 

repetition setup time are both set to 5 seconds, as in Matessa 

and Polson (2006). The activation retrieval threshold is set 

to -0.85 in order to match the predictions of the trials to 

mastery table found in Matessa and Polson (2006).  

Experiment 

In order to gather data for an experimental interface, Boeing 

conducted experiments with a PC-based, part-task simulator 

to compare the new interface to the current 777 interface 

(Prada, Mumaw, Boehm-Davis, & Boorman, 2007). Results 

from these experiments can be compared with model 

predictions to show the usefulness of the list modeling 

approach. 

Boeing Pilot Performance 

Boeing gathered performance data on flight tasks in a 

medium-fidelity, setting to get feedback on proposed 

interface improvements and to generate performance data 

comparing the 777 design to the proposed design (Prada et 

al., 2007). Two desktop computer simulations of the 777 

and proposed automatic flight control panels and associated 

displays were created. The simulations provided appropriate 

feedback, including mode changes, as controls were 

manipulated. However, the aircraft remained frozen in time 

and space until advanced by the experimenter. Participants 

controlled the simulation using a standard two-button 

mouse. For this paper, only data from the 777 interface is 

considered. 

Participants The participants consisted of twelve FMC-

naïve subjects who were male Boeing employees. All were 

general aviation pilots with instrument rating. Six had 

commercial certification and four were not instrument 

current. They had no previous exposure to the 777 FMC. 

Procedure Twenty training tasks were selected to capture 

tasks that are difficult on each interface and to provide a 

representative set of functions. In the training tasks, for each 

action (click) on the interface, the location and time were 

collected. Also collected were overall task time, number of 

steps correct, and trials to mastery. 

Results The number of steps in the tasks ranged from two 

steps to thirteen steps. For this paper, tasks are grouped into 

those with an average of two, four, seven, and thirteen steps. 

Trials to mastery increased with the number of steps in the 

task (Figure 4). 

Model Performance 

The original list model of Anderson et al. (1998) made 

predictions for lists with three items up to twelve items. The 

current model retains this range, and so, for analysis, tasks 

with two steps are compared to lists with three items and 

tasks with thirteen steps are compared to lists with twelve 

items (four steps are compared directly, as are seven). 

Results Model runs with the step time of 5 seconds used 

by Matessa and Polson (2006) show trials to mastery 

increasing with the number of steps in the task. The 

difference in trials to mastery between the model and 

subjects averaged 1.5 trials (Figure 4, model-pre). 

A post-hoc analysis used the actual average step time 

from subjects as input to the model. For tasks with an 

average of two, four, seven, and thirteen steps, the average 

step time was 15.2, 8.1, 8.0, and 6.5 seconds, respectively. 

The difference in trials to mastery between this model run 

and subjects averaged 0.8 trials (Figure 4, model-post). 
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Figure 4: Trials to mastery for model and subjects. 
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Conclusions 

The benefit of the list model representation for making 

training predictions can be seen in the accurate a priori 

predictions of trials to mastery given the number of task 

steps. The benefit of using accurate step times can be seen 

in the even more accurate post-hoc model results.  

Ideally, the list model would be given an accurate 

estimate of step times without seeing the data ahead of time. 

To this end, the list model is currently being integrated with 

CogTool (John, Prevas, Salvucci, & Koedinger, 2004). 

CogTool takes as input a demonstration of an interface task 

and returns a zero-parameter prediction of task performance 

time based on ACT-R primitives. With this information, the 

number of steps in the task and average step time can be fed 

into the list model in order to make training predictions. A 

number of open issues remain, such as the level of 

abstraction of a “step”. Does a step to push a button include 

the visual search for that button, or is that a separate step? 

More empirical work is needed to determine in what 

situations the list model representation can be useful in 

training prediction. 

Acknowledgments 

Funding for this work was provided by the National 

Aeronautics and Space Administration. 

References 

Air Transport Association. (1999). Performance of Standard 

Navigation Tasks by FMS-Generation Aircraft (Third 

report by the Human Factors Committee Automation 

Subcommittee).  

Anderson, J. R. (2007) How Can the Human Mind Occur in 

the Physical Universe? Oxford University Press. 

Anderson, J. R. (1974). Retrieval of propositional 

information from long-term memory. Cognitive 

Psychology, 5, 451-474. 

Anderson, J. R., Bothell, D., Lebiere, C., & Matessa, M. 

(1998). An Integrated Theory of List Memory. Journal of 

Memory and Language, vol. 38, 1998, pp. 341–380.  

BASI (1999) Advanced Technology Safety Survey Report. 

Flight Safety Digest Special Issue. Flight Safety 

Foundation, June-Aug 1999, pages 137-216.  

Catrambone, R. (1995) Aiding subgoal learning: Effects on 

transfer. Journal of Educational Psychology, 87, 5-17. 

Ebbinghaus, H. (1885/1913). Memory: A contribution to 

experimental psychology (Henry A. Ruger & Clara E. 

Bussenius, Trans.). New York: Teachers College, 

Columbia University. 

Federal Aviation Administration (FAA) Human Factors 

Team. 1996. Report on the Interfaces between 

Flightcrews and Modern Flight Deck Systems (June 18, 

1996). Washington: U.S. Department of Transportation, 

Federal Aviation Administration. 

 

John, B., Prevas, K., Salvucci, D., & Koedinger, K. (2004) 

Predictive Human Performance Modeling Made Easy. 

Proceedings of CHI, 2004 (Vienna, Austria, April 24-29, 

2004) ACM, New York. 

Matessa, M., & Polson, P. (2006). List Models of Procedure 

Learning. Proceedings of the International Conference on 

Human-Computer Interaction in Aeronautics (pp. 116-

121), San Francisco, CA. 

Pavlik, P. I., Jr., & Anderson, J. R. ( 2005). Practice and 

forgetting effects on vocabulary memory: An activation-

based model of the spacing effect. Cognitive Science, 29, 

559-586. 

Polson, P. G., Irving, S., & Irving, J. E. (1994). Final report: 

Applications of formal methods of human computer 

interaction to training and the use of the control and 

display unit. Washington, DC: System Technology 

Division, ARD 200, Department of Transportation, FAA. 

Prada, L. Ricardo; Mumaw, R J.; Boehm-Davis, D. A.; 

Boorman, D.J. (2007) Testing Boeing's Flight Deck of the 

Future: A Comparison Between Current and Prototype 

Autoflight Panels. Human Factors and Ergonomics 

Society Annual Meeting Proceedings, Aerospace Systems, 

pp. 55-58(4). 

Salas, E., Bowers, C.A., and Prince, C. eds. (1998). Special 

Issue: Simulation and Training in Aviation. International 

Journal of Aviation Psychology, 8(3). 

Salas, E., Bowers, C. A., & Rhodenizer, L. (1998). It is not 

how much you have but how you use it: Toward a rational 

use of simulation to support aviation training. 

International Journal of Aviation Psychology, 8(3), 197-

208.  

Taatgen, N.A., Huss, D. & Anderson, J.R. (2008). The 

Acquisition of Robust and Flexible Cognitive Skills. 

Journal of Experimental Psychology: General, 137(3), 

548-565. 

 

1967


