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Abstract 

A model of prospective time-estimation is introduced which 
explains the interplay of working memory demands on 
duration estimation. The approach is integrated into a 
cognitive architecture and tested by estimating the duration of 
a task that varied coordinative and sequential demands on 
working memory. The comparison with experimental data 
shows that the model is able to simulate the influence of these 
demands on human time-estimation. 

Keywords: Time-estimation; Computational cognitive 
modeling; Cognitive architectures; Coordinative working 
memory. 

Introduction 
The cognitive ability to be aware of the passage of time is 
beneficial in dynamic environments. Time-judgments are 
important to stay tuned to this environment, to plan steps in 
a task, and to identify problems (e.g. after an expected 
duration of booting a computer the monitor stays blank).  

In the context of human-machine interaction, the 
knowledge of temporal dependencies is of great interest. For 
example, in order to drive safely, drivers need to divide their 
visual attention in a reasonable way between traffic and 
secondary tasks such as In-Vehicle-Information-Systems. 
Operators can deduce a malfunction from the system’s 
temporal behavior in comparison to the temporal properties 
of a functioning system (Schulze-Kissing, 2007). 

The goal of this paper is to introduce a computational 
model of time-estimation that shows how a demanding task 
disrupts the ability to judge time. In this model, the need to 
maintain and update information (e.g. a number in 
arithmetic) during a task distorts the construction of time 
representation during this period. The approach is integrated 
into the cognitive architecture ACT-R (atomic components 
of thought – rational analysis; Anderson et al., 2004). In this 
way the influence of cognitive processes and demands on 
the construction of time representations can be explored in a 
cognitive context. For a cognitive architecture, it is valuable 
to have an integrated component that simulates temporal 
human behavior. This is especially important for modeling 
switching tasks, multitasking and tasks under time-pressure. 

The integrated timing-model is tested within a counting 
task (Dutke, 1997) with varying demands to compare 
human data to the performance of the model. With this task 
we show how computational cognitive modeling can 
improve understanding of cognitive skills such as time-
estimation. 

Psychological Models of Time-Estimation 
The research field of human time-estimation explains 
differences in estimates on a number of factors such as the 
duration of the interval, the kind of instruction given to the 
subjects, when and how an interval is estimated (production, 
reproduction), or the number of incidents experienced 
during a given interval.  

It is generally found that a demanding task affects time-
estimation. Time-estimates are shorter when compared to 
less demanding conditions (Zakay, 1993; Dutke, 1997; 
Brown, 1997). A number of authors (e.g. Block & Zakay, 
1996; Brown & West, 1990) assume that attention-
allocation is the responsible factor for the interference 
between task and time-estimates. A number of other authors 
assume a strong influence of working memory on time-
estimation. 

Attention Allocation Models 
In their Attentional Gate Model, Block & Zakay (1996) 
assume that a mental pacemaker regularly generates pulses 
to measure time. If a person directs attention to the course of 
time, a gate opens and the pulses are accumulated in a 
cognitive counter. When attention is distracted by a 
secondary task, the gate remains closed, pulses are not 
accumulated and the time-estimation is distorted. At the end 
of an experienced time interval, the time-representation is 
stored in working memory. For a comparison with another 
time interval, the time-representation is placed into 
reference memory and can be compared to the growing 
time-representation of the new interval in the cognitive 
counter. 

Working Memory Approach 
While the Attentional Gate Model is able to explain many 
aspects of time-estimation, it does not explain how attention 
is directed to the course of time, e.g. what kind of attention 
is addressed and what aspects of a task lead to which degree 
of distortion in time-estimates. These questions are 
addressed by Working Memory Approaches. Brown (1997) 
investigated whether there is a bidirectional influence of 
tasks and time-estimation. He found that all tasks 
interrupted timing. But concurrent time productions only 
reduced performance in mental arithmetic. He concluded 
that timing suffers when the resources of the central 
executive are reduced by being directed to the coordination 
of temporal and non-temporal tasks. The central executive is 
assumed to be responsible for controlling and coordinating 
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the activities of the subsystems and for coordinating 
processes related to concurrent tasks (Baddely, 1986). 
Brown (1997) argues that not the general resources of 
attention as proposed by attentional allocation models, but 
specific resources of working memory are crucial for the 
construction of time-representation.  

