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Abstract 

A model of prospective time estimation was tested in two 
experimental variations which examine the influence of load 
switch in task demands on time estimation. The model predicts 
these influences on time estimates by means of memory 
processes such as spreading activation. The approach was 
integrated into a cognitive architecture and has previously been 
tested successfully. In two experiments participants had to work 
on a counting task with different levels of working memory 
demands (High/Low). The participants had to stop each trial 
after a perceived duration of a previously presented sample of 
100 seconds (altered reproduction method) and received 
feedback. In the Low group most trials were performed in low 
load and one or two trials in high load (load switch), and vice 
versa for the High group. For the Low group the model predicts 
overestimations at load switches, but underestimations for the 
High group. We found that the model predictions in the first 
experiment only match the experimental results for the Low 
group, most probably due to the experimental design. In the 
second experiment, the design was therefore slightly changed 
and the timing task was embedded into a manual control task 
within a microworld environment. In this setting the model 
predictions match the time estimates for both groups. The series 
of experiments reported give strong evidence that the model is 
able to capture and to predict influences of task demands on 
time-estimates. The timing model may be used as a base for 
modeling subjective temporal reasoning and the timing of 
interaction with a dynamic system. 
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Introduction 
People can be good at estimating time and they sometimes 
rely on their estimates even when they are part of a safety-
critical system. However, in stressful situations or in the 
course of demanding tasks, time estimates might be 
distorted to a large degree.  

Time perception is crucial for everyday purposes and 
especially in the area of human-machine-interaction. In the 
context of operator performance, supervision of processes is 
a time critical task that might be prone to human errors, if 
other task demands rise suddenly. 

The influence of task demand on time estimation has been 
examined thoroughly. A number of factors that are said to 
have an influence on time estimation are discussed in the 
literature. The most frequently mentioned factors are: 
attention (Block & Zakay, 1996; Zakay, 1993; Byrne, 
2006), memory load (Brown, 1997; Brown & West, 1990; 
Dutke, 2005), or simply forgetting to estimate time if the 
task gets more demanding (Taatgen et al., 2007).  

The most prominent model is the Attentional Gate Model 
(Block & Zakay, 1996). This assumes that a mental 
pacemaker regularly generates pulses to measure time. If a 
person directs attention to the course of time, a gate opens 
and the pulses are accumulated in a cognitive counter. When 
attention is distracted by a secondary task, the gate remains 
closed, pulses are not accumulated and the time-estimation 
is distorted. This way estimations turn out to be shorter 
whenever attentional ressources are captured by demanding 
secondary tasks. 

A serious shortcoming of the Attentional Gate (ATG) 
Model is that it does not differentiate between specific and 
overall task demands. The model proposes influence of 
general attention but does not capture differences of specific 
task properties. Dutke (2005) therefore designed a counting 
task experiment to investigate the influence of two different 
working memory demands (sequential and coordinative) on 
time estimation. According to the ATG Model both 
demands would equally influence time estimation because 
attention is needed in both cases. However, Dutke’s results 
show that both factors influence task-performance, but only 
high coordinative working memory demands distort time-
estimates. 

For the domain of human-machine-interaction, the 
susceptibility to workload induced distortions of time 
estimation is of high importance because operators do 
experience strong changes in workload (see e.g. Decortis 
and Cacciabue 1999). This might eventually lead to 
mishandling of the system due to a wrong timing of action. 
Furthermore, one can observe that most often time estimates 
need to be given under the very same general conditions as 
the reference time representations have been acquired 
before. Therefore we chose to set up a model that is 
designed for reproduction of time estimates (e.g. instead of 
giving time estimates verbally). 



In the following we first sketch our computational 
implementation of a variant of the ATG Model which is 
prone to different task demands. We then introduce shortly 
the counting task and its specific task demands that may 
distort time estimation. Finally we show a series of two 
experiments that have been designed to challenge the 
models predictions. 

A Computational Model of Time Estimation 
Involving Memory Processes 
The idea behind the proposed model (Pape & Urbas, 2008) 
resembles some broadly accepted components of the ATG 
Model (Block & Zakay, 1996) with a pacemaker that 
generates pulses, an accumulator and an estimator, but 
without an associated gate. The main difference to the ATG 
model is a specific working memory account, which is 
realized by a mechanism to provide short-estimates between 
meaningful events (or “contextual changes” in the words of 
Block & Zakay, 1996) and an updating or construction 
process that integrates these short-estimates into a time 
estimate of the whole episode.  

