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Abstract 

For self-regulated learning to be effective, students need to be 
able to accurately assess their own performance on a learning 
task, and to select an appropriate new learning task in 
response to that self-assessment. This study investigated the 
use of video-based modeling examples to teach self-
assessment and task-selection skills. Students in both the 
experimental and control condition observed the model 
performing a problem solving task; students in the 
experimental condition additionally observed the model 
engaging in self-assessment and task selection. Results show 
that students in both conditions acquired problem-solving 
skills from the examples, as indicated by a substantial pretest 
to posttest knowledge gain. Moreover, students in the 
experimental condition also acquired self-assessment and 
task-selection skills from the examples: they demonstrated 
higher self-assessment and task-selection accuracy on the 
posttest than students in the control condition.  

Keywords: Example-based learning; self-assessment; task 
selection; self-regulated learning. 

The Role of Self-Assessment and Task-
Selection Skills in Self-Regulated Learning 

A major aim of many contemporary educational programs is 
to foster students’ self-regulation skills. It is often assumed 
that this aim can be achieved by providing learners with the 
opportunity to self-regulate their learning processes. In the 
Netherlands, for example, a nationwide innovation was 
implemented in secondary education in 1999 that relies 
heavily on self-regulated learning (i.e., the ‘study house’; 
http://www.minocw.nl/english/education/293/Secondary-
education.html). Self-regulated learning is also assumed to 
result in personalized learning trajectories, in which 
instruction is adaptive to the individual student’s needs. 
Such personalized instruction is expected to enhance 
students’ motivation and learning outcomes compared to 
non-adaptive, fixed instruction that is the same for all 
students.  
Unfortunately, there is little evidence for both 

assumptions. First of all, research has shown that students 
do not acquire self-regulation skills merely by engaging in 

self-regulated learning, rather, they need additional training 
or instructional support (e.g., Azevedo & Cromley, 2004; 
Van den Boom, Paas, Van Merriënboer, & Van Gog, 2004). 
Secondly, although the assumption is correct that adaptive, 
personalized instruction can foster learning compared to 
non-adaptive instruction (e.g., Camp, Paas, Rikers, & Van 
Merriënboer, 2001; Salden, Paas, Broers, & Van 
Merriënboer, 2004), it is questionable whether self-
regulated learning actually results in adaptivity to students’ 
needs.  
In adaptive instructional systems, learning tasks are 

chosen for each individual student based on an assessment 
of their current level of knowledge and skill (based on 
several aspects of students’ performance, e.g., Anderson, 
Corbett, Koedinger, & Pelletier, 1995; Koedinger, 
Anderson, Hadley, & Mark, 1997; or on a combination of 
their performance and invested mental effort, e.g., Camp et 
al., 2001; Corbalan, Kester, & Van Merriënboer, 2008; 
Kalyuga, 2006; Salden et al., 2004). The assessment of 
performance and the selection of an appropriate new 
learning task (i.e., based on that assessment) is conducted by 
the system. For self-regulated learning to be equally 
adaptive and effective, students themselves should be able 
to accurately assess their own performance and to recognize 
what an appropriate new task would be. Unfortunately, there 
is quite some evidence that students, and especially novices 
who lack prior knowledge of the learning tasks, are not very 
accurate self-assessors. Humans seem prone to several 
biases that affect accuracy of self-assessments (for a review, 
see Bjork, 1999), such as hindsight bias (i.e., once an 
answer or solution procedure is known, e.g., after feedback, 
students are more likely to think that they could have 
produced it themselves), or availability bias (i.e., answers 
that come to mind easily are not only more likely to be 
provided but are also more likely to be assumed to be 
correct). Moreover, accurate self-assessment also seems to 
require some domain expertise (Dunning, Johnson, Erlinger, 
& Kruger, 2003). Individuals with higher levels of prior 
knowledge are more accurate self-assessors, presumably 
because their experience not only provides them with more 
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task knowledge, but also with more knowledge of the 
criteria and standards that good performance should meet 
(Dunning et al., 2003). In addition, their experience also 
lowers the cognitive load imposed by the task, allowing 
them to devote more cognitive resources to monitoring their 
task performance, which likely provides them with a more 
accurate memory representation on which to base their 
assessment (Van Gog & Paas, 2009). 
Support for our assumption that novice students’ lack of 