Dutke (2005) examined whether the overall demands of a 
task, such as attention allocation or specific working 
memory resources, are responsible for distortions of time-
estimates. In the “counting task”, Dutke (1997) was able to 
vary sequential and coordinative demands separately. The 
results show that both demands influenced task-
performance. However, only high coordinative working 
memory demands lead to shorter and less precise time-
estimates. According to Mayr, Kliegl and Krape (1996) 
sequential complexity refers to task variations that affect the 
number of simple and independent processing components. 
Coordinative complexity refers to tasks in which the 
information flow between interrelated processing 
components needs to be coordinated. Coordinate functions 
are tasks that demand intermediate storage of information, 
switching between processing components and inhibiting 
currently irrelevant information.  

To apply these approaches to human-centered system 
design the theories have to be specified further. In order to 
examine the influencing parameters in more detail we 
developed a model of prospective time-estimation that 
incorporates coordinative working memory demands. This 
model has been integrated into a cognitive architecture. 
With this model it is possible to examine quantitatively how 
coordinative working memory demands influence time-
estimations during various tasks.  

Computational Modeling 
We chose to work with the cognitive architecture ACT-R 
because it offers a number of advantages. ACT-R provides 
a theory of human cognitive processing which is based on 
numerous facts derived from psychological experiments. 
The architecture uses production-rules to simulate 
procedural knowledge. This production system is part of 
the symbolic structure of ACT-R, which also contains 
modules which can be seen as specialized and largely 
independent brain structures. Within production-rules a 
number of modules can be requested via their 
corresponding buffers. Some modules like the visual 
module and the manual module can interact with 
experimental environments, involving reading letters on 
screen or pressing keys.  

The declarative module holds the knowledge of facts 
(chunks), which have a number of slots with corresponding 
content. Chunks of the declarative memory can be retrieved 
by the retrieval-buffer. A memory-retrieval request for 
certain information is initiated by the model within a 
production-rule. After a while (e.g. depending on number of 
uses) the retrieval-buffer holds the best fitting chunk and the 
model can use that bit of information in another production 
rule. The idea for the buffer concept is that access to 

modules is restricted, that is why each buffer can only hold 
one piece of information at once.  

The use of independent production rules allows cognitive 
models both to react to external stimuli and to simulate 
experiments in which subjects have to interact with 
problems presented onscreen. ACT-R also works at a 
subsymbolic level which controls a number of symbolic 
processes. This subsymbolic processing is important for 
learning and working memory and other concepts described 
later on. Furthermore, ACT-R is extendable, allowing us to 
include a module for time-estimation.  

Models of Time-Estimation in ACT-R 
Three models of time-estimation are already implemented in 
ACT-R (Dzaack et al., 2007; Taatgen, van Rijn & 
Anderson, 2007; Byrne, 2006). While the first model 
utilises the number of fired productions within a task but 
accounts for retrospective time-estimation, the approaches 
on prospective time-estimation both introduce a pacemaker 
and depend on attentional processes to come to a time 
representation. The model that refers to the Attention Gate 
Model (Byrne, 2006) assumes that attention of a cognitive 
system is always directed on the production that fires at that 
moment. A special production requests the pacemaker to 
increment the pulses in the accumulator. This production 
only fires when no other production is firing. Time-
estimation in this case relies much on the way a task is 
modeled. The third model (Taatgen et al., 2007) uses an 
increasing pulse rate over a specific time interval. This 
explains why longer intervals are larger underestimated and 
vary more than short intervals. The assumption of this 
model for the influence of a demanding task is that people 
may forget to estimate time if a task is very demanding. In 
this case, people have to restart the accumulator. However 
the probability of forgetting time within a task has to be 
estimated by the modeler in advance. 