Figure 1 sketches the basic idea of the model: The vertical 
dashed line represents the pulses generated by the 
pacemaker as time goes by. The accumulator collects these 
pulses until a meaningful event occurs (depicted by an ‘X’ 
on the dashed line). The count of collected pulses together 
with some contextual information is stored in a temporal 
chunk (the short-estimate) that may be understood as an 
element of episodic memory (Tulving, 2002). The updating 
process then constructs a new episode-estimate by retrieval 
of the latest episode-estimate from memory and adding of 
the short-estimate. For instance, at the second event in the 
example shown in Figure 1, the episode-estimate, which 
carries 5 pulses, is retrieved and the newly accumulated 6 
pulses in the short-estimate are summed up. A new episode-
estimate with 11 pulses is stored in memory while the 
former remains. With a perfect memory, this new episode-
estimate will be retrieved when the next event occurs, 
because it is the most recently generated chunk (with the 
highest activation). Additional memory activities might 
influence the activation level of two consecutive episode-
estimates in a way that the wrong episode is retrieved 
instead of the latest episode-estimate (see dash-dotted line in 
Figure 1). So in our example instead of a final time 
representation with 24 pulses, a representation with 20 
pulses is stored in memory. Therefore, demanding tasks 
cause time representations with fewer pulses than less 
demanding tasks. This mechanism generates shorter time 
representations only. Overestimations occur when the 
generated time representation is longer than a former time-
representation. Contrary to other timing-models, this model 
needs no additional elements for pacemaker and 
accumulator variance and no attentional gate. Distortions 
and distribution of time-representations emerge naturally by 
means of variance in memory processes. 

This approach was integrated into the cognitive 
architecture ACT-R (atomic components of thought – 

rational analysis; Anderson et al., 2004) and is called 
TaSTE (Task Sensitive Time Estimation) Module.  

We utilized the sub-symbolic declarative memory 
mechanisms proposed and implemented in ACT-R without 
changes. The activation level Ai of a chunk i is calculated by 
the base-level, a noise component ε (set to 0.1) and a 
context component which is not shown in equation 1. For 
base-level activation the number of presentations n for 
chunk i and the time since the jth presentation are taken into 
account. The decay of activation is calculated with d (set to 
0.4) 
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Equation 1: Calculating activation of chunk i. 
 

Activation spreading from the current goal towards the 
episode-estimates is enabled via the above-mentioned 
contextual information and helps to keep the episode-
estimates retrievable. The parameter association strength 
was modified to s = 6. 
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Figure 1: Construction process during an interval with 
several events. (Dotted arrow indicates the retrieval of an 

old instead of last time representation)

The Counting Task 
The integrated timing-model was tested within a counting 
task (Dutke, 2005) with varying demands (sequential and 
coordinative) to compare human data to the predictions of 
the model. Sequential complexity refers to task variations 
that affect the number of simple and independent processing 
components and is demanding general intentional resources. 
Coordinative complexity refers to tasks in which the 
information flow between interrelated processing 
components needs to be coordinated (Mayr et al., 1996) and 
demands working memory resources.  

In the counting task, the participants were asked to search 
lists of ten two digit numbers for either one or three targets 
(for low coordinative demand “16”; for high coordinative 
demand: “16”, “38”, and “67”). The sequential demand was 
varied with the overall number of targets contained in the 
lists (either 14 or 27 targets can be found within 40 lists). 



The subjects have to count how often the different targets 
appear. On every third encounter of a target, the appropriate 
answer is given by pressing a specific key (e.g. labeled 
“18”), in all other cases the key marked with “No” should 
be pressed. After 400 sec., subjects were asked to reproduce 
the perceived duration by pressing a key to indicate the start 
and the end of the interval. Participants were randomly 
assigned to the four experimental conditions that result from 
the 2x2 between-subjects design (two levels of coordinative 
demands, two levels of sequential demands). Almost all 
participants underestimated the duration of the counting 
task. High coordinative demands produced larger 
reproduction errors and shorter estimates than low 
coordinative demands. For increased sequential demands 
the reproduction error was unaffected by the manipulation. 

