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Abstract
Economists and neuroscientists often explain game playing by 
assuming that humans try to predict the opponent's behavior 
on  the  basis  of  her  past  choices.  We  try  to  question  this 
assumption  in  a  Prisoner's  Dilemma  Game  by  using  a 
methodology  which  we  call  the  “subtractive  behavioral 
method”. Our aim is to investigate which task features make 
participants  attend  to  the  opponent's  behavior  or,  on  the 
contrary, make them take into account only their own choices 
and received payoffs. We find a critical effect of contextual 
information  and  we  derive  some  suggestions  about  the 
methodology  of  brain imaging  and behavioral  game theory 
experiments.

Keywords:  Game Theory; Brain Imaging; Theory of Mind; 
Social Dilemmas; Prisoner's Dilemma

Introduction
Game Theory (Von Neumann & Morgenstern, 1944) is a 

branch of  applied mathematics focused  on describing and 
predicting  the  behavior  of  “players”  involved  in  strategic 
interactions in which the result of every player’s “move” is 
contingent on the move(s) made by the other player(s). One 
of the critical assumptions of the theory is that games are 
played by completely rational agents whose strategies could 
be precisely calculated.  In  recent  years  the Game Theory 
formalism has been adopted to develop models that try to 
account  for  the  fact  that  people  often  behave  differently 
from  what  the  theory  predicts.  This  approach  has  been 
named “Behavioral Game Theory” (Camerer, 2003).

Behavioral  Game Theory  models  make  the  assumption 
that people learn during the interaction, i.e., that they change 
their behavior according to the efficacy of their past choices. 
Among these models there  are some,  like those based on 
Reinforcement  Learning  (Erev  &  Roth,  1998;  Sarin  & 
Vahid, 2001), which take into account only the player’s own 
choices  and  received  payoffs  while  others,  like  so-called 
sophisticated  (Camerer,  Ho,  &  Chong,  2002)  and  belief 
learning (Cheung & Friedman, 1997) models, consider also 
(or only) the opponent's choices and payoff history. We will 
refer to the former as “partial information models” and to 
the latter as “full information models”.

Even  if  Behavioral  Game  Theory  does  not  make  any 
assumption about the internal mechanisms involved in game 
playing, from a cognitive perspective it is possible to find a 
difference between partial information and full information 
models.  Partial  information  models  obey  to  a  strictly 
behaviorist rule: the more you get from a choice, the more 
you  will  choose  it  in  subsequent  trials.  These  models 

completely  ignore  the  opponent's  behavior  and  only 
manipulate  representations  about  chosen  moves  and 
obtained payoffs. They may also be applied to situations of 
playing without opponents (one-person games); in fact, they 
have been proposed by Sutton and Barto (1998) to model 
the  performance  in  multi-armed  bandit  tasks  in  which 
participants make repeated choices among different options 
which are followed by a numerical reward that depends on 
the choice being made. 

On the  other  hand,  full  information  models  manipulate 
representations about the opponents’ moves and payoffs to 
anticipate  their  behavior  and  obtain  thus  a  strategic 
advantage.  These  models  address  the  opponent's  beliefs, 
intentions, and strategies, and therefore mimic a  Theory of 
Mind (henceforth: ToM)  or “mentalizing” mechanism.

Neuroscientist have recently begun to study the cortical 
circuits  involved  in  game  playing  through  neuroimaging. 
Krueger, Grafman, and McCabe (2008), after reviewing the 
literature  on  the  topic,  propose  that  two  cognitive 
mechanisms are specifically involved in game playing. 

The first  one is  a “shared affect  system” located in the 
Anterior Insula. This area is only activated in non-zero sum 
games  in  which  cooperation  between  players  is  possible, 
and therefore feelings of trust, reciprocity and collaboration 
could  be  developed.  The  area  seems  responsible  of  two 
main  effects:  it  makes  people  feel  disgust  towards 
uncooperative  behavior  and  react  to  it  (for  example, 
rejecting  unfair  offers  in  a  Ultimatum  Game:  Sanfey, 
Rilling,  Aronson, Nystrom, & Cohen, 2003) and it  makes 
people  reciprocate  by  distinguishing  between  cooperative 
and  non-cooperative  opponents  (Singer,  Kiebel,  Winston, 
Dolan, & Frith, 2004).