Both models are not capable of reproducing empirical 
effects of working memory demands which emerge from 
differences in the tasks. One model (Byrne, 2006) would 
only predict differences in estimates that occur by differing 
densities of firing productions which would not capture 
changes in working memory demand. The other model 
(Taatgen et al., 2007) has no real account why differences in 
demands distort time-estimates differently and when people 
have to restart their estimates. 

Therefore we introduce an alternative approach that is 
focused on the involvement of working memory processes 
in time-estimations. It explains characteristics of time 
judgments by means of mechanisms which are already 
provided by the working memory of ACT-R. 

Working Memory in ACT-R  
Lovett, Reder & Lebiere (1999) name three important 
aspects of working memory. (1) Working memory can be 
allocated to enable the maintenance and processing of 
information; (2) It is inherently limited; (3) It differs in 
supply across individuals. All of these points are addressed 
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by the subsymbolic mechanisms of ACT-R such as base-
level-learning, spreading activation and associative strength 
that act upon declarative knowledge.  

The chunks in declarative memory hold different levels of 
activation depending on how recently and how often this 
chunk was used. In the process of retrieval, the chunk 
holding the highest level of activation is retrieved from a 
number of potential candidates. This kind of learning, 
involving noise and decay, is called base-level learning.  

The current goal contains the information in the focus of 
attention of the cognitive system. Its contents are either 
established by previous processing or by external stimuli. 
The goal propagates attentional activation to declarative 
memory. This raises the accessibility of some chunks 
relative to others. The goal’s attentional activation (called 
source activation) is divided among the goal slots and 
multiplied by the associative strength between chunks of the 
goal slots and chunks in memory. For detail see Lovett et al. 
(1999). The main implication is that the relevance of a fact 
to the current goal and its past uses jointly determine the 
chunk’s accessibility. 

Quantitative Time-Estimation Model 
The approach introduced in this paper focuses on 
prospective time-estimation. Subjects know in advance that 
the duration of an interval is important. The model consists 
of four parts: a pacemaker that generates pulses, an 
accumulator which collects pulses for short durations, a 
process of construction which updates the time 
representation, and a procedure which finally estimates 
time, e.g. by comparing an old time representation with a 
new interval as in the reproduction task. The first two parts 
are modeled in ACT-R by adding a timing-module to the 
architecture. The third and forth parts of the approach 
integrate the output of the new timing-module with already 
existing processes and modules of the cognitive 
architecture. 

The Pacemaker 
The idea of a neural pacemaker used in this model is similar 
to the pacemaker used in a number of other time-estimation 
models (Treisman et al., 1990; Block & Zakay, 1996; 
Gibbon, 1977). The frequency of the pacemaker is assumed 
to rise with the amount of arousal, which is not yet 
integrated in our model.  

The pacemaker runs in an extra module (the timing-
module) within the architecture ACT-R. The pulses are 
generated with a constant frequency. The frequencies 
reported in literature (e.g. Treisman et al., 1990; Rammsayer 
& Ulrich, 2001) differ widely from 179 to 12.4 Hz. As our 
model is not sensitive to this parameter (see section 
“process of construction”) we choose to take a pragmatic 
value of 0.3 sec.. 

The Accumulator 
The accumulator holds the number of pulses which have 
been accumulated since the last request. 

When a memorable incident occurs during a task we 
assume that this releases a new short time-estimate based on 
the accumulated pulses and resets the accumulator. The 
accumulated pulses are going to be integrated with further 
information derived from the process of construction 
explained later on. The result is stored in memory including 
information about the incident that occurred. 