self-assessment skills leads to ineffective self-regulated 
learning, comes from studies that have shown that providing 
novice students with control over their learning process may 
have beneficial effects on their motivation or involvement, 
but often has detrimental effects on learning outcomes (see 
e.g., Azevedo, Moos, Greene, Winters, & Cromley, 2008; 
Niemic, Sikorski, & Walberg, 1996). When positive effects 
on learning outcomes are found, this tends to be mostly for 
students with higher levels of prior knowledge in the 
domain (e.g., Niemiec et al., 1996; Moos & Azevedo, 
2008), who, as mentioned above, are also likely to be more 
accurate self-assessors. In addition, Kostons, Van Gog, and 
Paas (2010) investigated differences in self-assessment 
accuracy between secondary education students who 
differed in the amount of knowledge gained from studying 
in a learner-controlled instructional environment that 
contained heredity problems with varying levels of support 
at different levels of complexity. They found that the 
students who had gained more knowledge, had also more 
accurately assessed their own performance during learning.  
Without accurate self-assessment, selecting an appropriate 

new learning task will also be very difficult. Given the 
central role that self-assessment and task-selection skills 
seem to play in self-regulated learning, an important 
question is whether we can teach novice students to become 
more accurate self-assessors and task selectors. We decided 
to investigate this question, using modeling examples to 
teach those skills. 

Learning from Examples 
Learning from examples is known to be a highly effective 
instructional strategy. Research inspired by cognitive 
theories such as ACT-R (Anderson, 1993) or Cognitive 
Load Theory (Sweller, Van Merriënboer, & Paas, 1998) has 
extensively investigated the effects on learning of 
instruction consisting of studying worked examples, which 
provide students with a written worked-out didactical 
solution to a problem. These studies have consistently 
shown that for novices, studying worked examples is more 
effective and/or more efficient for learning (i.e., equal or 
higher learning outcomes attained with lower or equal 
investment of time and/or effort) than (tutored) problem 
solving, which is known as the ‘worked example effect’ 
(Sweller et al., 1998; for further reviews, see Atkinson, 
Derry, Renkl, & Wortham, 2000). Studies on the worked 
example effect have mainly used highly structured cognitive 
tasks, such as algebra (e.g., Cooper & Sweller, 1987; 
Sweller & Cooper, 1985), statistics (e.g., Paas, 1992), 

geometry (e.g., Paas & Van Merriënboer, 1994), or physics 
(e.g., Van Gog, Paas, & Van Merriënboer, 2006), although 
recent studies have shown the same effect with less 
structured tasks such as learning to recognize designer styles 
in art education (Rourke & Sweller, 2009). 
Research inspired by Social Learning Theory (Bandura, 

1986) has mostly focused on modeling, that is, learning by 
observing another person (the model) perform a task. 
Models can be either adults (e.g., Schunk, 1981) or peers 
(e.g., Braaksma, Rijlaarsdam, & Van den Bergh, 2002; 
Schunk & Hanson, 1985), and they can behave didactically 
or naturally (i.e., possibly skipping steps, or making and/or 
correcting errors). Moreover, modeling examples can 
consist of a video in which the model is visible (e.g., 
Braaksma et al., 2002), a video consisting of a screen 
capture of the model’s computer screen in which the model 
is not visible (e.g., McLaren, Lim, & Koedinger, 2008; Van 
Gog, Jarodzka, Scheiter, Gerjets, & Paas, 2009), or an 
animation in which the model is represented by a 
pedagogical agent (e.g., Atkinson, 2002; Wouters, Paas, & 
Van Merriënboer, 2009). Like worked examples, modeling 
examples have also been used to teach highly structured 
cognitive tasks such as math (e.g., Schunk, 1981) or 
chemistry (e.g., McLaren et al., 2008), but they have also 
been widely applied with less structured tasks such as 
writing (e.g., Braaksma et al., 2002; Zimmerman & 
Kitsantas, 2002). In addition, they have been used for 
teaching metacognitive skills such as self-regulation (e.g., 
Kitsantas, Zimmerman, & Cleary, 2000; Zimmerman & 
Kitsantas, 2002). For a more in-depth review of research on 
worked examples and modeling examples, see Van Gog and 
Rummel (in press). 
This study investigated whether video-based modeling 

examples consisting of screen-recordings could be 
successfully applied for teaching secondary education 
students self-assessment and task-selection skills.  