The second mechanism is a “shared intentions system”, 
which is located in the Medial Prefrontal Cortex (MPFC). 
This area is activated both in zero and non-zero sum games, 
because it  has the function of representing the opponent's 
beliefs, desires, and intentions, i.e. it seems to constitute the 
neural substrate of the ToM. Several brain imaging studies 
(see Krueger et al., 2008, for a comprehensive review) have 
shown  MPFC  activation  during  game  playing  and, 
therefore,  it  seems  plausible  that  people  mentalize  while 
playing these games.

There  are  two other  circuits  which  are  not  specifically 
involved  in  game  playing  but  seem to  be  engaged  in  all 
kinds of learning tasks: a reward-based mechanism situated 
in  a  broad  network  of  cortical  and  subcortical  areas  (see 
Lee, 2005 for a review), and a system concerned with the 
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prediction of complex behavior independently of its source, 
which is located in the Posterior Superior Temporal Sulcus 
(Frith & Frith, 2003).

Studies about mentalizing in game playing usually rely on 
the comparison between a condition in which people play 
against  a computer  and one in  which they play against  a 
human opponent on the presumption that mentalizing could 
be promoted by the latter. However, it is not clear whether 
and when people adopt a “mentalizing stance” and which 
task  features  could  promote  this  activity.  In  fact,  some 
studies show that a computer opponent could elicit activity 
in  MPFC (Rilling,  Sanfey,  Aronson,  Nystrom,  & Cohen, 
2004),  while  others  claim  that  not  all  game  situations 
against humans make people mentalize (Sally, 2003).

It is also unclear how mentalizing affects behavior, or, in 
other words, how decision making is affected by a ToM. For 
example  Hill,  Sally  and  Frith  (2004)  report  that  autistic 
adults behave in the same way as healthy participants in the 
Prisoner's  Dilemma game,  even if  the autistic participants 
are  severely  impaired  in  other  ToM  tasks.  Also,  most 
neuroimaging  studies  lack  a  comparison  between 
participant's behavior while playing against a human and a 
computer opponent. 

We are convinced that the study of the ToM mechanisms 
would benefit from experiments which analyze participant's 
behavior. Two questions are important to us: 1) Which task 
feature  make  people  mentalize?  2)  Which  effect  does 
mentalizing have on people's behavior? In the present  paper 
we try to address the first question by investigating some of 
the task features  which could promote mentalizing during 
game playing.

Previous work
We have already started to explore the behavioral effects 

of mentalizing (Napoli & Fum, 2009) in playing a computer 
version of Rock, Papers, and Scissors (henceforth: RPS). 

We had  three  groups  of  participants  play  100  turns  of 
RPS. In the first group, the computer was presented as an 
opponent, and the game was explicitly described as RPS. In 
the second group, the computer was presented as a neutral 
device. Participants saw three geometric figures which they 
should choose among at each trial; they received a payoff 
after each choice, and they could see the payoffs they could 
have obtained by making the alternative choices. Thus, this 
condition  was  equivalent  to  a  multi-armed  bandit  task 
(Sutton  &  Barto,  1998)  with  the  indication  of  foregone 
payoffs. In the third group, the computer was presented as 
an opponent. The game was played with the  same rules of 
RPS but the choices were represented by geometric figures 
and the hierarchy of the moves (what beats what) had to be 
discovered  during  the  game.  This  condition  served  as  a 
control for the effect of the knowledge of the payoff matrix. 
The algorithm which assigned the payoffs was the same in 
all  groups;  the  conditions  differed  therefore  only  for  the 
setting induced in the participants (and the user interface).