The model estimates showed the same effects of these 
demands as the human data (Pape & Urbas, 2008), because 
in the high coordinative condition more additional 
information has to be maintained. Both, simulation results in 
task performance and time estimations reveal comparable 
variability to each condition to empirical data, because the 
task model and the time module rely on retrieval processes 
where slight changes in activation lead to differences in 
results. 

The load switch scenario 
To adequately test the validity of the timing module we 
could either change the task or the scenario around the task 
as well as the estimation method. But, because with a new 
task it could be argued that the model data is dependent on 
the way the task was modeled and does not necessarily 
mirror the estimation processes that are assumed, we 
changed the task scenario and estimation method. This way 
we were able to reuse the model of the counting task that 
showed comparable performance to empirical data before 
(Pape & Urbas, 2008).  

For the experiments reported here we also changed the 
interval duration to 100 seconds to check whether the model 
also holds for shorter intervals. Furthermore we modified 
the reproduction method. Instead of simply waiting, the 
participant had to work on the same task as in the encoding 
phase. We used repetitive timing to ensure that people were 
able to build up a good time representation before the load 
of the task switched (see Altman & Gray, 2008 for task 
switching scenarios) after several trials to either higher or 
lower coordinative demands. 

Model runs 
The model ran 22 times for each of two conditions 
representing the two groups used in the experiment for four 
different trials. To provide a reference the first trial was 
stopped after 100 seconds, the model thereafter used the 
built up representation as a reference to stop the next trial. 
In the case of the high condition group the first trial started 
with high coordinative demands which means the model had 
to cope in counting the occurrences of three targets and 
meanwhile building up a time representation. In case of the 

low condition group there was just one target to count. The 
time representation was used in the subsequent model run (a 
trial of equal load) for comparison to the new constantly 
updated representation. The task was stopped after an 
equivalent number of pulses had been collected. Because we 
assume that people build up a robust representation after a 
number of trials of equal load, we took the mean of the 
accumulated pulses for the interval and used it as time 
representation for the load-switch trial. In this trial the 
coordinative load changed compared to the previous which 
means low load in case of the high load group and vice 
versa. 

This way we ended up with reproductions either derived 
in inload trials (trials according to the group condition) or 
switch trials for both groups (High/Low) (see model data 
figure 3 and 5).  

No main effects in reproductions were found, but a 
significant interaction inload/switch*Group 
(F(1,42)=7.5;p<.01; η²=0.15) show the different switch 
effects for the two groups. The model reproductions in the 
High group were much shorter in the switch trial and in the 
High group much longer than in the normal inload trials. 

Experiment one 
Our hypotheses generated by the model predictions were (1) 
reproductions performed in the same condition as 
experienced in the sample will be distributed around 100 
seconds for both groups. (2) The load switch trial causes 
underestimations for the High group and overestimations for 
the Low group. 

Participants  
Forty-two participants (aged 21-48 years; Mean=26.05, 
SD=5.63) took part in the main experiment. The volunteers 
(25 male, 17 female) were paid 10 euros for participation.  

Apparatus and setting 
A standard keyboard was adapted as the entry device for the 
participants. Four keys on the number pad were covered 
with green tape that read 18, 34, 59, and also N and further 
apart another key marked Y. No sources of temporal 
information were available in the room. 

Procedure 
The participants were randomly assigned either to the High 
or Low group. Every experimental session began with the 
presentation of the sample duration. In every trial including 
the sample in the beginning, participants had to count the 
number of targets that appeared within the lists. Lists of 5 to 
12 items (two digit numbers) appeared one after another in 
the middle of the screen for a time according to the number 
of items (3 to 10 seconds). Between lists the monitor was 
blank for 2 seconds. After the duration of 100 seconds, 
which was unknown to the participants, the task stopped and 
an instruction appeared on screen that the participant had to 



reproduce the experienced duration by starting and stopping 
the next trial by using the ‘Y’ button.  
 