Method 

Participants and Design 
Participants were 39 Dutch secondary education students 
(age M = 15.08, SD = 0.48; 26 female) in the fourth year of 
pre-university education (the highest level of secondary 
education in the Netherlands, which has a duration of six 
years). They were novices on the content domain of the 
examples (heredity problems), which had yet to be taught in 
the formal curriculum. Participants were randomly assigned 
to the experimental (n = 20) or control condition (n = 19). 

Materials 
 
Pretest and Posttest The pretest and posttest consisted of 5 
paper and pencil heredity problems, at five levels of 
complexity (see Figure 1), presented in random order. The 
students were informed at what level of complexity each 
problem was. These heredity problems could be solved by 
going through the following five steps: (1) translate the 
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phenotypes (expression of genetic trait) described in the 
cover story into genotypes (a pair of upper and/or lower 
case letters representing genetic information); (2) put these 
genotypes into a hereditary diagram; (3) determine direction 
of reasoning and number of Punnett Squares; (4) fill in 
Punnett Square(s); (5) extract final solution from Punnett 
Square(s). The posttest problems were equivalent but not 
identical to the pretest problems; they had similar structural 
features and were of similar complexity, but the surface 
features (cover stories) differed. On both tests, participants 
were instructed to write down the steps they took to reach 
their solution.  
 

 
Figure 1: Overview of the task database. 

 
Mental effort rating After each problem in the pretest and 
posttest, participants rated how much mental effort they 
invested in solving that problem on a 9-point rating scale 
(Paas, 1992). 
 
(Self-)assessment After the mental effort rating, participants 
self-assessed their performance on a 6-point rating scale 
ranging from 0 (none of the five steps correct) to 5 (all steps 
correct). After the experiment, participants’ performance 
was scored by the experimenter on the same scale (i.e., max. 
problem: 5; max. test: 25). 
 
Task selection After self-assessment, students indicated on 
an overview of the task database (Figure 1) what problem 
they would select next. At each of five complexity levels 
(left column), there were three levels of support: completion 
problem, 3 steps worked-out (white row); completion 
problem, 2 steps worked-out (light gray row); conventional 
problem, no steps worked-out (dark gray row). At each level 
of support within each complexity level there were 5 tasks 
to choose from, which had equal structural features but 

different cover stories. Participants knew the complexity 
level of the problem they had just worked on. They did not 
actually get the problem they selected to work on next; test 
problems were the same for all students. 
 

Modeling examples The four modeling examples consisted 
of a recording of the model’s computer screen along with a 
spoken explanation by the model of what s/he was doing. 
The gender of the models was varied: two examples were by 
two different male models, and two examples were by two 
different female models (see Table 1). In the experimental 
condition, the modeling examples consisted of three 
“phases”: 

(1) Problem solving: The model performed the problem 
solving task. Two models worked on problems of 
complexity level 1, and two models worked on problems of 
complexity level 2 (i.e., of the five complexity levels 
present in the task database and in the pretest and posttest; 
see Table 1). The quality of the models’ performance varied 
between the examples: one example showed a model 
accurately solving the problem, but in the other three 
examples the models made one or more errors (see Table 1). 
This was done to create variability in phases 2 and 3 of the 
examples, that is, in the model’s self-assessment scores and 
task selections (i.e., if the model would not make any errors 
or would detect and correct them immediately, they would 
always have the highest possible self-assessment score).  
 
Table 1: Overview of modeling example characteristics. 
 