We did not  find any behavioral  difference  between the 
conditions, and we were able to model the behavior of all 

the  groups  by  using  a  Reinforcement  Learning  algorithm 
based  on  ACT-R's  utility  learning  mechanism (Anderson, 
2007). This corroborates the idea that people did not use any 
information about foregone payoffs in the second condition 
and did not use any information about the opponent's moves 
or  payoffs  in  the  first  and  third  condition.  In  summary, 
participants  did  not  seem  to  mentalize  at  all  during  the 
experiment.

There are many possible explanations for this “failure to 
mentalize”.  Maybe people did not  mentalize because they 
played  against  a  computer;  maybe  they did not  mentalize 
because the game was a mixed-strategy equilibrium game in 
which  no  move  was  better  than  the  others  and  a  simple 
behaviorist  strategy could efficiently cope with the game; 
maybe people did not mentalize because no cooperation was 
possible  in  playing  a  competitive  game.  Or  it  may  be  a 
combination of all the three.

In this paper we try to clarify the findings of our previous 
work by making participants play a non-zero sum game, the 
Prisoner's Dilemma, both against what they believed was a 
human  opponent  and  against  a  computer.  Our  aim  is  to 
understand  which task features  make people  mentalize in 
game  playing,  which  features  affect  game  behavior  and, 
possibly, why.

The experiment
Prisoner's  Dilemma (henceforth:  PD) is a non-zero sum 

game  which  has  been  extensively  studied  in  psychology 
(Rapoport  &  Mowshowitz,  1966),  classical  game  theory 
(Bo,  2005),  behavioral  game theory (Camerer,  2003),  and 
neuroimaging  studies  (Singer  et  al.,  2004).  The  payoff 
matrix used in our experiment is presented in table 1.

Table 1: Our experiment's payoff matrix

Cooperate Defect
Cooperate 60

60
100

0
Defect 0

100
20

20

PD can be thought of as a paradigmatic situation for any 
social dilemma in which the selfish interest contrasts with 
the  common  one.  Classical  game  theory  states  that, 
independently of the choice made by the opponent, the most 
rational  move  for  a  player  is  to  defect.  In  fact,  if  the 
opponent  chooses  to  cooperate,  defection  gets  100 points 
and  cooperation  only  60  while,  if  the  opponent  defects, 
defection gets 20 points and cooperation 0. The result is that 
the optimal strategy for both people is to defect.

The most intriguing aspect of this game is that, even if 
the  most  rational  move is  defection,  experiments  show a 
substantial amount of cooperation between the players when 
the  game  is  played  in  the  iterated  version  (Bo,  2005). 
Another finding is that players learn to cooperate more and 
more  during  the  experiment  (Rapoport  &  Mowshowitz, 
1966).
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In order to understand what makes people mentalize, we 
adopted  a  “subtractive  behavioral  method”  by  assigning 
people  to  four  different  conditions  in  a  repeated  PD 
decision-making  task  in  which  the  points  earned  by  the 
participants were converted into play money.

 The conditions  differed  according to the task features 
present in them which are summarized in Table 2. 

Table 2: Features present in the experimental conditions

Conditions
Features N CB HB HPD

Repeated decision making Y Y Y Y
Opponent N Y Y Y
Believed Human Interaction N N Y Y
Explicit social scenario N N N Y

In the first condition, named “Nature” (N),  participants 
played the PD disguised as a binary decision task: in each 
trial  they had to  choose between two options receiving a 
reward  after  each  choice.  It  should  be  noted  that  in  this 
condition the PD is presented as a repeated decision making 
one-person  game,  or  a  game  against  nature,  in  which no 
opponent is involved.

In  the  second  condition,  named  “Computer  Bet”  (CB) 
participants were told that they would play a game against 
the computer. The instructions, however, presented the PD 
as  a  betting  task:  in  each  trial,  the  participants  and  the 
computer  should  bet  on  one  of  two  alternatives  and, 
depending on the combination of their choices, they would 
receive a given reward.

The  third  condition,  named  “Human  Bet”  (HB),  was 
similar  to  the  previous  one  (CB)  except  for  the  fact  that 
participants  were  made  to  believe  that  they  would  play 
against a human opponent while in fact they were engaged 
by the computer.