There are two reasons for the assumption that such 
incidents cause short time-estimates. Several authors found 
that the temporal nature of repeated incidents during a task 
is learnt by subjects without them being instructed to do so 
(e.g. Dutke, 1997; Grosjean et al., 2001). Other authors 
assume that the stored information about an incident is 
connected with the information about when it occurs (e.g. 
Michon, 1990; Block & Reed, 1978). We assume that 
during a longer period, a number of short time-estimates are 
successively connected to each other in the process of 
construction. 

In terms of ACT-R, a request is sent to the timing-buffer 
by the task-model following certain previously defined 
incidents. The timing-buffer collects the accumulated pulses 
from the timing-module which starts to accumulate anew. 
For example, such an incident occurs if a target is found in a 
set of stimuli. When this happens, the pulse count is 
transferred from the timing-module to its buffer. Once the 
accumulated pulses are in the timing-buffer this information 
can be processed further.  

The Process of Construction 
The short time-estimates and the process of construction 
are the novelties in our approach compared to prior 
approaches. At the start of the time-estimation, a time-
chunk with zero pulses is placed in declarative memory. 
Subsequent incidents cause a retrieval of the latest time-
chunk in the declarative memory and an integration of the 
newly accumulated pulses. Hence, a new time-chunk is 
stored in memory while the former remains. With a perfect 
memory the new chunk will be retrieved by the next 
incident (see fig. 1) because it is the most recent generated 
chunk, but we do not have a perfect memory. Therefore, 
we assume that the cognitive system has to invest some 
effort to maintain the latest time-chunk until the next short 
time-estimate is performed. Maintaining information is a 
classical function of working memory. If a secondary task 
is very demanding and additional information has to be 
maintained, time-chunks can be confused. Instead of the 
latest time-chunk, an older one is retrieved and is updated 
with the pulses in the accumulator. This would result in 
shorter time-estimates, because the preceding short-
estimate is lost if the second latest chunk was retrieved. 
Contrary to other timing-models, this model assumes a 
perfect pacemaker, a perfect accumulator, and no 
attentional-gate that is opened or closed, but distortions of 
time-representations that emerge by means of memory 
processes. 

The model is based on the assumption that the demands 
on the working memory over a period influence the 
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quality of the final time representation. The demand on 
working memory is changing throughout a task. It seems 
that the coordinative demands during a period of time 
and not the demand at the end of the period cause the 
distortion of the final time-representation. Therefore, it is 
plausible that the time-representation is continuously 
updated during a task.  

Constructing time-representation this way explains 
why short intervals are estimated more precisely than 
long intervals which is generally reported. A number of 
authors in the field of scalar expectancy theory (SET) 
(e.g. Gibbon, 1977) examined this finding. One property 
of the SET model states that the standard deviation of 
time judgments grows as a linear function of the mean; 
therefore longer durations are estimated less precise. 
Furthermore, longer durations are also underestimated for 
a larger amount (e.g. Vierordt, 1868) than short 
durations. Our model is able to explain these frequently 
reported effects. During longer durations, more occasions 
arise where time-chunks can be confused, which also 
causes more room for differences between estimates. 
This results in a larger underestimation and a larger 
variability in estimates for long compared to short 
intervals.  

 
 

Figure 1: Process of construction in ACT-R 
 

In terms of ACT-R, a request is initiated by the timing-
module to retrieve a time-chunk. According to base-level-
learning, the latest time-chunk should be retrieved, because 
it holds the highest activation-level. As time goes by, more 
time-chunks accumulate in memory and the associative 
strength decreases. This is why the number of chunks with 
identical contents rises. Hence, the longer a time period, the 
higher is the probability of retrieving an older chunk.  

Short estimates between incidents might be lost in the 
construction process due to memory processes. Therefore, 
certain proportions of a time representation with a certain 
variability of the overall estimation are lost and different 
chosen frequencies of the pulse rate would not affect the 
final estimation. 

