
LETF
A Lisp-Based Exploratory Testing Framework for Computational Cognitive Models

Clayton T. Stanley (clayton.stanley@wpafb.af.mil)

Air Force Research Laboratory
WPAFB, OH 45431 USA

Keywords: exploratory testing, ACT-R, high performance
computing

Introduction
Developing a computational cognitive model is an iterative
process. Due to this, any model validation/testing technique
cannot be static, and must be agile enough to evolve
alongside the model’s development. Over the past few
decades, a software validation paradigm called exploratory
testing has emerged within the software engineering
community. Exploratory testing is not static, favors a high
level of interactivity between the tester and the program,
and advocates that programmers should “build time and
enthusiasm for parallel research, test development, and test
execution” (Kaner, 2004). As cognitive modelers, trying to
develop a model that performs within a certain range of
objective performance metrics while maintaining a level of
cognitive plausibility, exploratory testing is not new to us.
In fact, testing frameworks are already available to the
cognitive modeling community. In ACT-R, for example,
there is the visual-location crosshair for the vision module,
the buffer activity trace, and the fMRI BOLD visualization.

However, many of these exploratory testing formalisms
are specific to the cognitive architecture that the modeler is
using, and there are a fair amount of exploratory tests that
are architecturally agnostic. For example, exploring the
architectural/strategy/parameter space of a cognitive model,
computing objective performance measures, and capturing
the central tendency of stochastic models are all common
modeling issues. In order to enable modelers to easily
explore these sorts of generic performance metrics, I have
developed LETF, a lisp-based exploratory testing
framework for computational cognitive modelers.

LETF
LETF is a lightweight configurable lisp program that layers
on top of a cognitive model. After LETF is configured and
launched, it spawns the cognitive model as a separate
process, sending inputs to the model as command line
arguments, and grabbing outputs from the model by
capturing the standard output stream. Model inputs are
specified in a work file, where each row in the file is a
particular parameter combination, and columns correspond
to the values for a parameter in the model. A flexible
configuration file allows for extended processing of model
outputs, and configurable display format by means of a
modular print method. The flexibility of the configuration
file is an important consideration, because once the model is

set up to interface with LETF, modifying and adding model
tests does not require altering the model’s code. Instead, you
express the tests by modifying the configuration file.

In order to express a large range of different model tests
in the configuration file, we are not providing a large
number of specific APIs to support each test. Instead, we
have removed the API layer altogether, and grounded the
syntax of the configuration file to the underlying language
of the generic testing framework. That is, the syntax of the
configuration file is lisp. And it is this critical feature that
makes adding and changing model tests in LETF so
expressive and agile.

The best way to make this point is with a simple example.
Suppose we have a model written in lisp (e.g., an ACT-R
model), with independent variables (IVs) ‘noise’, ‘speed’,
dependent variables (DVs) ‘rt1’, ‘rt2’, ‘rt3’, and we want to
compute the correlation between the observed and model
data. The configuration file to express this model test (i.e.,
compute the correlation) could look like Figure 1.

Figure 1: Example configuration file.

The model code that would communicate with LETF for
this example could look like Figure 2.

Figure 2: Example model.

Note that LETF offers a more direct interface when the
model is in lisp (shown in Figure 2). In this case, LETF can
communicate with the model by calling the entry function
‘run-model’ instead of spawning a separate process.

IV= noise
IV= speed
file2load= extras.lisp
modelRTs= (list [rt1] [rt2] [rt3])
observedRTs= (getObservedRTs)
correlRTs= (correl [modelRTs] [observedRTs])
DV= correlRTs

(defun run-model (&key (noise) (speed))
…run the model using the values for IVs ‘noise’ and
‘speed’ that were passed to ‘run-model’
(format t “rt1=1.1~%”)
(format t “rt2=2.2~%”)
(format t “rt3=3.3~%”))

297

Many cognitive models are stochastic, and so it is
common to run them multiple times to reveal the central
tendency. This can be accomplished with the simple
addition to the configuration file

collapseQuota= 100 (1)

And, if we wanted to use a collapsing function other than
the default ‘mean’, we could specify our own directly in the
configuration file (note the lisp syntax)

collapseFn= (lambda (a) (+ (mean a) 1000)) (2)