In  the  fourth  condition,  named  “Human  Prisoner's 
Dilemma” (HPD), participants played PD against what they 
believed was a human opponent,  just as in CB condition. 
There  was,  however,  a  substantial  difference  in  the 
instructions provided for this condition and the two betting 
ones: the game was introduced by a story which  illustrated 
a classical PD scenario (see Procedure for more details) and 
the two choices were labeled as “Cooperate” and “Defect”.

In CB, HB and HPD conditions the instructions stressed 
that the goal of the participants was to gain as much money 
as  possible  independently  of  the  money  gained  by  the 
opponent, and that their opponent had the same objective.

According to results of neuroimaging research discussed 
in the Introduction, there are four cognitive processes which 
may influence participants' behavior in this task: the reward-
based system, the complex behavior detecting system, the 
shared intentions system, and the shared affect system.

It  is  known that  the  reward-based  system plays  a  role 
both in individual learning tasks and in game playing (Lee, 
2005)  by  integrating  the  information  received  during  the 
task in order  to  calculate  the expected utility of different 

choices. Thus, this system should be active in all conditions, 
because of the repeated nature of the task.

It  has been shown that  the complex behavior  detecting 
system is active during game playing against both computer 
and human opponents (Gallagher, Jack, Roepstorff, & Frith, 
2002;  Haruno  &  Kawato,  2009),  and  thus  it  should  be 
activated in all conditions except Nature.

The shared intentions system is the main concern of this 
article.  This area is always  activated during game playing 
against humans, but it has been shown to be activated also 
during game playing against computer opponents, even if it 
is unclear which effect it exerts on people’s behavior. If we 
find any difference between the CB and HB conditions, we 
can argue that mentalizing has a behavioral  effect  only in 
the case of a human opponent.

Finally,  the shared affects system has been shown to be 
active when game playing involves the possibility of pro-
social  behavior,  reciprocity,  or  fairness,  and  therefore  we 
expect it could influence people's behavior only in the HPD 
condition. In this case the instructions promote empathizing 
with  the  opponent  both  because  of  the  explicit  social 
scenario and because of the labels attributed to the choices, 
which  have  a  strong  moral  connotation.  Therefore,  every 
difference between the HB and HPD conditions should be 
attributed to this system.

Method
Participants  and  design.  Sixty-four  students  (38  males) 
enrolled at the University of Trieste, Italy, were recruited as 
participants.  Their  age  varied  between  18  and  29  years 
(M=21.2, SD=3.4). Participants played two PD rounds, each 
one against a different  algorithm (see below) whose order 
was  counterbalanced  between  rounds.  The  experiment 
followed  therefore  a  4x2  mixed  design  with  Setting  as 
between-subjects and Algorithm as within-subjects factors.

Materials. Two algorithms  were  used  in  the experiment. 
The first one, Tit for Tat, cooperated in the first interaction 
and  then  replicated  the  opponent's  previous  choice.  The 
second one, named Biased, made his moves by randomly 
sampling from a distribution of  60% Cooperate  and 40% 
Defect moves.

Procedure. The experimental sessions were held in groups 
of  10-12  participants  convened  in  a  computer  laboratory. 
Each participant was randomly assigned to one of the four 
conditions taking care that participants assigned to the same 
condition were not  sitting next to each other.  Participants 
were  told  that  they  would  play  different  versions  of  the 
same  game  and  received  the  instruction  according  to  the 
condition  to  which  they  were  assigned.  Then,  they  were 
engaged in two PD rounds lasting eight minutes each.

The interface was kept as similar as possible in the four 
conditions. Participants made their choices by clicking on 
one of two circles displayed in the upper part of the screen. 
After a random lag time, in the Nature condition participants 
received  a  feedback  about  the  money gained  in  the  trial, 
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while in the other conditions they received a feedback about 
the opponent's choice, the money gained by themselves and 
by  the  opponent.  The  length  of  a  bar  representing  their 
running total was updated and they were allowed to make 
another choice. In all conditions the two circles were labeled 
as “Yellow” and “Blue” except for the HPD condition, in 
which they were named as “Cooperate” and “Defect”.