Example Model Performance Complexity 
1 Male 1 0 errors Level 1 
2 Female 1 2 errors  Level 1 
3 Male 2 4 errors  Level 2 
4 Female 2 1 error Level 2 
 
(2) Self-assessment: Following task performance, the 

model rated invested mental effort on the 9-point rating 
scale and assessed their performance on the 6-point rating 
scale, assigning themselves one point for each correct step. 
The models’ self-assessment was always accurate. 
(3) Task selection: Then, the model selected a new task 

based on a combination of the performance score and the 
mental effort score. The models used a table (see Figure 2) 
in which the relationship between performance and mental 
effort scores was depicted, which could be used to infer a 
recommended ‘step size’ for task selection (e.g., 
performance of 4 and mental effort of 3 means a step size of 
+2). A positive step size means a recommendation to select 
a more challenging task (i.e., less support or higher 
complexity level), a step size of 0 means repeating a 
comparable task (i.e., same level of support and same 
complexity level), and a negative step size means a 
recommendation to select a simpler task (i.e., higher level of 
support or lower level of complexity). This kind of task 
selection algorithm based on performance and mental effort 
scores has proven to lead to an effective learning path in 
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studies on adaptive, personalized task selection (e.g., Camp 
et al., 2001; Corbalan et al., 2008; Kalyuga, 2006; Salden et 
al., 2004). The models’ task selection was always accurate. 
Participants in the control condition observed only the 

model’s problem solving (phase 1). In the time in which the 
participants in the experimental condition observed the 
model’s self-assessment and task selection, participants in 
the control condition were instructed to indicate whether the 
model made any errors during task performance, and if so, 
what the errors were and what the correct step would have 
been. 
 
Performance 

4-5 +2 +1  0 
 

2-3 +1  0 -1 
 

0-1  0 -1 -2 
  1, 2, 3 4, 5, 6 7, 8, 9 

Effort 
 

Figure 2: Determining task selection step size. 

Procedure  
The experiment was conducted in a computer room at the 
participants’ school. First, all participants completed the 
pretest on paper. Participants were given four minutes to 
complete each problem, followed by one minute for 
assessing their performance (a previous study had shown 
this to be sufficient time for solving the problem; Kostons et 
al., 2010). Participants were not allowed to proceed to the 
next problem before the time was up; time was kept by the 
experimenter using a stopwatch. After completing the 
pretest, participants studied the modeling examples on the 
computer; each participant had a head set for listening to the 
model’s explanations. In the experimental condition, the 
modeling examples showed participants the task 
performance, self-assessment, and task selection by the 
model. In the control condition, participants only observed 
the task performance by the model and then indicated 
whether errors were made and if so, what the correct step 
was. This part was computer-paced, participants had to view 
the examples in the order in which they were offered and 
could not pause, stop, or replay the examples. Finally, all 
participants completed the posttest on paper, according to a 
similar procedure as the pretest.  

Data Analysis  
Self-assessment accuracy on each posttest problem was 
determined by computing the absolute difference between 
participants’ objective performance score and their self-
assessment of their performance. The lower this difference, 
the more accurate participants’ self-assessment was (i.e., 0 = 
100% accurate). We did not compute or analyze self-
assessment accuracy on the pretest, because participants 
managed to solve very few problems on that test. When one 
is not able to perform a task at all, it is not very difficult to 

assess one’s own performance as 0. This would be highly 
accurate, but would have led to a substantial overestimation 
of participants’ self-assessment accuracy, as it is not very 
indicative of self-assessment accuracy on tasks that they 
were –at least partly- able to solve.  
Task selection accuracy on the posttest was determined by 

computing the absolute difference between the complexity 
level that would be recommended based on the objective 
performance assessment and the complexity level 
participants chose. 

Results 

For all analyses, a significance level of .05 was used, and 
Cohen’s d is reported as a measure of effect size, with 0.2, 
0.5, and 0.8 corresponding to small, medium, and large 
effect sizes, respectively (Cohen, 1988). 

Acquisition of Problem-Solving Skills  
Participants’ mean performance score on the pretest was 
2.08 (SD = 3.58), and on the posttest it was 14.31 (SD = 
6.43), so all students acquired procedural skills for solving 
heredity problems from the modeling examples. A t-test 
showed no significant difference between the control 
condition (M = 12.05, SD = 7.12) and the experimental 
condition (M = 12.40, SD = 6.40) in the knowledge gain 
from pretest to posttest, t(37) = 0.16, ns. 

Acquisition of Self-Assessment Skills  
A t-test on the mean self-assessment accuracy scores on the 
posttest, showed that participants in the experimental 
condition were more accurate (i.e., lower score; M = 0.70, 
SD = 0.53) than participants in the control condition (M = 
1.26, SD = .85), t(37) = 2.51, p = .016 (two-tailed), d = 0.79. 