Session structure 
The same instructions and training trials were given to all 
participants. After completing a demographic questionnaire 
the participants were informed about the counting task. 
After a training trial, the participants read another 
instruction about the experimental procedure and the 
reproduction procedure. Furthermore, they were informed 
that the length of lists, the number of lists, and the number 
of targets vary. Before a new trial started, the participants 
were informed look either for all three targets 18, 34, 39 or 
for just one target. No further targets were to appear than 
those mentioned. 

After the 1st, 6th and 8th (last) reproduction the 
participants had to fill out a NASA-TLX questionnaire (Hart 
& Staveland, 1988) that measures workload. 

Immediately following the experimental trials we 
conducted a structured interview to learn about the time 
estimation strategy, the difficulties of the tasks, and their 
strategy for the counting task the participants had applied.  

 
Testing 
After the sample-duration-trial (of 100 seconds), 
participants had to reproduce the duration 8 times with 
subsequent feedback about the quality of their reproduction 
(figure 2). A horizontal bar indicates the correspondence 
between sample duration and reproduced duration. If the 
horizontal bar is located below the middle area, the duration 
has been underestimated. 

No information about the assigned condition was given to 
the participants. Before every trial, participants were 
informed about the targets they had to count. When the trial 
was not stopped by the participant after 140 seconds, a 
message appeared on screen saying that no more lists are 
going to show up and the ‘Y’ button is to be pressed. 

Results and comparison of experiment one 
For the scores on the NASA TLX (1st and 2nd measures in 
load, the 3rd after the switch) a one-way repeated ANOVA 
revealed a significant interaction effect of NASA-TLX score 

and group (Low, High) (F(2,76)=13.8, p<.01; η²=0.267). 
Planned contrasts showed that the first two measures in the 
NASA-TLX changed significantly to the third (group Low: 
F(1,38)=15.6, p<.01; η²=0.291; group High: F(1,38)=24.1; 
p<.01; η²=0.388). Therefore, the load-switch in the last trial 
seemed to have had the expected effect.   

For the eight time-reproductions of the empirical data, the 
repeated ANOVA revealed a significant effect for 
reproductions (F(7,238)=8.86, p<.01, η=.46). There was a 
significant difference between inload reproductions to 
switch reproductions (F(2,43)=7.78;p<.05;η²=0.35). But the 
predicted interaction between group and trial condition did 
not reach significance. Planed contrasts reveal that for the 
low group most reproductions in the inload condition were 
significantly shorter than the final one. Therefore just the 
low group showed the predicted switch effect, as shown in 
figure 3. 

 

Figure 3: Model reproductions compared to empirical 
data in experiment one. above

…

120 sec.

110 sec.

90 sec.

80 sec.

…

below

above

…

120 sec.

110 sec.

90 sec.

80 sec.

…

below

We had four possible explanations for the results. First, 
subjects in the High group reported in the interview that 
they were aware that their time perception would change 
after the switch to low load and therefore waited longer until 
they stopped the trial. Subjects in the Low group were too 
busy in the last high condition trial to reason about these 
things. 

Second, some authors (Sturmer, 1966; Wearden et al., 
1999) report that repetitive time estimations in a monotonic 
task with no background activity and no feedback reveal a 
lengthening effect, which means that estimates get longer 
the more estimates were made. We tried to avoid this by 
giving feedback but this might not have helped to totally 
prevent the effect. Third, the NASA TLX might have 
interfered with the estimates because after presenting the 
questionnaires participants showed a slightly longer 
reproduction. 

Figure 2: The feedback given after each reproduction 
(here the feedback indicates a strong underestimation). 

 

Forth, the single switch in load after 7 inload trials might 
have been unexpected, causing participants to overestimate 
although participants were trained in both conditions. 
Therefore we conducted a second experiment that avoids the 
assumed factors.  



Experiment two 
For the second experiment subjects experienced four inload 
trials including the sample trial without reproduction. Then 
a first switch trial occurred. After that another four inload 
trials including the sample trial had to be completed before 
the second switch trial occurred. 

 
To add more background activity we used a microworld 

environment of an operator task in which the level of some 
liquid had to be maintained within a certain range and 
alarms had to be responded to (see figure 4). The operator 
has to handle certain important alarms which need to be 
counted, and ignore the remaining alarms. The alarm task 
resembled the counting task and for every new trial the 
participant in the role of the operator was informed about 
the important upcoming alarms just as in the previous 
experiment. 