LETF calculates the value of a variable X on a ‘DV=X’
line by expanding the string expression that variable X
represents, and then invoking the lisp reader to interpret that
expression and return a value. Using the example in Figure
1, the ‘DV=correlRTs’ line tells the program to find the
expanded string expression for the variable ‘correlRTs’.
LETF finds the ‘correlRTs=’ line in the configuration file,
and sets the value of ‘correlRTs’ to

(correl [modelRTs] [observedRTs]) (3)

Then, all variable names within brackets ‘[]’ are recursively
expanded to their values, and the program evaluates the
expression by invoking the lisp reader

(eval (read-from-string
“(correl (list 1.1 2.2 3.3) (getObservedRTs))”) (4)

Note that once the brackets are recursively expanded, the

API between the configuration file and LETF is lisp,
matching the underlying language of the generic testing
framework. Going back to Figure 1, the modeler is writing a
lisp expression around the variables sent by the model (rt1-
3) in order to calculate a DV of interest (‘correlRTs’). The
function ‘getObservedRTs’ (which returns a list of observed
response times for trials 1 through 3) would be defined in
the lisp file ‘extras.lisp’, which is loaded (by specifying the
‘file2load=extras.lisp’ line) and therefore visible to LETF
when it evaluates the string expression in [4]. The ‘correl’
function has already been defined in LETF, which computes
the correlation between two lists, so the expression in [4]
will bind the correlation of RTs between the model and
observed data to the variable ‘correlRTs’. Having this on-
the-fly configurability available directly in the configuration
file – both syntactically and semantically anchored in the
experimental testing framework’s own language – can be a
very powerful paradigm.

Discussion
LETF supports the exploratory testing that a modeler might
perform during the early stages of model development. For
example, with modest computational resources (e.g., a
laptop workstation) and a few lines of code, a modeler can

build an exploratory test framework for their cognitive
model. Iterative changes in the model might drive evolution
of the exploratory tests, while results of the tests might drive
iterative changes in the model. Test results can be displayed
in whatever format the modeler thinks is informative (e.g.,
printing to the terminal, communicating via a socket to a
data visualization program, writing to a text file) and can
evolve over time as well. In fact, this sort of exploratory
testing technique is currently being used to test incremental
changes to LETF’s own code.

LETF also supports large-scale exploration of cognitive
models by taking care of data aggregation and restructuring
(e.g., calculating DVs, collapsing to determine central
tendency) before outputting the results in a configurable
format that can be coupled with specific parameter search
algorithms and High Performance Computing (HPC)
systems. For example, it was recently coupled with Moore’s
regression tree search algorithm ‘Cell’ (2010) to run a
computational cognitive model of the Change Signal Task
(Moore, Gunzelmann, & Brown, 2010) on the Maui High
Performance Computing Center, Mana. In just a few
minutes, LETF was configured to interface the model and
the search algorithm (Cell) for an exploratory analysis that
used over 6000 processor hours (running in less than 12
hours wall clock time) on Mana.

We recognize that there are a fair amount of exploratory
tests that apply generally across architectures, and have
provided a generic exploratory testing framework to easily
specify those tests. Further, LETF has no API layer between
the configuration file and the language that the framework
was built in (i.e., lisp), allowing for an unbound number of
tests that can be expressed. It is light enough to run a model
on a standalone desktop computer through a small range of
hand-coded configurations, and generic enough to couple
with large scale exploratory tests on HPC clusters. Very
much in the spirit of exploratory testing, LETF helps
accelerate the pace that cognitive modelers can develop,
test, and improve their computational models1.

References
Kaner, C. (2004). The ongoing revolution in software

testing. Proceedings of Software Test and Performance
Conference. Baltimore, MD.

Moore, L. R., Jr., Gunzelmann, G., & Brown, J. W. (in press
- 2010). Modeling Statistical Learning and Response
Inhibition with the Change Signal Task. In Proceedings of
the 10th International Conference on Cognitive Modeling,
Manchester, United Kingdom.

Moore, L. R. (2010). Cognitive model exploration and
optimization: a new challenge for computational science.
In T. Jastrzembski (Ed.), Proceedings of the 2010
Behavior Representation in Modeling and Simulation
(BRIMS) Conference. Orlando, FL: Simulation
Interoperability Standards Organization.

1 Please contact the author if you are interested in obtaining the

source code

298