Acquisition of Task-Selection Skills  
Data from 1 participant in the experimental condition were 
excluded from this analysis because of too many missing 
values. A t-test on the mean task-selection accuracy scores 
on the posttest, showed that participants in the experimental 
condition were more accurate (i.e., lower score; M = 0.81, 
SD = 0.60) than participants in the control condition (M = 
1.21, SD = 0.54), t(36) = 2.15, p = .038 (two-tailed), d = 
0.70.  

Discussion 
This study showed that students can not only acquire 
problem solving skills from studying modeling examples, 
but also self-assessment and task selection skills, which are 
considered to play an important role in the effectiveness of 
self-regulated learning.  
We chose modeling examples as a means to teach self-

assessment and task-selection skills, because research has 
shown that example-based learning is a powerful 
instructional strategy. Thus far, in educational settings, 
examples have mostly been used for teaching cognitive 
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skills, and this study adds further evidence that they are 
useful for teaching metacognitive skills as well (see also 
Kitsantas et al., 2000; Zimmerman & Kitsantas, 2002). We 
did not, however, compare whether teaching self-assessment 
and task-selection skills via modeling examples was more 
effective than teaching those skills in some other way (e.g., 
via practice after having been explained the assessment and 
selection ‘rules’, i.e., how to come to a performance 
assessment score and how to combine performance and 
mental effort scores to select a new task), so the 
effectiveness of examples compared to other means of 
teaching self-assessment and task-selection skills might be 
explored in future research. 
Our control condition received no self-assessment and 

task-selection training at all, but engaged in a filler task 
(finding and fixing errors) which may have been relevant for 
the acquisition of problem solving skills (see Große & 
Renkl,, 2007) and which we expected to direct students’ 
attention towards assessment of performance (of the model) 
to some extent. Further analysis of data from the control 
condition was beyond the scope of this paper but could be 
interesting in its own right. For example, one might expect 
that students with better ability to find and correct errors 
would have better self-assessment skills and/or would show 
more knowledge gain. In addition, it might be interesting to 
establish whether the errors made by the models had any 
effects on students’ test performance (especially for those 
students who were not able to find and fix errors). 
A question we cannot address based on our data that 

would be interesting to address in future research concerns 
the relationship between students’ levels of task knowledge 
and the accuracy self-assessment and task-selection skills. 
Even though there was some variability in pretest scores, 
these were in general very low. Problem-solving skills did 
increase from pretest to posttest. We cannot rule out that the 
increase in problem-solving skills might have increased 
students’ self-assessment and task-selection accuracy in the 
control condition, we only know that the training in the 
experimental condition led to significantly higher accuracy 
than attained in the control condition. A problem that occurs 
in trying to establish gains in assessment and task selection 
accuracy is that it is hard to establish the level of these skills 
at pretest, because –as mentioned above- it is easy to rate 
performance as 0 when one is not able to perform a task at 
all. Although this is a highly accurate self-assessment, it 
probably does not reflect a high level of self-assessment 
skill. Therefore, a design in which students have lower and 
higher levels of prior knowledge at the start of the 
experiment would be required to address this question. 
Other important questions for future research in this area 

concern whether training either self-assessment or task-
selection skill would automatically lead to improvements in 
the other skill or whether both need training as in our 
experimental condition, as well as whether acquired self-
assessment and task selection skills can transfer to other 
tasks in the same domain or even to other domains. We 
assume that spontaneous transfer is not very likely or would 

not be very effective, as assessment criteria and standards 
will differ for different types of task. However, we do 
expect that experience with self-assessment and task 
selection through training in one task or domain may 
facilitate acquisition of those skills for other tasks or 
domains (i.e., transfer in the sense of preparation for or 
accelerated future learning; Bransford & Schwartz, 1999). 
Last but certainly not least, the most important question 

for future research is whether students can apply the self-
assessment and task selection skills they acquired from 
modeling examples in a self-regulated learning environment 
in which they are allowed to select which problems to work 
on. If so, one would expect training self-assessment and 
task-selection skills to improve learning outcomes attained 
as a result of self-regulated learning.  
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