The main differences between the conditions relied in the 
amount of information and the kind of instructions provided 
to participants.  In  the N condition it  was stated that  they 
would  play  a  binary  decision  task.  After  the  first  round 
participants were told that the computer would change the 
rule according to which it assigned the money. In the other 
three conditions participants had the payoff matrix in front 
of  them  from  the  beginning  of  the  game.  In  the  CB 
condition instructions stated that they would play a betting 
game with the computer, and after the first round they were 
told that the computer would change its strategy. In the HB 
and HPD condition participants were told they would play 
the game with one of the other participants in the room, and 
that the opponent would change after the first round. In the 
HB  condition  the  task  was  presented  as  a  betting  game 
while  in  the  HPD  condition  the  game  was  introduced 
through a bargaining scenario in which Cooperate meant to 
respect  the contract by delivering the promised goods and 
valuable money,  respectively,  while  Defect  meant to give 
the other player  an empty bag.  The instructions explicitly 
underlined  this  aspects  of  moral  obligation  and  contract 
infringement involved in the game.

All groups played against  the same algorithms with the 
Yellow and Blue circles equated to Defect and Cooperate, 
respectively.

At the end of the experiment we had informal interviews 
with the participants to assess the possibility that they had 
some doubts about having played against  a computer and 
not a mate.  Subjects who reported  doubts were  discarded 
from data analysis.  Finally,  a collective debriefing session 
ensued in which the nature of the opponent was discovered 
to  all  participants  and  the  reasons  for  always  adopting  a 
computer as opponent were explained.

Results
Since the experiment was self-paced, participants made a 

variable  number  of  choices  in  each  round.  To  perform 
statistic analyses, we took into account their first 50 moves 
only.
Analysis of Cooperations.  Being interested in the quality 
of participant's behavior more than in their ability to exploit 
the opponent's  algorithm, we concentrated the analysis on 
the number of Cooperate moves and not on the amount of 
money gained.

First, we looked for possible differences between the first 
and second round in order to control for effects of learning 
(or fatigue). A mixed design ANOVA between the Round 
and the Setting did not reveal any significant effect for the 
Round  (p=.55)  or  interaction  (p=.93),  while  there  was  a 
significant  effect  of  the  Setting  (F(3,58)=10.1,  

p < .001).
We  then  analyzed  the  factors  manipulated  in  the 

experiment. A mixed design ANOVA revealed a significant 
effect of Setting and Algorithm (F(3,58)=10.1,  p<.001 and 
F(1,58)=93.14,  p<.001 respectively),  while  the  interaction 
was  not  significant  (p=.92).  Table  3  reports  Means  and 
Standard  Deviations  of  the  participants'  total  Cooperate 
moves.

Table 3: Means (and Standard Deviations) of Cooperate 
per Algorithm in the various Settings

Setting
Algorithm N CB HB HPD

Biased 15.69 
(5.41)

11.18 
(7.7)

14.23 
(10.03)

24.24 
(7.09)

TFT 32.6 
(9.93)

26 
(10.65)

28.8 
(17.2)

41.35 
(10.6)

Algorithm and Setting seem to have an addictive effect in 
promoting  cooperation  between  participants.  While  it  is 
evident that the TFT algorithm promotes Cooperation more 
than the Biased one, it is unclear how Settings exerted its 
effect.  Since  there  was  no  main  effect  of  Round and  no 
interaction  between  Algorithm  and  Setting,  we  analyzed 
separately  the  participant's  performance  against  the  two 
algorithms.

Two  separate  one-way  ANOVAs  for  Biased  and  TFT 
Algorithms  were  performed.  Both  showed  a  significant 
effect for Setting (F(3,58)=8.95,  p<.001 and  F(3,58)=4.94, 
p<.01 respectively). The probabilities associated with post-
hoc Newman-Keuls tests to contrast each Setting condition 
with the others are summarized in tables 4 and 5. For both 
algorithms a significant  difference was found between the 
HPD and  the  other  three  conditions  which,  on  the  other 
hand, did not differ from each other.