We assumed that the high workload of this multitasking 
set effectively hinders the participants to post-hoc reason 
about their way of time perception and compensate. 
Furthermore, we hoped to reduce the lengthening effect by 
inducing the first switch earlier and 'start anew' with a 
second sample trial afterward. Finally we eliminated the 
NASA TLX to avoid additional interference effects. 

Participants second experiment 
Fifty-three participants (aged 21-40 years; M=26.43, 
SD=4.84) took part in the second experiment. The 
volunteers (28 male, 25 female) were paid 10 euros for 
participation.   

Procedure, structure and testing 
The second experiment resembled the first experiment with 
the above mentioned differences. The participants received 
extra training for the operator task and had to interact with 
the mouse in the microworld environment instead of with 
the keyboard. 

Results and comparison  
A main effect for reproductions was found (F(3,153)=4.382; 
p<.01; η²=.079). Furthermore for the second half of the 
experiment we found a significant interaction between 
reproductions and group (F(3,153)=2.6; p=.053; η²=0.049) 
and a linear trend in increasing estimates by means of a 
planned contrast (F(1,51)=10.7; p<.01; η²=.173). 

Figure 4: In the microworld scenario the dark blue liquid 
had to stay between the white triangles by opening the red
valve below. At the same time the blue alarms had to be
handled.   This time we find the predicted significant interaction for 

group*inload/switch as predicted by the model. Figure 5 
shows the differences between inload and switch 
reproductions for the second half of the experiment with the 

but also the measures for the distributions are comparable 
(see table 1). 

sig , 
p<. of 
experim much, 

nificant interaction inload/switch*group (F(1,51)=5.3
05; η²=.094). Furthermore, not only the means 

ent and simulation resemble each other pretty 

 

Model Participants Model Participants
inload 100.9 (14.2) 99.8 (11.3) 102.4 (15.9) 101.6 (13.3)
switch 106.5 (12.6) 110.2 (23.9) 91.2 (12.6) 98.8 (17.6)

Low High

 

Discussion 
The two experiments show that the TaSTE Module is able 
to predict human time estimates even under changing task 
demands not just in respect to the mean of the estimates but 
also in terms of distribution. Other current timing modules 
for ACT-R are not able to predict these task demand 
induced differences. The module presented by Taatgen et al. 
(2007) which has been designed for short term estimates 
assumes that distortions emerge from people “forgetting” to 
estimate time and restarting their timer. This would indeed 
result in shorter estimates. But the probability for restarting 
the timer has to be estimated for each task. Therefore it is 
only possible to replicate but not to predict distortions in 
time estimates. Byrne’s (2006) timing module assumes that 
attention factors cause distortions. In the case of the 

Figure 5: The comparison of the model predictions and 
the empirical reproductions of experiment two. 

Table 1: The means and standard deviation in brackets of 
time reproductions for model and experimental data. 



counting task the same amount of time is available for 
attention to time under difficult and easy conditions. In the 
case of experiment two, hardly any time is given for 
attention to time, because of the supervision task for the 
level of the liquid and the alarms. Byrne’s timing module 
therefore predicts no difference for the load switch but a 
high difference for experiment one and two. 

Nevertheless our model still needs further work, because 
additional factors seem to influence time estimation. These 
are (1) the lengthening effect of repetitive estimates, (2) 
additional questionnaires that might also lengthen estimates 
such as the NASA TLX, and (3) people are aware of their 
time distortions and counteract if they have the resources to 
do so. 

At least for the lengthening effect there might be some 
explanation in the implemented model:  More temporal 
chunks will reduce the activation spread to the distinct 
chunks and more confusion will occur during the updating 
process of the time representation. 

Conclusion 
The results of the experiments show that variance and 
distortion of human time estimation may be modeled by 
basic memory mechanisms as implemented in ACT-R. In 
this sense the TaSTE module is an integrated model that 
builds upon principles that are found in other cognitive 
domains. This does not imply that time estimating processes 
have to work they way sketched here. But formalizing a 
quantitative model allows evaluating different mechanisms 
in different task setting. 

Next steps are to analyze the sensitivity of the model 
against different kind of tasks. The limits of the model 
predictions concerning the durations between events and the 
influence of the structure of short-estimates should be 
investigated further. 
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