The Comparison Process  
The comparison process is very simple. When the time 
interval is completed, a final time-representation is 
constructed and can be used later for time-reproduction. 
Within an experiment which applies the reproduction 
method, a subject would be asked to wait after a signal until 
the same amount of time has elapsed as they had spent on 
some task.  
It is assumed that subjects compare the actual time-
construction regularly with the prior time-representation. 
When they are equal, the subject gives a stop-signal. In the 
reproduction task, subjects seem to use mental simulation if 
they are questioned about properties of a previous situation 
(de Kleer & Brown, 1982; Johnson-Laired, 1983). 

For the comparison process within the task-model, the 
final time-chunk is retrieved when a reproduction is to be 
made, and the final number of pulses is put into the goal. 
The timing-module starts counting from zero (with a new 
ID for the new time-representation in one of its slots). Each 
time a new time-representation is constructed, the pulses of 
the new time-chunk are compared to the target (old time-
representation). A special production fires when the two are 
equal, and the model gives a stop signal. 

Testing the Timing Model  
To test the timing model, we chose the counting task used 
by Dutke (1997) which varies the demand on working 
memory and the amount of sequential processing.  model perceived
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The subjects were asked to search lists of ten two digit 
numbers for either one or three targets (conditions 1 and 2: 
“16”; condition 3 and 4: “16”, “38”, and “67”). The 
sequential demand was varied with the overall number of 
targets in all lists presented (either 14 or 27 targets can be 
found within 40 lists). If a target was found, the subjects had 
to remember how often this target had appeared so far. If it 
appeared for the first or second time, they were told to press 
a key marked “No”. On the third encounter, they were told 
to press a key marked with the target-ID, and then start 
counting again. If no target appeared in the list the answer 
was also “No”. In the high sequential conditions (2 and 4), 
the counter of the target(s) had to be updated more often. 
This is assumed to be more difficult than the low sequential 
demands in condition 1 and 3.  

Before the task started the subjects were told that they 
will later be asked to reproduce its duration. After 
completing the counting task after 400 sec., subjects were 
asked to reproduce the duration by pressing a key when they 
felt that approximately the same amount of time had elapsed 
as they had experienced previously. 

The Model and the Task  
Starting from the appearance of the first list, the developed 
task-model begins to build up a time-representation. For 
every new list the model first remembers the targets it has to 
look for. Which means it retrieves the corresponding chunks 
and keeps them in the goal until the list disappears. After 
remembering the target(s), the model starts to read the 
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numbers one after the other. It checks whether every new 
number is a target. If a target is found the model tries to 
retrieve the chunk with the latest update of the target’s 
occurrence. According to the retrieved number of 
occurrences the answer is given by a key press. The number 
of occurrences is updated and subvocally repeated twice to 
keep the activity level high until the next retrieval. This 
strategy was derived from reports of subjects in an 
exploratory study. After the whole list is checked for targets, 
the model waits until a new list appears. After 40 lists, the 
stop sign appears on screen and a final time-representation 
is stored in memory. To reproduce the time, the pulses of 
the final time-representation are written into a slot of the 
goal and a new time-estimation is started by updating 
chunks that hold a different ID than the first estimate. For 
the reproduction process we used a similar context as in the 
previous counting-task but without targets. This was done 
because of the mental simulation mentioned previously. As 
soon as the same number of pulses is collected as during the 
task, the model presses a key that indicates the end of the 
reproduction. 

Comparison of the Model with Human Data  
The performance of the model as well as the reproduction-
error were compared to performance and reproduction-error 
in experiment 3 in Dutke (1997, p.128). Dutke assigned 56 
subjects randomly to the four experimental conditions that 
result from the 2x2 between-subjects design (two levels of 
coordinative demands, two levels of sequential demands). 