Table 4: Probabilities for Post-hoc Newman-Keuls tests 
for the Biased Algorithm

N CB HB HPD
N .24 .6 .0029*

CB .24 .27 .002*
HB .6 .27 .0017*

HPD .0029* .002* .0017* 
* = significant

Table 5: Probabilities for Post-hoc Newman-Keuls tests 
for the TFT Algorithm

N CB HB HPD
N .29 .39 .051**

CB .29 .52 .016*
HB .39 .52 .0049*

HPD .051** .0049* .016*
*= significant **=marginally significant
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Analysis  of  conditional  probabilities.  We  ran  another 
analysis in order to understand why there was a difference 
in the number of Cooperate moves in HPD condition. This 
analysis was proposed by Rapoport and Mowshowitz (1966) 
and was also utilized by Erev and Roth (2001) in order to 
assess the efficacy of their reinforcement learning model.

Rapoport  and  Mowshowitz  analyzed  the  probability  of 
cooperation in a given  trial according to the choices made 
in the  previous trial by  both players.  Thus, a participant's 
strategy can be described by four numbers, C|CC, C|CD, C|
DC, and C|DD. In the N condition, these probabilities may 
be interpreted as an analysis of a “win stay / lose switch” 
behavior. We can assume that, after a few choices, people 
get acquainted with the payoffs associated with the various 
options. Thus, for example, C|CC would be the probability 
of making the Cooperate/Blue move after receiving the best 
reward associated with that choice; therefore, a high value 
of this parameter would be an expression of a “win stay” 
strategy.

We analyzed the four conditional probabilities separately 
for  the  two  algorithms  to  search  for  possible  different 
strategies used in the different  Settings.  We ran a total of 
eight one-way ANOVAs analysis and all post-hoc Newman-
Keuls tests for the significant ones. 

We  found  a  significant  difference  in  three  ANOVAs: 
C|DC both in the Biased (F(3,58)=7.94, p<.001) and in the 
TFT condition (F(3,58)=5.21, p<.005) and C|CC in the TFT 
condition (F(3,54)=4.73,  p<.006). Newman-Keuls post-hoc 
tests  showed  that:  in  C|DC  /  Biased,  HPD  was  different 
from all the other conditions (p<.001 in all cases),  which 
were  similar  between  them;  in  C|DC  /  TFT,  HPD  was 
different from CB and HB (p<.001 in both cases) and only 
marginally significant respect to N (p=.055), and the other 
three conditions were similar between them; in C|CC / TFT, 
the only significant  difference was between HPD and CB 
p<.001.

Discussion and conclusions
In  the  experiment,  participants  played  against  an 

algorithm,  the  Biased  one,  that  chooses  its  moves  by 
sampling  randomly  from  a  given  distribution,  i.e., 
independently from the move made by the opponent,  and 
against another algorithm, the TFT, that cooperates only if 
the opponent  cooperated  in  the  previous  trial  and  defects 
otherwise. This means that the most rewarding strategy for 
participants was to Defect against the Biased algorithm—in 
order  to  exploit  the  trials  in  which  it  cooperates  and  to 
defend against the possibility of being exploited when the 
algorithm defects—and to Cooperate  against  the TFT—in 
order to initiate and maintain a virtuous reciprocation loop. 
The statistical analyses demonstrated that participants made 
more  Cooperate  moves  against  the  TFT  than  against  the 
Biased algorithm, i.e., that they were successful in adapting 
their strategy to the strategy used by the opponent.

However,  we also found some differences  between the 
groups:  in  the  HPD condition  participants  made a  higher 
number of Cooperate  moves against  both algorithms. The 

conditional probability analysis showed that this difference 
could be explained by the higher rate of C|DC in both cases. 
Since the only difference between the HPD and the other 
groups relied in the use, in the former case, of instructions 
that explicitly underlined the aspects of moral obligation and 
contract infringement involved in the game, the most natural 
conclusion is that  this feature made people more prone to 
regret their defection against a cooperative opponent in the 
previous  trial  leading  thus  to  more  frequent  cooperative 
behavior.