Dutke (1997) found that almost all participants 
underestimated the duration of the counting task. Increased 
coordinative demands on working memory, produced larger 
reproduction errors than low coordinative demands (figure 
3, black columns) [F(1,52) = 16.39, p< .01; partial η²= .24]. 
The reproduced duration is shorter under high than under 
low coordinative demands. However, for increased 
sequential demands the reproduction error was unaffected 
by the manipulation.  
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Figure 2: Human and model performance of errors (split 

into ne- and fj-errors) in all four conditions 
 

For the evaluation of performance in the counting task, 
two kinds of errors are crucial: An ne-error occurs 
whenever a target is in the list for the third time but no 
according answer is given. An fj-error arises when a target 
is in the list and the answer “yes-target-x-found” is given, 

but the target does not appear for the third time. The grey 
columns in figure 2 show the performance of the subjects 
(Dutke, 1997). For high coordinative demands the variation 
of sequential demands shows explicit differences in 
performance errors. Therefore, increased sequential 
demands seem to increase the difficulty of the task, but do 
not influence performance in time-estimation.  

The overall fit of the model’s performance to the 
experimental data is very good in all four conditions. It 
might seem surprising that there are slightly more errors in 
condition 1 than in condition 2 which should be more 
demanding due to higher sequential demands. However, for 
the easy conditions, in terms of coordinative demands, it is 
easy to maintain the number of occurrences of a single 
target. If the target appears more often, frequent updating is 
even helpful because the activity of the chunk stays high 
and ensures better retrieval. In the empirical data the error 
rates in condition 1 and 2 hardly differ and therefore do not 
contradict this assumption. Hence, the task-model seems to 
simulate user-performance in the counting task well and can 
be used to test the timing-module in conditions of different 
levels of working memory demand. 
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Figure 3: Human and model reproduction error 
 

Figure 3 shows the reproduction error comparing the 
differences of mean time-estimations and objective time. In 
low coordinative conditions (1 and 2) the reproduction error 
is much smaller than in the high coordinative conditions (3 
and 4). Similar to Dutke (1997), we found larger 
reproduction errors under increased coordinative demands 
than under low coordinative demands (figure 3, grey 
columns) [F(1,56) = 12.23, p< .01; partial η² = .19]. For 
increased sequential demands the reproduction error was 
unaffected by the manipulation [F(1,56) = 1.25].  

As can be seen, the model shows a comparable time-
estimation to human data in all four conditions. The model 
even produces a similar variance in time-estimates. 
Therefore the new approach integrated in ACT-R is able to 
estimate time with the same influence of working memory 
demand of a concurrent task as is reported in a number of 
time-estimation experiments. 

Discussion 
The approach under discussion explains the way working 
memory demands effect duration estimation. For a time-
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estimation, the temporal representation during an interval 
has to be updated continuously. In order to do this the latest 
representation has to be maintained in working memory. A 
task that calls upon working memory mechanisms interferes 
with the working memory mechanism of maintaining the 
latest time-representation. Compared to other theoretical 
accounts of duration estimation, this model is more 
parsimonious in that no additional elements like an 
attentional gate or processes of a central executive are 
necessary to explain observable distortions of the estimation 
process. Furthermore, the Attentional Gate Model would not 
be able to explain why coordinative and not sequential 
demands influence time-estimation, because attention is 
needed for both kinds of demands. 

The timing approach was integrated in a cognitive 
architecture and the influence of working memory demands 
were explored within a task-model that simulates the 
counting task (Dutke, 1997). The results show that the 
timing approach is able to simulate the reproduction-error 
found in the different conditions of the experiment. 

The next steps to further explore the nature of human 
time-estimation with the methodology of computational 
modeling would be to test the integrated timing-module 
within different kinds of task. Especially interesting would 
be variations of the duration and different tasks with other 
working memory demands. 

Furthermore, it would be beneficial to expand the 
integrated timing-module by a concept of time-pressure 
and/or arousal and expectation for the length of certain 
processes.  
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