Interpreting  the  behavioral  results  in  terms  of  the 
cognitive  systems  framework  introduced  above,  we could 
safely assume an influence on this task of the reward-based 
system,  being  the  participants  capable  of  successfully 
adapting  their  strategy  to  the  opponent  in  all  conditions. 
However, we cannot exclude that such a performance could 
reflect  the  activation  of  the  complex  behavior  prediction 
system  too,  being  the  activation  of  this  system  not 
selectively  associated  with  strategic  interactions  (Frith  & 
Frith, 2003). As for the shared affect system, it could have 
played a role in both human conditions (HB and HPD). In 
fact, during the debriefing interviews, some HB participants 
spontaneously told us about their willingness to cooperate 
with the opponent,  a  behavior  that  is  typically  associated 
with  the  activation  of  this  system  (Singer  et  al.,  2004). 
However it is unlikely that this system played a critical role 
in the HB group, whose performance was similar to that of 
the N and CB condition where it is not credible that people 
could empathize with a computer, being it an opponent or 
not. Therefore, this system could be active only in the HPD 
condition. 

As for the ToM system, we can exclude that it influenced 
the participant's behavior in CB and HB groups, which was 
similar to that of the N group. Therefore, we are left with 
two systems (ToM and empathizing) as responsible for the 
difference  found  in  the  HPD  condition.  Because  brain 
imaging  studies  show  that  playing  against  a  human 
opponent  activates  ToM  areas  regardless  of  the  specific 
game (see for example Gallagher et al., 2002) and because, 
according  to  the  participant's  reports,  it  seems likely  that 
they did in fact mentalize, we think that this area was active 
in both situations, and suggest two possible explanations for 
our  results:  (1)  ToM  had  no  behavioral  effect  in  HB 
situation or (2) ToM had  no effect both in the CB and HB 
conditions,  and  the  difference  between  the  two  groups 
should be attributed to the shared affect system.

We won't take position with regard to this issue, because 
the limitations of our behavioral method don't permit us to. 
However we think that, whichever is the real  explanation, 
this study makes some interesting points about both brain 
imaging and behavioral game theory experiments.

With regard to brain imaging studies, even if it has been 
shown  that  ToM  areas  are  active  in  almost  every  game 
played against human opponents, it is not clear when they 
have a behavioral effect, too. We can speculate that there is 
some mechanism which prevents ToM from influencing the 
behavior in some situations. Otherwise, it would seem really 
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strange that it wouldn't have any effect on behavior  at all. 
Therefore,  we  think  that  brain  imaging  studies  should 
always take in account people's behavior, in a similar way to 
Haruno  &  Kawato  (2009)  and  Hampton,  Bossaerts,  and 
O'Doherty (2008).

As for behavioral game theory,  this paper makes a case 
for Erev and Roth's (2001) proposal of accounting people's 
behavior  in  Prisoner's  Dilemma  by  the  means  of 
Reinforcement Learning. In fact, in N condition participants 
did not have any information about foregone payoffs,  and 
nonetheless, their behavior was similar to the other groups. 
This means that the knowledge of payoff matrix and of the 
opponent's  choices  had  a  limited  effect  on  participant's 
behavior.  On  the  other  side,  the  paper  shows  also  the 
importance of contextual information—a variable which is 
seldom taken into account in game theory. In a more general 
sense, we think that our paper suggests the utility of having, 
along  experiments  in  which  people  play  one  against  the 
other,  some  more  controlled  sessions  in  which  the 
participants play against an opponent (be it a computer or a 
human actor) whose strategy was under the control of the 
experimenter  and  compare  them  with  individual  learning 
sessions. This could make the experimenter safely exclude 
in most cases unnecessary believes or sophisticated learning.
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